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1 Introduction

Multi-criteria decision analysis aims at representing the preferences of a decision maker (DM) over
options. One possible model is the transitive decomposable one where an overall utility is deter-
mined for each option. The Choquet integral has been proved to be a versatile aggregation function
to construct overall scores [3, 9, 10] and is based on the notion of the capacity or fuzzy measure. The
definition of Choquet integral in this case is based on unipolar scales [13]. Because these scales are
not always appropriate (See the motivating example in [13]), the bipolar general Choquet integral
have been introduced [8, 12] for bipolar scales and in particular the bipolar Choquet integral w.r.t.
a 2-additive capacity. Grabisch and Labreuche studied in [12] the expressions of a 2-additive bi-
capacity according to their definition of 2-additivity via a Möbius transform. But, the identification
of a 2-additive bi-capacities is not yet studied in the literature in details.

In this paper, we studied in details properties of a 2-additive bi-capacity by using the bipolar
Möbius transform defined by Fujimoto et al. [8]. Hence we obtain here some simple expressions of
monotonicity conditions of a 2-additive bi-capacity. We propose also an identification or elicitation
of a 2-additive bi-capacity by asking to DM to express his preferences over a set of alternatives
called here a set of trinary actions. A trinary action is an (fictitious) alternative representing a
prototypical situation where on a given subset of at most two criteria, the attributes reach a
satisfactory level 1 or unsatisfactory level −1, while on the remaining ones, they are at a neutral
level (neither satisfactory nor unsatisfactory) 0.

After some basic notions and properties of a 2-additive capacity given in the next section, we
present in Section 3 how to identify a 2-additive capacity by using a linear program.

2 Basic concepts

Let us denote by N = {1, . . . , n} a finite set of n criteria and X = X1 × · · · ×Xn the set of actions
(also called alternatives or options), where X1, . . . , Xn represent the point of view or attributes. For
all i ∈ N , the function ui : Xi → R is called a utility function. Given an element x = (x1, . . . , xn),
we set U(x) = (u1(x1), . . . , un(xn)). For a subset A of N and actions x and y, the notation
z = (xA, yN−A) means that z is defined by zi = xi if i ∈ A, and zi = yi otherwise. We will often
write ij, ijk instead of {i, j} and {i, j, k} respectively.
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2.1 2-additive bi-capacities

Let us denote by 2N := {S ⊆ N} the set of subsets of N and 3N := {(A,B) ∈ 2N × 2N |A∩B = ∅}
the set of couples of subsets of N with an empty intersection. We define on 3N the following relation
⊑: for all (A1, A2), (B1, B2) ∈ 3N

(A1, A2) ⊑ (B1, B2) ⇔ [A1 ⊆ B1 and B2 ⊆ A2]. (1)

Definition 1 (Bi-capacity [12, 13]) A function ν : 3N → R is a bi-capacity on 3N if it satisfies:

1. ν(∅, ∅) = 0;
2. For all (A1, A2), (B1, B2) ∈ 3N ,

[(A1, A2) ⊑ (B1, B2) ⇒ ν(A1, A2) ≤ ν(B1, B2)].

In addition, a bi-capacity ν : 3N → R is said to be

• normalized if
ν(N, ∅) = 1 and ν(∅, N) = −1;

• additive if for all (A1, A2) ∈ 3N ,

ν(A1, A2) =
∑

i∈A1

ν(i, ∅) +
∑

j∈A2

ν(∅, j).

Definition 2 (Möbius transform of a bi-capacity [11]) Let ν a bi-capacity on 3N . A Möbius
transform of ν is a set function mν : 3N → R such that for all (A1, A2) ∈ 3N

mν(A1, A2) :=
∑

B1 ⊆ A1

A2 ⊆ B2 ⊆ A1
c

(−1)|A1\B1|+|B2\A2|ν(B1, B2). (2)

When mν is given, it is possible to recover the original ν by the following expression:

ν(A1, A2) :=
∑

(B1,B2)⊑(A1,A2)

mν(B1, B2), ∀(A1, A2) ∈ 3N (3)

Fujimoto [6, 8] has proposed another equivalent definition of a Möbius transform of a bi-
capacities as follows:

Definition 3 (Bipolar Möbius transform of a bi-capacity) Let ν a bi-capacity on 3N . The
(bipolar) Möbius transform of ν is a set function bν : 3N → R defined by

bν(A1, A2) :=
∑

B1 ⊆ A1

B2 ⊆ A2

(−1)|A1\B1|+|A2\B2|ν(B1, B2) (4)

=
∑

(∅,A2)⊑(B1,B2)⊑(A1,∅)

(−1)|A1\B1|+|A2\B2|ν(B1, B2)

∀(A1, A2) ∈ 3N .

Conversely, for any (A1, A2) ∈ 3N , it holds that

ν(A1, A2) :=
∑

B1 ⊆ A1

B2 ⊆ A2

bν(B1, B2). (5)

There is a link, given by Fujimoto and Murofushi [7],between these two definitions of a Möbius
transform of a bi-capacity:
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Proposition 1 Let ν be a bi-capacity on 3N , mν the Möbius transform of ν, and bν the bipolar
Möbius transform of ν. Then, it holds, for any (A1, A2) ∈ 3N , that

mν(A1, A2) = (−1)|A1
c\A2|

∑

A1
c\A2⊆C2⊆A1

c

bν(A1, C2) (6)

and

bν(A1, A2) = (−1)|A2|
∑

C2⊆A1
c\A2

mν(A1, C2) (7)

Proof. See [7].

If there is no confusion, we will use the notation m for mν and b for bν .
Bi-capacities on 3N generally require 3n−1 parameters. In order to reduce this number, Grabisch

and Labreuche [11–13] proposed the notion of k-additivity of bi-capacity as follows:

Definition 4 Given a positive integer k < n, a bi-capacity ν is said to be k-additive iff

1. mν(A1, A2) = 0 whenever |A2
c| > k;

2. There exists (A1, A2) ∈ 3N such that |A2
c| = k and mν(A1, A2) 6= 0

An alternative and equivalent concept of k-additivity is proposed by Fujimoto et al. [8] by using
bipolar Möbius transform.

Proposition 2 Given a positive integer k < n, a bi-capacity ν is k-additive iff

1. bν(A1, A2) = 0 whenever |A1 ∪ A2| > k;
2. There exists (A1, A2) ∈ 3N such that |A1 ∪ A2| = k and bν(A1, A2) 6= 0

Proof. See [8].

To avoid a heavy notation, for a bi-capacity ν, its Möbius transform m and its bipolar Möbius
transform b, we use the following shorthand for all i, j ∈ N , i 6= j:

• νi| := ν(i, ∅), ν|j := ν(∅, j), νi|j := ν(i, j), νij| := ν(ij, ∅), ν|ij := ν(∅, ij),
• mi| := m(i, ∅), m|j := m(∅, j), mi|j := m(i, j), mij| := m(ij, ∅), m|ij := m(∅, ij),
• bi| := b(i, ∅), b|j := b(∅, j), bi|j := b(i, j), bij| := b(ij, ∅), b|ij := b(∅, ij).

Whenever we use i and j together, it always means that they are different.
Using the above definitions, we propose the following properties of a 2-additive bi-capacity ν

and its bipolar Möbius transform b:

Proposition 3 1. Let ν be a 2-additive bi-capacity and b its bipolar Möbius transform. For any
(A1, A2) ∈ 3N we have:

ν(A1, A2) =
∑

i∈A1

bi| +
∑

j∈A2

b|j +
∑

i ∈ A1

j ∈ A2

bi|j +
∑

{i,j}⊆A1

bij| +
∑

{i,j}⊆A2

b|ij (8)

2. If the coefficients bi|, b|j, bi|j, bij|, b|ij are given for all i, j ∈ N , then the necessary and
sufficient conditions to get a 2-additive bi-capacity generated by (8) are: for any (A,B) ∈ 3N

and k ∈ A,

bk| +
∑

j∈B

bk|j +
∑

i∈A\k

bik| ≥ 0 (9)

b|k +
∑

j∈B

bj|k +
∑

i∈A\k

b|ik ≤ 0 (10)
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3. The inequalities (9) and (10) can be rewritten in terms of bi-capacity ν as follows: for any
(A,B) ∈ 3N and k ∈ A, such that |B|+ |A| ≥ 2,

∑

j∈B

νk|j +
∑

i∈A\k

νik| ≥ (|B|+ |A| − 2)νk| +
∑

j∈B

ν|j +
∑

i∈A\k

νi| (11)

∑

j∈B

νj|k +
∑

i∈A\k

ν|ik ≤ (|B|+ |A| − 2)ν|k +
∑

j∈B

νj| +
∑

i∈A\k

ν|i (12)

Proof. 1. Because ν is 2-additive, the proof of the equation (8) is given by using the relation (5)
between ν and b.

2. The proof of the second point of the proof is based on the expression of ν(A1, A2) given in (8)
and on these equivalent monotonicity properties (which are easy to check): ∀(A,B) ∈ 3N and
∀A ⊆ A′,
(i) ν(A,B) ≤ ν(A′, B) ⇔ ν(A \ k,B) ≤ ν(A,B) ∀k ∈ A;
(ii) ν(B,A′) ≤ ν(B,A) ⇔ ν(B,A) ≤ ν(B,A \ k) ∀k ∈ A.

3. The inequalities (11) and (12) are obtained by using the relation (5) between ν and b.

Hence, Proposition 3 shows that the computation of a 2-additive bi-capacity ν can be done
by knowing only the values of ν on the elements (i, ∅), (∅, i), (i, j), (ij, ∅), (∅, ij) for all i, j ∈ N

such that the inequalities (11) and (12), which correspond to the 2-additive monotonicity of a
bi-capacity, are satisfied. In addition, we can add these normalized conditions:

νN | =
∑

i∈N

bi| +
∑

{i,j}⊆N

bij| = 1 (13)

ν|N =
∑

i∈N

b|i +
∑

{i,j}⊆N

b|ij = −1

2.2 Choquet integral w.r.t. a 2-additive bi-capacity

Definition 5 (Grabisch and Labreuche [12]) Let ν be a bi-capacity on 3N and x = (x1, . . . , xn) ∈
R

n. The expression of Choquet of x w.r.t. ν is given by

Cν(x) :=
n
∑

i=1

|xσ(i)|
[

ν(Nσ(i) ∩N+, Nσ(i) ∩N−)− ν(Nσ(i+1) ∩N+, Nσ(i+1) ∩N−)
]

, (14)

where

• N+ = {i ∈ N |xi ≥ 0} and N− = N \N+;
• Nσ(i) := {σ(i), . . . , σ(n)} and σ is a permutation on N such that

|xσ(i)| ≤ |xσ(i+1)| ≤ . . . ≤ |xσ(n)|.

We have also the following equivalent expression of Choquet integral w.r.t. ν, given by Fujimoto
and Murofushi [7]:

Cν(x) =
∑

(A1,A2)∈3N

b(A1, A2)
(

∧

i∈A1

x+
i ∧

∧

j∈A2

x−
j

)

(15)

where

{

x+
i = xi if xi > 0

x+
i = 0 if xi ≤ 0

and

{

x−
i = xi if xi < 0

x−
i = 0 if xi ≥ 0

Therefore the Choquet integral of x w.r.t. a 2-additive bi-capacity ν is given by:

Cν(x) =
n
∑

i=1

bi| x
+
i +

n
∑

i=1

b|i x
−
i +

∑

{i,j}⊆N

bi|j (x+
i ∧ x−

j ) (16)

+
∑

{i,j}⊆N

bij| (x
+
i ∧ x+

j ) +
∑

{i,j}⊆N

b|ij (x−
i ∧ x−

j )
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3 Elicitation of a 2-additive bi-capacity

3.1 The set of trinary actions and relations

We assume that the DM is able to identify for each criterion i three reference levels:

1. A reference level 1i in Xi which he considers as good and completely satisfying if he could
obtain it on criterion i, even if more attractive elements could exist. This special element
corresponds to the satisficing level in the theory of bounded rationality of Simon [16].

2. A reference level 0i in Xi which he considers neutral on i. The neutral level is the absence
of attractiveness and repulsiveness. The existence of this neutral level has roots in psychology
[17], and is used in bipolar models [18].

3. A reference level −1i in Xi which he considers completely unsatisfying.

We set for convenience ui(1i) = 1, ui(0i) = 0 and ui(−1i) = −1.

We call a trinary action or trinary alternative, an element of the set

T = {(1∅,−1∅), (1i,−1∅), (1∅,−1j), (1i,−1j), (1ij ,−1∅), (1∅,−1ij), i, j ∈ N} ⊆ X

where

• (1∅,−1∅) =: a0|0 is an action considered neutral on all criteria.
• (1i,−1∅) =: ai| is an action considered satisfactory on criterion i and neutral on the other
criteria.

• (1∅,−1j) =: a|j is an action considered unsatisfactory on criterion j and neutral on the other
criteria.

• (1i,−1j) =: ai|j is an action considered satisfactory on criteria i, unsatisfactory on j and
neutral on the other criteria.

• (1ij ,−1∅) := aij| is an action considered satisfactory on criteria i and j and neutral on the
other criteria.

• (1∅,−1ij) := a|ij is an action considered unsatisfactory on criteria i and j and neutral on the
other criteria.

The number of binary actions is 1+n+
n× (n− 1)

2
= 1+

n× (n+ 1)

2
. On the other hand, the

number of trinary actions is: 1+ 2×n+
2× n× (n− 1)

2
= 1+ 2×n2. Roughly speaking there are

4 times as much trinary actions for 2 additive bi-capacities compare to the 2 additive capacities.

Using the expression (16) of the Choquet integral w.r.t. a 2-additive bi-capacity ν, we get the
following consequences:

Cν(U(a0|0)) = 0, Cν(U(ai|)) = νi|,
Cν(U(a|j)) = ν|j , Cν(U(ai|j)) = νi|j ,
Cν(U(aij|)) = νij| and Cν(U(a|ij)) = ν|ij .

To entirely determine the 2-additive bi-capacity, as shown by Proposition 3, it should be suffi-
cient to get some preferential information from the DM only on trinary actions. We assume that,
given two trinary actions x and y the DM is able to judge the difference of attractiveness between
x and y when he strictly prefers x to y. Like in MACBETH [2, 4], 2-additive MACBETH [15] and
GRIP [5], MCDA methodologies, the difference of attractiveness3 will be provided under the form
of semantic categories ds, s = 1, . . . , q defined so that, if s < t, any difference of attractiveness in
the class ds is smaller than any difference of attractiveness in the class dt. If there is no ambiguity,
a category ds will be simply designated by s.

Under these hypotheses, the preferences given by the DM is expressed by the following relations:

3 MACBETH approach uses the following six semantic categories: d1 = very weak, d2 = weak, d3 =
moderate, d4 = strong, d5 = very strong, d6 = extreme.
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• P = {(x, y) ∈ T × T : the DM strictly prefers x to y},
• I = {(x, y) ∈ T × T : the DM is indifferent between x and y},
• For the semantic categories “ds”, “dt”, s, t ∈ {1, ..., q}, s ≤ t,
Pst = {(x, y) ∈ P such that the DM judges the difference of attractiveness between x and y as
belonging from the class “ds” to the class “dt” }. When s < t, Pst expresses some hesitation.

We will suppose always P nonempty (“non-trivial axiom”) and use the notation Nst = {s, s +
1, . . . , t− 1, t} for s ≤ t.

Remark 1. In this paper, the relation P ∪ I is not necessarily complete.

Definition 6 1. The ordinal information on T is the structure {P, I}.
2. The cardinal information on T is the structure {P, I, {Pst}s≤t}.

3.2 The representation and the linear program to solve

A cardinal information {P, I, {Pst}s≤t} is said to be representable by a Choquet integral w.r.t.
a 2-additive bi-capacity ν : 3N → R if the following conditions are satisfied: ∀x, y, z, w ∈ T ,
∀s, t, u, v ∈ {1, . . . , q} such that u ≤ v < s ≤ t,

x I y ⇒ Cν(U(x)) = Cν(U(y)), (17)

x P y ⇒ Cν(U(x)) > Cν(U(y)), (18)

(x, y) ∈ Pst

(z, w) ∈ Puv

}

⇒ Cν(U(x)) − Cν(U(y)) > Cν(U(z))− Cν(U(w)) (19)

De Corte [2] proved that the previous conditions are equivalent to the existence of q thresholds
σ1, . . . , σq such that:

∀(x, y) ∈ I : Cν(U(x)) = Cν(U(y)), (20)

∀s, t ∈ N1q, s ≤ t, ∀(x, y) ∈ Pst : σs < Cν(U(x)) − Cν(U(y)), (21)

∀s, t ∈ N1(q−1), s ≤ t, ∀(x, y) ∈ Pst : Cν(U(x)) − Cν(U(y)) < σt+1, (22)

0 < σ1 < σ2 < · · · < σq (23)

In order to identify a 2-additive bi-capacity ν such that a cardinal information {P, I, {Pst}s≤t}
on T is representable by Cν , we use the following linear program (PL) where the variables to
determine are ν(i, ∅), ν(∅, i), ν(i, j), ν(ij, ∅) and ν(∅, ij) for all i, j ∈ N :

minCν(U(x0))

Cν(U(x)) = Cν(U(y)), ∀(x, y) ∈ I (24)

σi + dmin ≤ Cν(U(x)) − Cν(U(y)), ∀(x, y) ∈ Pij , ∀i, j ∈ N1q, i ≤ j (25)

Cν(U(x)) − Cν(U(y)) ≤ σj+1 − dmin, ∀(x, y) ∈ Pij , ∀i, j ∈ N1(q−1), i ≤ j (26)

dmin ≤ σ1 (27)

σi−1 + dmin ≤ σi, ∀i ∈ {2, . . . , q} (28)

∀(A,B) ∈ 3N , ∀k ∈ A such that (|A|+ |B| − 2) ≥ 0
∑

j∈B

νk|j +
∑

i∈A\k

νik| ≥ (|B|+ |A| − 2)νk| +
∑

j∈B

ν|j +
∑

i∈A\k

νi| (29)

∑

j∈B

νj|k +
∑

i∈A\k

ν|ik ≤ (|B|+ |A| − 2)ν|k +
∑

j∈B

νj| +
∑

i∈A\k

ν|i (30)

where x0 is an alternative of T arbitrarily chosen, and dmin an arbitrary strictly positive con-
stant. The variables σi in this linear program are thresholds of categories.
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Example 1 N = {1, 2, 3}, q = 6,

3N = {(∅, ∅), (∅, N), (N, ∅), (1, ∅), (2, ∅), (3, ∅), (∅, 1), (∅, 2), (∅, 3), (1, 2), (1, 3), (2, 3), (2, 1), (3, 1),
(3, 2), (12, ∅), (23, ∅),(13, ∅), (∅, 12), (∅, 23), (∅, 13), (12, 3), (23, 1), (3, 12), (2, 13), (1, 23), (13, 2)}

T = {a0,0; a1|; a2|; a3|; a|1; a|2; a|3; a1|2; a2|1; a1|3; a3|1; a3|2; a2|3; a13|; a12|; a23|; a|12; a|23; a|13}

Let us suppose that the DM gives the following preferences: I = {(a1|3; a3|1); (a2|, a|3)}; P3 =
{(a23|, a|1)}; P24 = {(a1|, a|3)};

To look for a 2-additive capacity such that the cardinal information {I, P3, P24} is representable
by Cµ, we solve the following linear program:

minCν(U(a0,0))

Cν(U(a1|3))− Cν(U(a3|1)) = 0 ⇔ ν(1, 3)− ν(3, 1) = 0

Cν(U(a2|))− Cν(U(a|3)) = 0 ⇔ ν(2, ∅)− ν(∅, 3) = 0

σ3 + 0.01 ≤ Cν(U(a23|))− Cν(U(a|1)) ⇔ σ3 + 0.01 ≤ ν(23, ∅)− ν(∅, 1)

Cν(U(a23|))− Cν(U(a|1)) ≤ σ4 − 0.01 ⇔ ν(23, ∅)− ν(∅, 1) ≤ σ4 − 0.01

σ2 + 0.01 ≤ Cν(U(a1|))− Cν(U(a|3)) ⇔ σ2 + 0.01 ≤ ν(1, ∅)− ν(∅, 3)

Cν(U(a1|))− Cν(U(a|3)) ≤ σ5 − 0.01 ⇔ ν(1, ∅)− ν(∅, 3) ≤ σ5 − 0.01

0.01 ≤ σ1;σi−1 + 0.01 ≤ σi, ∀i ∈ {2, . . . , 6}

ν(1, 2) ≥ ν(∅, 2); ν(1, 3) ≥ ν(∅, 3);

ν(2, 3) ≥ ν(∅, 3); ν(2, 1) ≥ ν(∅, 1); ν(3, 2) ≥ ν(∅, 2); ν(3, 1) ≥ ν(∅, 1);

ν(1, 2) ≤ ν(1, ∅); ν(2, 1) ≤ ν(2, ∅); ν(1, 3) ≤ ν(1, ∅); ν(3, 1) ≤ ν(3, ∅);

ν(3, 2) ≤ ν(3, ∅); ν(2, 3) ≤ ν(2, ∅); ν(∅, 12) ≤ ν(∅, 1); ν(∅, 12) ≤ ν(∅, 2);

ν(∅, 13) ≤ ν(∅, 1); ν(∅, 13) ≤ ν(∅, 3); ν(∅, 23) ≤ ν(∅, 2); ν(∅, 23) ≤ ν(∅, 3);

ν(12, ∅) ≥ ν(1, ∅); ν(12, ∅) ≥ ν(2, ∅); ν(13, ∅) ≥ ν(1, ∅); ν(13, ∅) ≥ ν(3, ∅);

ν(23, ∅) ≥ ν(2, ∅); ν(23, ∅) ≥ ν(3, ∅); ν(∅, 1) + ν(∅, 2) ≤ 0; ν(1, ∅) + ν(2, ∅) ≥ 0;

ν(∅, 1) + ν(∅, 3) ≤ 0; ν(1, ∅) + ν(3, ∅) ≥ 0; ν(∅, 2) + ν(∅, 3) ≤ 0; ν(2, ∅) + ν(3, ∅) ≥ 0;

ν(1, 2) + ν(1, 3) ≥ ν(1, ∅) + ν(∅, 2) + ν(∅, 3); ν(2, 1) + ν(2, 3) ≥ ν(2, ∅) + ν(∅, 1) + ν(∅, 3);

ν(3, 1) + ν(3, 2) ≥ ν(3, ∅) + ν(∅, 1) + ν(∅, 2); ν(2, 1) + ν(2, 3) ≥ ν(2, ∅) + ν(∅, 1) + ν(∅, 3);

ν(2, 1) + ν(3, 1) ≤ ν(∅, 1) + ν(2, ∅) + ν(3, ∅); ν(1, 2) + ν(3, 2) ≤ ν(∅, 2) + ν(1, ∅) + ν(3, ∅);

ν(2, 3) + ν(1, 3) ≤ ν(∅, 3) + ν(1, ∅) + ν(2, ∅); ν(2, 3) + ν(1, 3) ≤ ν(∅, 3) + ν(1, ∅) + ν(2, ∅);

ν(1, 3) + ν(12, ∅) ≥ ν(1, ∅) + ν(∅, 3) + ν(2, ∅); ν(2, 3) + ν(12, ∅) ≥ ν(2, ∅) + ν(∅, 3) + ν(1, ∅);

ν(1, 2) + ν(13, ∅) ≥ ν(1, ∅) + ν(∅, 2) + ν(3, ∅); ν(3, 2) + ν(13, ∅) ≥ ν(3, ∅) + ν(∅, 2) + ν(1, ∅);

ν(2, 1) + ν(23, ∅) ≥ ν(2, ∅) + ν(∅, 1) + ν(3, ∅); ν(3, 1) + ν(23, ∅) ≥ ν(3, ∅) + ν(∅, 1) + ν(2, ∅);

ν(3, 1) + ν(∅, 12) ≤ ν(∅, 1) + ν(3, ∅) + ν(∅, 2); ν(3, 2) + ν(∅, 12) ≤ ν(∅, 2) + ν(3, ∅) + ν(∅, 1);

ν(2, 1) + ν(∅, 13) ≤ ν(∅, 1) + ν(2, ∅) + ν(∅, 3); ν(2, 3) + ν(∅, 13) ≤ ν(∅, 3) + ν(2, ∅) + ν(∅, 1);

ν(1, 2) + ν(∅, 23) ≤ ν(∅, 2) + ν(1, ∅) + ν(∅, 3); ν(1, 3) + ν(∅, 23) ≤ ν(∅, 3) + ν(1, ∅) + ν(∅, 2);

If (PL) is feasible, then a 2-additive bi-capacity is computed by using the equation (8) in Proposition
3. Of course it can exist several bi-capacities compatible with the cardinal information provided by
the DM. To compute a robust bi-capacity, one can use the approach of Angilella et al. [1] based on
the concept of possible and necessary relation. To deal with inconsistencies when (PL) is infeasible,
we can use the interactive algorithm of Mayag et al. [14] which generates recommendations for
the DM to retrieve consistent cardinal information. This simple and intuitive algorithm identifies
the minimal number of constraints we can relax in this infeasible linear problem. In order to
retrieve consistent information, the preferences associated to these constraints are relaxed by an
augmentation or diminution of categories.



8 Brice Mayag, Antoine Rolland, and Julien Ah-Pine

Because the identification of a 2-additive bi-capacity is an interesting problem to investigate, we
will look for in the future works necessary and sufficient conditions such that a cardinal information
is representable by a Choquet integral w.r.t. a 2-additive bi-capacity.
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Bases Mathématiques et Algorithmiques. PhD thesis, University of Mons-Hainaut, Mons, 2002.
5. J. R. Figueira, S. Greco, and R. Slowinski. Building a set of additive value functions representing

a reference preorder and intensities of preference : Grip method. European Journal of Operational

Research, 195(2):460–486, 2009.
6. K. Fujimoto. New characterizations of k-additivity and k-monotonicity of bi-capacities. In SCIS-ISIS

2004, 2nd Int. Conf. on Soft Computing and Intelligent Systems and 5th Int. Symp. on Advanced

Intelligent Systems, Yokohama, Japan, September 2004.
7. K. Fujimoto and T. Murofushi. Some characterizations of k-monotonicity through the bipolar möbius
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