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Abstract

In this paper, we study the approximability of the metric Traveling Sales-
man Problem (TSP) and prove new explicit inapproximability bounds for that
problem. The best up to now known hardness of approximation bounds were
185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric
case (due to Papadimitriou and Vempala). We construct here two new bounded
occurrence CSP reductions which improve these bounds to 123/122 and 75/74,
respectively. The latter bound is the first improvement in more than a decade
for the case of the asymmetric TSP. One of our main tools, which may be of
independent interest, is a new construction of a bounded degree wheel amplifier
used in the proof of our results.

1. Introduction

The Traveling Salesman Problem (TSP) where distances between cities
satisfy the triangle inequality is one of the best known and most fundamental
problems in combinatorial optimization. Determining how well it can be ap-
proximated in polynomial time is therefore a major open problem, albeit one for
which the solution still seems elusive. On the algorithmic side, the best known
efficient approximation algorithm for the symmetric case is still a 35-year old
algorithm due to Christofides [I0] which achieves an approximation ratio of 3/2.
However, recently there has been a string of improved results for the interesting
special case of Graphic TSP, improving the ratio to 7/5 [13, 19, 20, 24]. For
the asymmetric case (ATSP), it is not yet known if a constant-factor approx-
imation is even possible, with the best known algorithm achieving a ratio of
O(logn/loglogn) [2].
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Unfortunately, there is still a huge gap between the algorithmic results men-
tioned above and the best currently known hardness of approximation results
for TSP and ATSP. For both problems, the known inapproximability thresh-
olds are small constants (185/184 and 117/116 (cf. [I8] [22]), respectively). In
this paper, we try to improve this situation somehow by giving modular hard-
ness reductions that slightly improve the hardness bounds for both problems
to 123/122 and 75/74, respectively. The latter bound is the first, for more
than a decade now, improvement of Papadimitriou and Vempala bound [22]
for the ATSP. Our method differs essentially from that of [22] and uses some
new paradigms of the bounded occurrence optimization which could be also of
independent interest in other applications. Similarly to [I§], the hope is that
the modularity of our construction, which goes through an intermediate stage
of a bounded-occurrence Constraint Satisfaction Problem (CSP), will allow an
easier analysis and simplify future improvements. Indeed, one of the main new
ideas we rely on is a certain new variation of the wheel amplifiers first defined by
Berman and Karpinski [3, 4] to establish inapproximability for 3-regular CSPs.
This construction, which may be of independent interest, allows us to establish
inapproximability for a 3-regular CSP with a special structure. This special
structure then makes it possible to simulate many of the constraints in the pro-
duced graph essentially “for free”, without using gadgets to represent them.
Thus, even though for the remaining constraints we mostly reuse gadgets which
have already appeared in the literature, we are still able to obtain improved
bounds.

Let us now recall some of the previous work on the hardness of approxi-
mation of TSP and ATSP. Papadimitriou and Yannakakis [23] were the first
to construct a reduction that, combined with the PCP Theorem [I], gave a
constant inapproximability threshold, though the constant was not more than
14107 for the TSP with distances either one or two. Engebretsen [L1] gave the
first explicit approximation lower bound of 5381/5380 for the problem. The in-
approximability factor was improved to 3813/3812 by Bockenhauer et al. [9, 8],
who studied the restricted version of the TSP with distances one, two and three.
Papadimitriou and Vempala [22] proved that it is NP -hard to approximate the
TSP with a factor better than 220/219. Presently, the best known approxima-
tion lower bound is 185/184 due to Lampis [I§].

The important restriction of the TSP, in which we consider instances with
distances between cities being values in {1,..., B}, is often referred to as the
(1, B)-TSP. The best known efficient approximation algorithm for the (1,2)-
TSP has an approximation ratio 8/7 and is due to Berman and Karpinski [6].
As for lower bounds, Engebretsen and Karpinski [12] gave inapproximability
thresholds for the (1, B)-TSP problem of 741/740 for B = 2 and 389/388 for
B = 8. More recently, Karpinski and Schmied [I5, [I6] obtained improved
inapproximability factors for the (1,2)-TSP and the (1,4)-TSP of 535/534 and
337/336, respectively.

For ATSP the currently best known approximation lower bound was 117/116
due to Papadimitriou and Vempala [22]. When we restrict the problem to dis-
tances with values in {1,..., B}, there is a simple approximation algorithm with



approximation ratio B that constructs an arbitrary tour as solution. Bléser [7]
gave an efficient approximation algorithm for the (1,2)-ATSP with approxima-
tion ratio 5/4. Karpinski and Schmied [I5 [I6] proved that it is NP -hard
to approximate the (1,2)-ATSP and the (1,4)-ATSP within any factor less
than 207/206 and 141/140, respectively. For the case B = 8, Engebretsen and
Karpinski [I2] gave an inapproximability bound of 135/134. For corresponding
approximation bounds for Graphic TSP see [17].

Overview: In this paper we give a hardness proof which proceeds in two
steps. First, we start from the MAX-E3-LIN2 problem, in which we are given a
system of linear equations mod 2 with exactly three variables in each equation
and we want to find an assignment such as to maximize the number of satisfied
equations. Optimal inapproximability results for this problem were shown by
Hastad [I4]. We reduce this problem to a special case where variables appear
exactly 3 times and the linear equations have a particular structure. The main
tool here is a new variant of the wheel amplifier graphs of Berman and Karpinski
[4].

In the second step, we reduce this 3-regular CSP to TSP and ATSP. The
general construction is similar in both cases, though of course we use differ-
ent gadgets for the two problems. The gadgets we use are mostly variations
of gadgets which have already appeared in previous reductions. Nevertheless,
we manage to obtain an improvement by exploiting the special properties of
the 3-regular CSP. In particular, we show that it is only necessary to construct
gadgets for roughly one third of the constraints of the CSP instance, while
the remaining constraints are simulated without additional cost using the con-
sistency properties of our gadgets. This idea may be useful in improving the
efficiency of approximation-hardness reductions for other problems.

Thus, overall we follow an approach unlike that of [22], where the reduc-
tion is performed in one step, and closer to [I8]. The improvement over [18§]
comes mainly from the idea mentioned above, which is made possible using the
new wheel amplifiers, as well as several other tweaks. The end result is a more
economical reduction which improves the bounds for both TSP and ATSP. An
interesting question may be whether our techniques can also be used to de-
rive improved inapproximability results for variants of the ATSP and TSP (cf.
[12],[16] and [I5]) or other graph problems, such as the Steiner Tree problem.

2. Preliminaries

In the following, we give some definitions concerning directed (multi-)graphs
and omit the corresponding definitions for undirected (multi-)graphs if they fol-
low from the directed case. Given a directed graph G = (V(G), E(G)) and
E' C E(G), for e = (z,y) € E(G), we define V(e) = {x,y} and V(E') =
U.cp V(e). For convenience, we will abbreviate a sequence of edges (1, z2),

(z2,23), ..., (Tp_1,Zn) by 1 = 29 = T3 = ... = Tp_1 — T,. In the undi-
rected case, we use sometimes x1 — o — T3 —...— X,_1 — I, instead of {xh .%‘2},
{z2,23},...,{Tn-1,2,}. Given a directed (multi-)graph G, an Eulerian cycle

in G is a directed cycle that traverses all edges of G exactly once. We refer



to G as Fulerian, if there exists an Eulerian cycle in G. For a multiset Ep of
directed edges and v € V(Er), we define the outdegree (indegree) of v with
respect to Er, denoted by outdr(v) (indr(v)), to be the number of edges in Er
that are outgoing of (incoming to) v. The balance of a vertex v with respect to
Er is defined as balp(v) = indr(v) — outdr(v). In the case of a multiset Ep
of undirected edges, we define the balance balr(v) of a vertex v € V(Er) to be
one if the number of incident edges in Ep is odd and zero otherwise. We refer
to vertices v € V(Er) with balr(v) = 0 as balanced with respect to Er. It is
well known that a (directed) (multi-)graph G = (V(G), E(QG)) is Eulerian if and
only if all edges are in the same (weakly) connected component and all vertices
v € V(G) are balanced with respect to E(G).

Given a multiset of edges ET, we denote by cony the number of (weakly)
connected components in the graph induced by Er. A quasi-tour Er in a
(directed) graph G is a multiset of edges from E(G) such that all vertices are
balanced with respect to Ep and V(Er) = V(G). We refer to a quasi-tour Ep
in G as a tour if conp = 1. Given a cost function w : E(G) — Ry, the cost of
a quasi-tour E in G is defined by > . p w(e) + 2(cony — 1).

In the Asymmetric Traveling Salesman problem (ATSP), we are given a
directed graph G = (V(G), E(G)) with positive weights on edges and we want
to find an ordering vy, ..., v, of the vertices such as to minimize dg(v,,v1) +
Zie[n—l] de(vi,vig1), where dg denotes the shortest path distance in G.

In this paper, we will use the following equivalent reformulation of the ATSP:
Given a directed graph G with weights on edges, we want to find a tour Er in
G, that is, a spanning connected multi-set of edges that balances all vertices,
with minimum cost.

The metric Traveling Salesman problem (TSP) is the special case of the
ATSP, in which instances are undirected graphs with positive weights on edges.

3. Bi-Wheel Amplifiers

In this section, we define the bi-wheel amplifier graphs which will be our
main tool for proving hardness of approximation for a bounded occurrence CSP
with some special properties. Bi-wheel amplifiers are a simple variation of the
wheel amplifier graphs given in [3| 4]. Let us first recall some definitions (see
also [5]).

If G is an undirected graph and X C V(G) a set of vertices, we say that G
is a A-regular amplifier for X if the following two conditions hold:

(7) All vertices of X have degree A — 1 and all vertices of V(G)\X have
degree A.

(#) For every non-empty subset U C V(G), we have the condition that
[E(U,V(G)\U)| > min{|U N X[,|(V(G)\U) N X|}, where E(U,V(G)\U) =
{e€ E(G)|1=|Unel}.

We refer to the set X as the set of contact vertices and to V(G)\X as the
set of checker vertices. Amplifier graphs are useful in proving inapproximability
for CSPs, in which every variable appears a bounded number of times. Here,



we will rely on 3-regular amplifiers. A probabilistic argument for the existence
of such graphs was given in [4], with the definition of wheel amplifiers.

A wheel amplifier with 2n contact vertices is constructed as follows: first
construct a cycle on 14n vertices. Number the vertices 1,2...,14n and select
uniformly at random a perfect matching of the vertices whose number is not a
multiple of 7. The matched vertices will be our checker vertices, and the rest
our contacts. It is easy to see that the degree requirements are satisfied.

Berman and Karpinski [3} 4] gave a probabilistic argument to prove that with
high probability the above construction indeed produces an amplifier graph, that
is, all partitions of the sets of vertices give large cuts. Here, we will use a slight
variation of this construction, called a bi-wheel.

A bi-wheel amplifier with 2n contact vertices is constructed as follows:
first construct two disjoint cycles, each on 7n vertices and number the vertices
of each 1,2...,7n. The contacts will again be the vertices whose number is a
multiple of 7, while the remaining vertices will be checkers. To complete the
construction, select uniformly at random a perfect matching from the checkers
of one cycle to the checkers of the other.

Intuitively, the reason that amplifiers are a suitable tool here is that, given a
CSP instance, we can use a wheel amplifier to replace a variable that appears 2n
times with 14n new variables (one for each wheel vertex) each of which appears
3 times. Each appearance of the original variable is represented by a contact
vertex and for each edge of the wheel we add an equality constraint between the
corresponding variables. We can then use the property that all partitions give
large cuts to argue that in an optimal assignment all the new vertices take the
same value.

We use the bi-wheel amplifier in our construction in a similar way. The
main difference is that while cycle edges will correspond to equality constraints,
matching edges will correspond to inequality constraints. The contacts of one
cycle will represent the positive appearances of the original variable, and the
contacts of the other the negative ones. The reason we do this is that we can
encode inequality constraints more efficiently than equality with a TSP gadget,
while the equality constraints that arise from the cycles will be encoded in our
construction “for free” using the consistency of the inequality gadgets.

Before we apply the construction, we have to prove that the bi-wheel ampli-
fiers still have the desired amplification properties.

Theorem 1. With high probability, bi-wheels are 3-regular amplifiers.

Proof. Exploiting the similarity between bi-wheels and the standard wheel am-
plifiers of [4], we will essentially reuse the proof given there. First, some defini-
tions: We say that U is a bad set if the size of its cut is too small, violating the
second property of amplifiers. We say that it is a minimal bad set if U is bad
but removing any vertex from U gives a set that is not bad.

Recall the strategy of the proof from [4]: for each partition of the vertices
into U and V(G)\U, they calculate the probability (over the random matchings)
that this partition gives a minimal bad set. Then, they take the sum of these
probabilities over all potentially minimal bad sets and prove that the sum is at



most v~ for some constant v < 1. It follows by union bound that with high
probability, no set is a minimal bad set and therefore, the graph is a proper
amplifier.

Our first observation is the following: consider a wheel amplifier on 14n
vertices where, rather than selecting uniformly at random a perfect matching
among the checkers, we select uniformly at random a perfect matching from
checkers with labels in the set {1,...,7n — 1} to checkers with labels in the set
{Tn 4+ 1,...,14n — 1}. This graph is almost isomorphic to a bi-wheel. More
specifically, for each bi-wheel, we can obtain a graph of this form by rewiring
two edges, and vice-versa. It easily follows that properties that hold for this
graph, asymptotically with high probability also hold for the bi-wheel.

Thus, we just need to prove that a wheel amplifier still has the amplification
property if, rather than selecting a random perfect matching, we select a random
matching from one half of the checker vertices to the other. We will show this
by proving that, for each set of vertices .S, the probability that S is a minimal
bad set is roughly the same in both cases. After establishing this fact, we can
simply rely on the proof of [4].

Recall that the wheel has 12n checker vertices. Given a set S with |S| = u,
what is the probability that exactly ¢ edges have exactly one endpoint in S7 In
a standard wheel amplifier the probability is

72) (12710— u) ol (u — C)!(!%Z)ln_ u—o!

Pl = (

where we denote by n!! the product of all odd natural numbers less than or
equal to n, and we assume without loss of generality that u — ¢ is even. Let
us explain this: first, the probability that exactly ¢ edges cross the cut in this
graph is equal to the number of ways we can choose their endpoints in S and in
its complement, times the number of ways we can match the endpoints, times
the number of matchings of the remaining vertices, divided by the number of
matchings overall. We have used here the standard fact that the number of
distinct perfect matchings on n vertices, where n is even, is n!!.

How much does this probability change if we only allow matchings from
one half of the checkers to the other? Intuitively, we need to consider two
possibilities: one is that S is a balanced set, containing an equal number of
checkers from each side, while the other is that S is unbalanced. It is not hard
to see that if S is unbalanced, then, we can easily establish that the cut must be
large. Thus, the main interesting case is the balanced one (and we will establish
this fact more formally).

Suppose that |S| = w and S contains exactly u/2 checkers from each side.
Then the probability that there are exactly ¢ edges crossing the cut is

roa= (1) () (=

< <
2 2

Let us explain this. If S is balanced and there are ¢ matching edges with exactly
one endpoint in S, then, exactly ¢/2 of them must be incident on a vertex of S



on each side, since the remaining vertices of S must have a perfect matching.
Again, we pick the endpoints on each side, and on the complement of S, select
a way to match them, select matchings on the remaining vertices and divide by
the number of possible perfect matchings.

Using Stirling formulas, it is not hard to see that (%)!? = ©(n!27"/n).
Also n!! = @((%) 127/2) . Tt follows that P’ is roughly the same as P in this case,
modulo some polynomial factors which are not significant since the probabilities
we are calculating are exponentially small.

Let us now also show that if S is unbalanced, the probability that it is a
minimal bad set is even smaller. First, observe that if S is a minimal bad set
whose cut has ¢ edges, we have ¢ < u/6. Let us argue why this is the case.
Suppose that S is made up of f contiguous fragments of the cycle. Then, the
total number of edges cut is 2f 4+ ¢. However, the total number of contacts in
S is at most ¢ + f. Thus, if 2f + ¢ < & + f it follows that ¢ < u/6.

Suppose now that S contains u/2 + k checkers on one side and u/2 — k
checkers on the other. The probability that ¢ matching edges have one endpoint

in S is
won = (OEDCTCRD)
Pl e k) <;+k R IANE BV VAR RS
u—c)| (12n—u—c))
(E‘Fk)'(g—k)'(Q)( 2 )

(6n)!

The reasoning is the same as before, except we observe that we need to select
more endpoints on the side where S is larger, since after we remove checkers
matched to outside vertices S must have a perfect matching. Observe that for
k = 0 this gives P’. We will show that for the range of values we care about P”
achieves a maximum for & = 0, and can thus be upper-bounded by (essentially)
P, which is the probability that a set is bad in the standard amplifier. The
rest of the proof follows from the argument given in [4]. In particular, we can
assume that & < ¢/2, since 2k edges are cut with probability 1. To show that
the maximum is achieved for k = 0, we look at P (u,c, k + 1)/P"(u,c, k). We

will show that this is less than 1. Using the identity (Zii)/(g) = Zﬁ, we get

P"(u,c,k+1) 1 2k+1 1+2/€—|—1 14 2k+1
P'(u,c,k) St+k+1 L _k in—u g

Using the fact that 1 + 2 < e®, we end up needing to prove the following.

2k+1  _2k+1  2k+1
S+k+17 ¥k 1w

(1)

Combining that without loss of generality u < 6n holds (otherwise S would
contain more than half the vertices) with the bounds of ¢ and k we have already
mentioned, the inequality is straightforward to establish.

O



4. Hybrid Problem

By using the bi-wheel amplifier from the previous section, we are going
to prove hardness of approximation for a bounded occurrence CSP with very
special properties. This particular CSP will be well-suited for constructing a
reduction to the TSP given in the next section.

As the starting point of our reduction, we make use of the inapproximability
result due to Hastad [14] for the MAX-E3LIN2 problem, which is defined as
follows: Given a system I; of linear equations mod 2, in which each equation is
of the form z; ® z; ® xi, = b, with b, € {0, 1}, we want to find an assignment
to the variables of I; such as to maximize the number of satisfied equations.

Let I; be an instance of the MAX-E3LIN2 problem and {x;}7_; the set of
variables, that appear in I;. We denote by d(i) the number of appearances of
ZT; in 11.

Theorem 2 (Hastad [I4]). For every e > 0, there exists a constant Be such
that given an instance I of the MAX-ESLIN2 problem with m equations and
max;ep) d(i) < Be, it is NP -hard to decide whether there is an assignment
that leaves at most € - m equations unsatisfied, or all assignment leave at least
(0.5 — €)m equations unsatisfied.

If we consider the slightly more general version of the MAX-E3LIN2 problem
where each equation contains three literals, rather than three variables, the
problem remains at least as hard. However, now we can make the following
assumptions on the structure of any instance without loss of generality and
without affecting the fraction of equations that can be satisfied:

e Every equation x ® y @ z = b;j; has the same right-hand side b;;;. This
can be accomplished by negating one of the variables of equations with a
different right-hand side.

e Every variable appears the same number of times positive and negative.
This can be accomplished by constructing three more copies of each equa-
tion, in which all possible pairs of literals appear negated. Therefore, for
each i € [v] we have that d(4) is even.

Similarly to the work by Berman and Karpinski [3] (see also [4] and [5]), we
will now reduce the number of occurrences of each variable to 3. For this, we will
use our amplifier construction to create special instances of the Hybrid problem,
which is defined as follows: Given a system I of linear equations mod 2 with
either three or two variables in each equation, we want to find an assignment
such as to maximize the number of satisfied equations. Note that in the Hybrid
problem we do not allow negated variables to appear in the equations, because
the right-hand sides of the equations will be important in the reductions to TSP.

We have the following theorem:

Theorem 3. For every constant € > 0 and b € {0,1}, there exist instances
of the Hybrid problem with 31m equations such that: (i) Each variable occurs



exactly three times. (it) 21m equations are of the form x @y = 0, 9m equations
are of the form x @y =1 and m equations are of the form x ®y ® z = b. (ii7)
It is NP -hard to decide whether there is an assignment to the variables that
leaves at most € - m equations unsatisfied, or every assignment to the variables
leaves at least (0.5 — €)m equations unsatisfied.

Proof. Let € > 0 be a constant and I; an instance of the MAX-E3LIN2 prob-
lem with max;cp,d(i) < Be. For a fixed b € {0,1} suppose that all equations
have right-hand side b, and that each variable appears the same number of times
negated as unnegated. Let m be the number of equations of this instance.

Let us fix a variable x; in I;. Then, we create 7 - d(i) = 2 - & new variables
Var(i) = {2}, 2}"}_,. In addition, we construct a bi-wheel amplifier W; on
2 -« vertices (that is, a bi-wheel with d(i) contact vertices) with the properties
described in Theorem Since d(i) < B, is a constant, this can be accomplished
in constant time. In the remainder, we refer to contact and checker variables
as the elements in Var(i), whose corresponding index is a contact and checker
vertex in W;, respectively. We denote by M (W;) C E(W;) the associated perfect
matching on the set of checker vertices of W;. In addition, we denote by C,,(W;)
and Cy(W;) the set of edges contained in the first and second cycle of W,
respectively.

Let us now define the equations of the corresponding instance of the Hybrid
problem. For each edge {j,k} € M(W;), we create the equation z* ® z3* = 1
and refer to equations of this form as matching equations. On the other hand, for
each edge {l,t} in the cycle Cy(W;) with ¢ € {u,n}, we introduce the equation
x?i D :ctqi = 0. Equations of this form will be called cycle equations. Finally,
we replace the j-th unnegated appearance of x; in I; by the contact variable
a:}l with A = 7 - j, whereas the j-th negated appearance is replaced by x&”.
The former construction yields m equations with three variables in the instance
of the Hybrid problem, which we will denote by Is. Notice that each variable
appears in exactly 3 equations in Iy. Clearly, we have |I3] = 31m equations,
thereof 9m matching equations, 21m cycle equations and m equations of the
formz®dydz=0b.

A consistent assignment to Var(i) is an assignment with :r:;” = b and m;” =
(1-0) for all j € [a], where b € {0,1}. A consistent assignment to the variables
of Iy is an assignment that is consistent to Var(i) for all ¢ € [v]. By standard
arguments using the amplifier constructed in Theorem[T] it is possible to convert
an assignment to a consistent assignment without decreasing the number of
satisfied equations. More specifically, suppose that we have an inconsistent
assignment, and let Vo = {z¥* | 2% = 0} U{«}" | 2" = 1} and Vi = Var(i) \ Vo.
Suppose, without loss of generality that V) contains fewer contact variables
(that is, variables whose index is a multiple of 7). Notice that Vp,V; give a
partition of the vertices of the amplifier and by the properties of the amplifier the
number of edges with endpoints in both sets is at least as large as the number of
contacts in V7. Each edge with endpoints in both sets corresponds to a constraint
violated by this inconsistent assignment. Consider now the assignment obtained
by flipping all variables in V;. This assignment is consistent and it satisfies all the



previously violated size-two constraints. It may have violated some previously
satisfied size-three constraints, but the affected constraints are at most as many
as the number of contacts of V7, which are no more than the size-two constraints
gained. Thus, we can assume that an optimal assignment is always consistent
and the proof of Theorem [3] follows.

O

5. TSP
This section is devoted to the proof of the following theorem.

Theorem 4. It is NP -hard to approzimate the TSP to within any constant
approximation ratio less than 123/122.

Let us first sketch the high-level idea of the construction. Starting with
an instance of the Hybrid problem, we will construct a graph, where gadgets
represent the equations. We will design gadgets for equations of size three
(Figure [1]) and for equations of size two corresponding to matching edges of the
bi-wheel (Figure [2). We will not construct gadgets for the cycle edges of the
bi-wheel; instead, the connections between the matching edge gadgets will be
sufficient to encode these extra constraints. This may seem counter-intuitive at
first, but the idea here is that if the gadgets for the matching edges are used in
a consistent way (that is, the tour enters and exits in the intended way) then
it follows that the tour is using all edges corresponding to one wheel and none
from the other. Thus, if we prove consistency for the matching edge gadgets,
we implicitly get the cycle edges “for free”. This observation, along with an
improved gadget for size-three equations and the elimination of the variable
part of the graph, are the main sources of improvement over the construction
of [I8].

The Construction: In order to ensure that some edges are to be used at
least once in any valid tour, we apply the following simple trick that was already
used in the work by Lampis [I8]: Let e be an edge with weight w that we want
to be traversed by every tour. We remove e and replace it with a path of L
edges and L — 1 newly created vertices each of degree two, where we think of L
as a large constant. Each of the L edges has weight w/L and any tour that fails
to traverse at least two newly created edges is not connected. Any tour that
traverses all but one of those edges can be extended by adding two copies of
the unused edge increasing the cost of the underlying tour by a negligible value.
In summary, we may assume that our construction contains forced edges that
need to be traversed at least once by any tour. If z and y are vertices, which
are connected by a forced edge e, we write {x,y}r or simply z —p y. In the
following, we refer to unforced edges e with w(e) = 1 as simple. All unforced
edges in our construction will be simple.

Description of the corresponding graph Gg: For each bi-wheel W,,, we con-
struct the subgraph GP of Gg. For each vertex of the bi-wheel, we create a
vertex in G? and for each cycle equation = & y = 0, we create a simple edge

10
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Figure 1: Gadgets simulating equations with three variables in the symmetric case (a) and
in the asymmetric case (b). Dotted and straight lines represent forced and simple edges,
respectively. The symmetric gadget encodes equations of the form « & y & z = 0, while the
asymmetric one equations of the form t @y @ z = 1.

{z,y}. Given a matching equation z}' @ z}} = 1, we connect the vertices z}'

and z7 via two forced edges {«}, 2%} and {z}, 2} }% with w({z}, 27}%) = 2
for each ¢ € {1,2}. Additionally, we create a central vertex s that is con-
nected to gadgets simulating equations with three variables. Due to Theorem
we may assume that equations with three variables in I are all of the form
x®y @z =0. For the j-th equation with three variables in Is, we now create
the graph G?S displayed in Figure (1| (a), where the (contact) vertices for x,y, z
have already been constructed in the cycles. The edges {v*,v}r with o € {r, 1}
and v € {z, z,y} are all forced edges with w({y*,~v}r) = 1.5. Furthermore, we
have w({e§, s}r) = 0.5 for all a € {r,l}. {e},s}r and {eé., s}r are both forced
edges, whereas all remaining edges of G;)?S are simple.

Tour from Assignment: Given an instance I of the Hybrid problem and
an assignment ¢, we need to construct a tour in Gg according to ¢.

Lemma 1. If there is an assignment to the variables of a given instance I of
the Hybrid problem with 31m equations and v bi-wheels, that leaves k equations
unsatisfied, then, there exists a tour in Gg with cost at most 61m + 2v + k + 2.

Before we proceed, let us give a useful definition. Let G be an edge-weighted
graph and Ep a multi-set of edges of E(G) that defines a quasi-tour. Given a
set V! C V(G), we call the sum er (V') =3 ey X (u vyeny 0-5 - w({u,v}) the
local edge cost of V'.

In words, for each vertex in V', we count half the total weight of its incident
edges used in the quasi-tour (including multiplicities). Observe that this sum
contains half the weight of edges with one endpoint in V’ but the full weight
for edges with both endpoints in V’. Note that for two sets Vi, V3, we have
cr(Vi UVa) < ep(Va) + ep(Va) and that ep (V(G)) = . c g, w(e).

Proof of Lemmal[ll First, note that it is sufficient to prove that we can construct
a quasi-tour of the promised cost which uses all forced edges exactly once. Since
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all unforced edges have cost 1, if we are given a quasi-tour, we can connect two
disconnected components by using an unforced edge that connects them twice
(this is always possible since the underlying graph we constructed is connected).
This does not increase the cost, since we added two unit-weight edges and
decreased the number of components. Repeating this results in a connected
tour.

Let {W,}“_; be the associated set of bi-wheels of I5. For a fixed bi-wheel
Wy, let {z},z?}7_; be its associated set of variables. Due to the construction of
instances of the Hybrid problem in Section 4 we may assume that all equations
with two variables are satisfied by the given assignment. Thus, we have x} # z7,
ri =z} and 2} = 27 for all i,j € [z].

Assuming ¢ = 1 for some a € {u,n}, we use once all simple edges {z{", =3, }
with i € [z—1] and the edge {22, 2 }. We also use all forced edges corresponding
to matching equations once. In other words, for each biwheel, we select the
cycle that corresponds to the assignment 1 and use all the simple edges from
that cycle. This creates a component that contains all checker vertices from
both cycles and all contacts from one cycle.

n u n
U w u n(i—1) 7 Jj+1
Ti-1 Z; Tiq
° o ° o ~-o -0
R '
: “ 1]
H H [
% N []
“‘ ..' 1
® . ® o ~¢é¢ o
n n n u n u
(a) i1 % Ti+1 (b) Tug-1) ¥ Tit1

Figure 2: Gadget simulating equation with two variables in symmetric case (a) and in the
asymmetric case (b). Dotted and straight lines represent forced and simple edges, respectively.

As for the next step, we are going to describe the tour traversing G?S with
Jj € [m] given an assignment to contact variables. Let us assume that G?-S
simulates * @ y & z = 0. According to the assignment to x, y and z, we will
traverse G?S as follows: In all cases, we will use all forced edges once.

Case (v +y + 2z = 2): Then, we use {7',7"} for all v € {z,y,2} with
v = 1. For § € {z,y, 2} with 6 = 0, we use {ef,d} for all a € {r,1}.

Case (z +y+z = b with b € {0,1}): In both cases, we traverse {7, e
for all v € {x,y,z} and a € {r,1}.

Case (z+y+ 2z = 3): We use {1",7'} with v € {y, z}. Furthermore, we
include {z¢,e$} for both a € {r,(}.

Let us now analyze the cost of the edges of our quasi-tour given an assign-
ment. For each matching edge {z}, 27}, consider the set of vertices made up of
its endpoints. Its local cost is 5: we pay 4 for the forced edges and there are two
used simple edges with one endpoint in the set. Let us also consider the local
cost for a size-three equation gadget, where we consider the set to contain the
contact vertices {z,y, 2z} as well the other 8 vertices of the gadget. The local
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cost here is 9.5 for the forced edges. We also pay 6 more (for a total of 15.5)
when the assignment satisfies the equation or 7 more when it does not.

Thus, we have given a covering of the vertices of the graph by 9m sets
of size two, m sets of size 11 and {s}. The total edge cost is thus at most
5-9m+15.5-m+0.5-m+k = 61m+ k. To obtain an upper bound on the cost
of the quasi-tour, we observe that the tour has at most v + 1 components (one
for each bi-wheel and one containing s). The lemma follows. O

Assignment from Tour: We now need to prove the other direction of our
reduction. Given a tour in Gg, we must define an assignment to the variables of
the associated instance of the Hybrid problem and prove the following lemma.

Lemma 2. If there is a tour in Gg with cost 61m + k — 2, then, there is an
assignment to the variables of the corresponding instance of the Hybrid problem
that leaves at most k equations unsatisfied.

Given a quasi-tour Ep and a set V' C V(G), we denote by conp (V') the
number of connected components induced by Er which are fully contained in V.
Then, the full local cost of the set V' is defined as c&.(V') = ¢z (V') +2conr (V).

By the definition, the full local cost of V(G) is equal to the cost of the quasi-
tour (plus 2). Intuitively, c¢X(V’) captures the cost of the quasi-tour restricted
to V': it includes the cost of edges and the cost of added connected components.
Note that for two disjoint sets V;, Va, we have cf(V; U Vo) > cf(Vy) + ck(Vh)
since V1 U V5 could contain more connected components than Vi, Vs together. If
we know that the total cost of the quasi-tour is small, then c¢£ (V) is small (less
than 61m + k). We can use this to infer that the sum of the local full costs of
all gadgets is small.

The high-level idea of the proof is that we will use roughly the same partition
of V(Gs) into sets as in the proof of Lemmall] For each set, we will give a lower
bound on its full local cost for any quasi-tour, which will be equal to what the
tour we constructed in LemmalI] pays. If a given quasi-tour behaves differently
its local cost will be higher. The difference between the actual local cost and
the lower bound is called the credit of that part of the graph. We construct
an assignment for I and show that the total sum of credits is higher that
the number of unsatisfied equations. But using the reasoning of the previous
paragraph, the total sum of credits will be at most k.

Proof of Lemma[3 We are going to prove a slightly stronger statement and
show that if there exists a quasi-tour in Gg with cost 61m + k — 2, then, there
exists an assignment leaving at most k equations unsatisfied. Recall that the
existence of a tour in Gg with cost C' implies the existence of a quasi-tour in
G g with cost at most C.

We may assume that simple edges are contained only once in Ep due to the
following preprocessing step: If Ep contains two copies of the same simple edge,
we remove them without increasing the cost, since the number of components
can only increase by one.
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In the following, given a quasi-tour Er in Gg, we are going to define an
assignment ¢ and analyze the number of satisfied equations by ¢ compared
to the cost of the quasi-tour.

The general idea is that each vertex of Gg that corresponds to a variable
of I has exactly two forced and exactly two simple edges incident to it. If the
forced edges are used once each, the variable is called honest. We set it to 1 if
the simple edges are both used once and to 0 otherwise. It is not hard to see
that this procedure will satisfy all cycle equations involving honest variables,
because simple cycle edges connect vertices that represent the variables. We
then argue that if other equations are unsatisfied the tour is also paying extra,
and the same happens if a variable is dishonest.

Let us give more details. First, we concentrate on the assignment for checker
variables.

Assignment for checker variables: Let us consider the following equa-

tions with two variables zi' ; @ zi = 0, 2} ® i}, = 0, 2}, 2z} = 0,
z} @, =0and zf ol = 1. We are going to analyze the cost of a quasi-
tour traversing the gadget dlsplayed in Figure I ) and define an assignment

according to Ep. Let us first assume that our qua51 -tour is honest, that is, the
underlying quasi-tour traverses forced edges only once.

Honest tours: For z € {z},27}, we set x = 1 if the quasi-tour traverses
both simple edges incident on = and z = 0, otherwise. Since we removed all
copies of the same simple edge, we may assume that cycle equations are always
satisfied. If the tour uses =’ | —z{ —pa] —pz} — 7-5-17 we get x;‘ 1= mf_H =1,

n
xi_y =7, = 0and 5 satisfied equatlons leen TP =T —Fx —F T — T,

we obtain 5 satisfied equations as well. Let us deﬁne Vp] = {z¥,x j} Notice
that in both cases, we have local cost ¢£.(V?) = 5. We claim that ¢f (V) > 5 for
a valid quasi-tour. In order to obtain a valid quasi-tour, we need to traverse both
forced edges in G¥ and use at least two simple edges, as otherwise, it implies
cg(Gf ) > 6. Given a quasi-tour E7, we introduce a local credit function defined
by err(VP) = c&(VFP) — 5. If 2% —p 27 —p 2% forms a connected component,
we get 4 satisfied equations and crp(V,”) = 1, which is sufficient to pay for the
unsatisfied equation xj' @z} = 1. On the other hand, assuming z}' | =z}, ; =1
and 27, = x%,, =1, we get crp(V)”) = 1 and 1 unsatisfied equatlon

Dishonest tours: We are going to analyze quasi-tours, which are using one
of the forced edges twice. By setting =} # z, we are able to find an assignment
that always satisfies 2} & 27/ = 1 and two other equations out of the five that
involve these dishonest variables. The local cost in this case is at least 7. Hence,
the credit erp (V") = 2 is sufficient to pay for the two unsatisfied equations.

Assignment for contact variables: Again, we will distinguish between
honest tours (which use forced edges exactly once) and dishonest tours. This
time we are interested in seven equations: the size-three equation t Gy H 2z =0
and the six cycle equations containing the three contacts

Observe that the local cost of Vj?’S = {2, 2l z, 9",y y, 27, 2 z,ej,ej} is
at least 15.5. The local edge cost of any quasi- tour is 9.5 for the forced edges.
For each component {v,~7',7"} with v € {z,y, 2}, we need to pay at least 2

14



more because there are two vertices with odd degree (y,7") and we also need
to connect the component to the rest of the graph (otherwise the component
already costs 2 more). Let us define the credit of Vj3s with respect to Ep by
crp = e (V35) — 15.5.

Honest tours: For each v € {x,y, 2}, we set v = 1 if the tour uses both
simple edges incident on v and 0, otherwise. Notice that in the case (z+y+2z = b)
with b € {0,2}, this satisfies all seven equations and the tour has local cost at
least, ¢f (V%) = 15.5.

Case (x =y = z = 1) : The assignment now failed to satisfy the size-three
equation, so we need to prove that the quasi-tour has local cost at least 16.5.
Since all vertices are balanced with respect to E7, the quasi-tour has to use
at least one edge incident on e} and e} besides {s,ej}r and {s,el}p. If the
quasi-tour takes {e§,y*} for a v € {x,y,2} and all a € {r,l}, since all simple
edges incident on x,y, z are used, we get at total cost of at least 16.5, which
gives a credit of 1.

Case (z +y+ 2z = 1) : Without loss of generality, we assume that =y =
0 # z holds. Again, only the size-three equation is unsatisfied, so we must show
that the local cost is at least 16.5. We will discuss two subcases. (i) There is
a connected component § —p 6" — 6! —p § for some § € {x,y}. We obtain that
ch({6,6',6"}) > 6 and therefore, a lower bound on the total cost of 16.5. (i4)
Since we may assume that z”, z!, 4" and y' are balanced with respect to Er,
we have that {ef,7*} € Er for all a € {r,1} and v € {z,y}. Because e are
also balanced, we obtain {e}, 2%} € Er for all a € {r,l}, which implies a total
cost of 16.5.

Dishonest tours: Let us assume that the quasi-tour uses both of the forced
edges {7",~v} and {4!,~} for some v € {z,z,y} twice. We delete both copies
and add {y",7'} instead which reduces the cost of the quasi-tour. Hence, we
may assume that only one of the two incident forced edges is used twice.

First, observe that if all forced edges were used once, then there would be
eight vertices in the gadget with odd degree: =", z!,y", ¢!, 27, 2!, e, eé-. If exactly
one forced edge is used twice, then seven of these vertices have odd degree. Thus,
it is impossible for the tour to make the degrees of all seven even using only the
simple edges that connect them. We can therefore assume that if a forced edge
is used twice, there exists another forced edge used twice.

We will now take cases, depending on how many of the vertices z,y, z are
incident on forced edges used twice. Note that if one of the forced edges incident
on x is used twice, then exactly one of the simple edges incident on x is used
once. So, first suppose all three of x,y,z have forced edges used twice. The
local cost from forced edges is at least 14. Furthermore, there are three vertices
of the form ~%, for v € {x,y, z} and « € {l,r} with odd degree. These have no
simple edges connecting them, thus the quasi-tour will use three simple edges
to balance their degrees. Finally, the used simple edges incident on z,y, z each
contribute 0.5 to the local cost. Thus, the total local cost is at least 18.5, giving
us a credit of 3. It is not hard to see that there is always an assignment satisfying
four out of the seven affected equations, so this case is done.
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Second, suppose exactly two of x,y, z have incident forced edges used twice,
say, x,y. For z, we select the honest assignment (1 if the incident simple edges
are used, 0 otherwise) and this satisfies the cycle equations for this variable. We
can select assignments for x, y that satisfy three of the remaining five equations,
so we need to show that the cost in this case is at least 17.5. The cost of forced
edges is at least 12.5, and the cost of simple edges incident on z,y adds 1 to the
local cost. One of the vertices z!, 2" and one of 4, y" have odd degree, therefore
the cost uses two simple edges to balance them. Finally, the vertices 2!, 2" have
odd degree. If two simple edges incident to them are used, we have a total local
cost of 17.5. If the edge connecting them is used, then the two simple edges
incident on z must be used, again pushing the local cost to 17.5.

Finally, suppose only = has an incident forced edge used twice. By the parity
argument given above, this means that one of the forced edges incident on s is
used twice. We can satisfy the cycle equations for y, z by giving them their
honest assignment, and out of the three remaining equations some assignment
to x satisfies two. Therefore, we need to show that the cost is at least 16.5.
The local cost from forced edges is 11.25 and the simple edge incident on =
contributes 0.5. Also, at least one simple edge incident on z! or 2" is used, since
one of them has odd degree. For y',y", either two simple edges are used, or if
the edge connecting them is used the simple edges incident on y contribute 1
more. With similar reasoning for z!, 2", we get that the total local cost is at
least 16.75.

Let us now conclude our analysis. Consider the following partition of V: we
have a singleton set {s}, 9m sets of size 2 containing the matching edge gadgets
and m sets of size 11 containing the gadgets for size-three equations (except s).
The sum of their local costs is at most ¢f'(V) < 61m + k. But the sum of their
local costs is (using the preceding analysis) equal to 61m + > crr(V;). Thus,
the sum of all credits is at most k. Since we have already argued that the sum
of all credits is enough to cover all equations unsatisfied by our assignment, this

concludes the proof.
O

We are ready to give the proof of Theorem [4]

Proof of Theorem[]} We are given an instance I; of the MAX-E3LIN2 prob-
lem with v variables and m equations. For each § > 0, there exists a k such
)

that if we repeat each equation k time we get an instance Il(k with m’ = km

equations and v variables such that 2(v + 1)/m’ < 4.

Then, from Il(k), we generate an instance I of the Hybrid problem and the
corresponding graph Gs. Due to Lemmata and Theorem [3| we know that
for all € > 0, it is NP -hard to tell whether there is a tour with cost at most
6lm' +2v+24+¢€-m’ < 61-m'+ (6 + e)m’ or all tours have cost at least
61m’ 4+ (0.5 —€e)m’ —2 > 61.5-m' —e-m’ —§ - m’. The ratio between these two
cases can get arbitrarily close to 123/122 by appropriate choices for ¢, d. O
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6. ATSP
In this section, we prove the following theorem.

Theorem 5. [t is NP -hard to approximate the ATSP to within any constant
approzimation ratio less than 75/74.

Construction: Let us describe the construction that encodes an instance
I5 of the Hybrid problem into the instance G 4 of the ATSP. Again, it will be
useful to have the ability to force some edges to be used, that is, we would like to
have bidirected forced edges. A bidirected forced edge between two vertices will
be created in a similar way as undirected forced edges in the previous section.
Specifically, to make a forced arc of weight w connecting x and y we construct
L — 1 new vertices and connect x to y through these new vertices, making a
bidirected path with all edges having weight w/L. Without loss of generality,
we may assume that bidirected forced edges are used in at least one direction,
though we should note that the direction is not prescribed. In the remainder,
we denote a directed forced edge consisting of vertices x and y by (z,y)r, or
r—FrY.

Let I consist of the collection {W;}Y_; of bi-wheels. Recall that the bi-
wheel consists of two cycles and a perfect matching between their checkers. Let
{z}, 27 }7_, be the associated set of variables of W,. We write u(i) to denote
the function which, given the index of a checker variable z}' returns the index
j of the checker variable 2 to which it is matched (that is, the function u is
a permutation function encoding the matching). We write n(i) to denote the
inverse function u=1(7).

Now, for each bi-wheel W), we are going to construct the corresponding
directed graph G%; as follows. First, construct a vertex for each checker variable
of the wheel. For each matching equation z}' @ z7 = 1, we create a bidirected
forced edge {zf, 27} with w({z}, 2} }r) = 2.

For each contact variable z, we create two corresponding vertices ) and xi,
which are joined by the bidirected forced edge {x%, !} r with w({z}, 2} }r) = 1.

Next, we will construct two directed cycles C? and C?. Note that we are
doing arithmetic on the cycle indices here, so the index z 4+ 1 should be read
as equal to 1. For CF, for any two consecutive checker vertices z}, x},; on the
un-negated side of the bi-wheel, we add a simple directed edge 3, — =, ;.
If the checker x} is followed by a contact zj , in the cycle, then we add two
simple directed edges x7 ;) — i, and x| — at,,. Observe that by traversing
the simple edges we have just added, the forced matching edges in the direction
¢ = xz(i) and the forced contact edges for the un-negated part in the direction

z%" —p ¥ we obtain a cycle that covers all checkers and all the contacts of
the un-negated part.

We now add simple edges to create a second cycle CE. This cycle will
require using the forced matching edges in the opposite direction and, thus,
truth assignments will be encoded by the direction of traversal of these edges.

First, for any two consecutive checker vertices 7', z',; on the un-negated side
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of the bi-wheel, we add the simple directed edge xz(i) — xy1. Then, if the
checker z7' is followed by a contact x7,, in the cycle then we add the simple
directed edges ;) — xi{; and z™, — 2 ,. Now by traversing the edges we
have just added, the forced matching edges in the direction z} —p IZ(I') and

the forced contact edges for the negated part in the direction z" —p 7, we

obtain a cycle that covers all checkers and all the contacts of the negated part,
that is, a cycle of direction opposite to CZ.

What is left is to encode the equations of size three. Again, we have a central
vertex s that is connected to gadgets simulating equations with three variables.
For each equation, we create the gadget displayed in Figure [1| (b), which is a
variant of the gadget used in [22]. Let x @ y ® z = 1 be the j-th equation
with three variables in I,. This equation is simulated by G?A. The vertices
used are the contact vertices in C; = {7y | v € {,y,2},a € {r,l}}, which we
have already introduced, as well as the vertices in H; = {s;,t;,¢’ | i € [3]}.
For notational simplicity, we define ngA = C; U H;. All directed non-forced
edges are simple. The vertices s; and t; are connected to s by forced edges with
w((s,sj)r) = w((tj,s)r) = A, where A > 0 is a small fixed constant. To simplify
things, we also force them to be used in the displayed direction by deleting the
edges that make up the path of the opposite direction.

Assignment to Tour: We need to construct a tour in G4 given an assign-
ment to the variables of I and prove the following lemma.

Lemma 3. Given an instance Iy of the Hybrid problem with v bi-wheels and an
assignment that leaves k equations in Iy unsatisfied, then, there exists a tour in
G 2 with cost at most 37m + 5v + 2mA + 2v\ + k.

Let us give a definition for a local edge cost function. Let G be an edge-
weighted digraph and Er a multi-set of edges of F(G) that defines a tour.
Given V' C V(G), the local edge cost of the set V' is then defined as ep(V') =
DVt 2(uwyery W((u,v)). In words, for each vertex in V', we count the total
weight of its outgoing edges used in the quasi-tour (including multiplicities).
Note that for two sets Vi, Va, we have e (V4 U V) < ep(Vh) 4 er (V) and that

er(V) =2 een, wle):

Proof of Lemma[3 Let W, be a bi-wheel with variables {z%,z"}?_,. Given an
assignment to the variables of I, due to Theorem@ we may assume that either
zit =1 # 2} forall i,j € [z] or x} = 0 # a7 for all 4,5 € [2]. We traverse the
cycle C? if 2} = 1 and the cycle C? otherwise. This creates v strongly connected
components. Each contains all the checkers of a bi-wheel and the contacts from
one side. For each matching edge gadget, the local edge cost is 3. We pay two
for the forced edge and 1 for the outgoing simple edge. We will account for
the cost of edges incident on contacts when we analyze the size-three equation
gadget below.

Let us describe the part of the tour traversing the graph G;’?A7 which simu-
lates x @y ® z = 1. Recall that if x is set to true in the assignment, we have
traversed the bi-wheel gadgets in such a way that the forced edge " — 5 2! is
used, and the simple edge coming out of 2! is used.
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According to the assignment to z, y and z, we traverse G?A as follows.

Case (x +y+ z = 1): Let us assume that z = y = 0 # x holds. Then, we
uses—>st—>e?—>yl —>Fy7"—>e§?—>zl —>Fz7"—>e;—>tj —r 8. The cost is
3 + X for the forced edges, 6 for the simple edges inside the gadget, plus 1 for
the simple edge going out of 2. Total local edge cost: cT(Vj3A) =10+ .

Case (z + y+ z = 3): Then, we use s —p §; —>e? —>ejl- —>e§? —t; —F s.
Again we pay 3 + A for the forced edges, 4 for the simple edges inside the
gadget and 3 for the outgoing edges incident on x!,!, z!. Total local edge cost:
CT(V}?’A) =A + 10.

Case (x4 y + z = 2): Let us assume that = y = 1 # z holds. Then, we
use s —p §; — e? B S N e} — e? — ef — t; = s with total local
edge cost cT(Vj?’A) = A+ 1L

Case (t+y+2=0): Weuses—rs; —>e? =yl —p yr—>e§ -2t =p
Z" = e; -t —spr — e? —t; = p s with cT(Vf’A) = \+11.

The total edge cost of the quasi-tour is 3-9m+(104+2\)m~+k = 37Tm+2Am+k.
We have at most v + 1 strongly connected components: one for each bi-wheel
and one containing s. A component representing a bi-wheel can be connected
to s as follows: let z!, 2" be two contact vertices in the component. Add one
copy of each edge from the cycle s —p s; — e} Sl spa” — e? —t; —=F s
This increases the cost by 5 4+ 2\ but decreases the number of components by
one. U

Tour to Assignment: For the other direction of the reduction we need the
following lemma.

Lemma 4. If there is a tour with cost 37 - m + k + 2\ - m, then, there is an
assignment that leaves at most k equations unsatisfied.

Proof. Given a tour Er in G 4, we are going to define an assignment to checker
and contact variables. As in Lemma [2] we will show that any tour must locally
spend on each gadget at least the same amount as the tour we constructed
in Lemma [3] If the tour spends more, we use that credit to satisfy possible
unsatisfied equations.

Assignment for Checker Variables

Let us consider the following equations with two variables z} © z{, ; = 0,
i @ =0,z®z} =1, 27 @zl =0, 2] ; ®z} =0 and the corresponding
situation displayed in Figure (b). Since Er is a valid tour in G 4, we know that
{z{, 2} }r is traversed and due to the degree condition, for each z € {z}, 27},
the tour uses another incident edge e on x with w(e) > 1. Therefore, we
have that CT({xy,x;’ ) > 3. The credit assigned to a gadget is defined as
err({at,a3}) = er(lat, 27}) — 3.

Let us define the assignment for 27 and z7. A variable z7' is honestly tra-
versed if either both the simple edge going into z} is used and the simple edge
coming out of 277 is used, or neither of these two edges is used. In the first case,
we set xj' to 1, otherwise to 0. Similarly, 27 is honest if both the edge going
into z7 and the edge out of z;' are used, and we set it to 1 in the first case and
0 otherwise.
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Honest tours: First, suppose that both zi* and 27 are honest. We need to
show that the credit is at least as high as the number of unsatisfied equations
out of the five equations that contain them. It is not hard to see that if we have
set z}' # z7 all equations are satisfied. If we have set both to 1, then the forced
edge must be used twice, making the local edge cost at least 6, giving a credit
of 3, which is more than sufficient.

Dishonest tours: If both zj* and z} are dishonest the tour must be using
the forced edge in both directions. Thus, the local cost is 5 or more, giving a
credit of 2. There is always an assignment that satisfies three out of the five
equations, so this case is done. If one of them is dishonest, the other must be set
to 1 to ensure strong connectivity. Thus, there are two simple edges used leaving
the gadget, making the local cost 4 (perhaps the same edge is used twice). We
can set the honest variable to 1 (satisfying its two cycle equations), and the
other to 0, leaving at most one equation unsatisfied.

6.0.1. Assignment for Contact Variables

First, we note that for any valid tour, we have CT(Vj3A) > 10 4+ A. This
is because the two forced edges of weight A must be used, and there exist 10
vertices in the gadget for which all outgoing edges have weight 1. Let us define
the credit erp(V34) = ep(V34) — (10 + X).

Honest Traversals: We assume that the underlying tour is honest, that
is, forced edges are traversed only in one direction. We set = to 1 if the forced
edge is used in the direction " —p 2! and 0 otherwise. In the first case we
know that the simple edges going into " and out of ! are used. In the second,
the edges e} — 2! and 2" — e? are used. We do similarly for y, 2.

We are interested in the equation x &y @ 2z = 1 and the six cycle equations
involving z, vy, z. The assignment we pick for honest variables satisfies the cycle
equations, so if it also satisfies the size-three equation we are done. If not, we
have to prove that the tour pays at least 11 + A.

Case (r = y = z = 0): Due to our assumption, we know that e? T

yr = e} = 2t sp 2" = el - 2! —p 27 — €7 is a part of the tour. Since

J
Er is a tour, there exists a vertex in V]»BA\{sj,tj} that is visited twice and we
get cT(VfA) > 11 + A. Thus, we can spend the credit ch(‘/j3A) > 1 on the
unsatisfied equation x y & z = 1.

Case (z +y + z = 2): Without loss of generality, let us assume that
x =1y = 1% z holds. Then, we know that e? S22l sp 2 — e} is a part of the
tour. But, this implies that there is a vertex in V(G;’-A) that is visited twice.
Hence, we have that ch(V]?’A) > 1.

Dishonest Traversals: Consider the situation, in which some forced edges
{47, 4!} are traversed in both directions for some variables vy € {x,y, z}. For
the honest variables, we set them to the appropriate value as before, and this
satisfies their cycle equations. Observe now that if a forced edge 7/ —p 7"
is also used in the opposite direction, then there must be another edge used
to leave the set {7!,7"}. Thus the local edge cost of this set is at least 3. It
follows that the credit we have for the gadget is at least as large as the number
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of dishonest variables. We can give appropriate values to them so each satisfies
one cycle equation and the size-three equation is satisfied. Thus, the number of
unsatisfied equations is not larger than our credit.

In summary, for every tour Er in G4, we can find an assignment to the
variables of Is such that all unsatisfied equations are paid by the credit induced
by ET.

O

Proof of Theorem[5 We are again given an instance I; of the MAX-E3LIN2
problem with v variables and m equations. For all § > 0, there exists a k such

)

that if we repeat each equation k time we get an instance Il(k with m’ = km

equations and v variables such that v/m’ <.

Then, from Il(k), we generate an instance I5 of the Hybrid problem and the
corresponding directed graph G 4. Due to Lemmata [3] [4] and Theorem [3] we
know that for all € > 0, it is NP -hard to tell whether there is a tour with cost
at most 37m’ +5v +2m(v + X) +e-m’ < 37-m/ + €m’ or all tours have cost
at least 37m’ + (0.5 — e)m’ > 37.5-m’ — € - m/, for some €’ depending only on
€,0, A. The ratio between these two cases can get arbitrarily close to 75/74 by
appropriate choices for €, d, \.

O

7. Concluding Remarks

In this paper, we proved that it is hard to approximate the ATSP and the
TSP within any constant factor less than 75/74 and 123/122, respectively. The
proof method requires new ideas and constructions essentially different from
the ones used before in that context. Since the best known upper bound on
the approximability is O(logn/loglogn) for ATSP and 3/2 for TSP, there is
certainly room for improvements. Especially, in the asymmetric version of the
TSP, there is a large gap between the approximation lower and upper bound,
and it remains a major open problem on the existence of an efficient constant
factor approximation algorithm for that problem. Furthermore, it would be nice
to investigate if some of the ideas of this paper, and in particular the bi-wheel
amplifiers, can be used to offer improved hardness results for other optimization
problems, such as the Steiner Tree problem.
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