
Parameterized Edge Hamiltonicity

Michael Lampis1,?, Kazuhisa Makino1, Valia Mitsou2,??, Yushi Uno3

1 Research Institute for Mathematical Sciences, Kyoto University
mlampis,makino@kurims.kyoto-u.ac.jp

2 CUNY Graduate Center
vmitsou@gc.cuny.edu

3 Department of Mathematics and Information Sciences, Graduate School of Science,
Osaka Prefecture University
uno@mi.s.osakafu-u.ac.jp

Abstract. We study the parameterized complexity of the classical Edge
Hamiltonian Path problem and give several fixed-parameter tractabil-
ity results. First, we settle an open question of Demaine et al. by showing
that Edge Hamiltonian Path is FPT parameterized by vertex cover,
and that it also admits a cubic kernel. We then show fixed-parameter
tractability even for a generalization of the problem to arbitrary hyper-
graphs, parameterized by the size of a (supplied) hitting set. We also
consider the problem parameterized by treewidth or clique-width. Sur-
prisingly, we show that the problem is FPT for both of these standard
parameters, in contrast to its vertex version, which is W-hard for clique-
width. Our technique, which may be of independent interest, relies on
a structural characterization of clique-width in terms of treewidth and
complete bipartite subgraphs due to Gurski and Wanke.

1 Introduction

The focus of this paper is the Edge Hamiltonian Path problem, which can
be defined as follows: given an undirected graph G(V,E), does there exist a
permutation of E such that every two consecutive edges in the permutation
share an endpoint? This is a very well-known graph-theoretic problem, which
corresponds to the restriction of (vertex) Hamiltonian Path to line graphs.
Despite some superficial similarity to the problem of finding an Eulerian path,
this problem has long been known to be NP-complete, even for graphs which are
bipartite or have maximum degree 3 [2, 26, 24].

The Edge Hamiltonian Path problem is a very natural graph-theoretic
problem with a long history (see e.g. [5, 6, 9, 7, 23, 8]). In this paper we investigate
the complexity of this problem from the parameterized complexity perspective.
More specifically, we consider the case where some structural parameter of the
input graph G, such as its treewidth, has a moderate value. Despite the problem’s

? Research supported by a Scientific Grant-in-Aid from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

?? This work was done while the author was visiting RIMS, Kyoto University.

prominence, to the best of our knowledge, Edge Hamiltonian Path has never
before been studied in this setting. Such an investigation is of inherent interest
from the point of view of graph theory and parameterized complexity. Beyond
this, we are partially motivated by a specific question recently asked explicitly
by Demaine et al. [14]. In their investigation of the card game UNO, the authors
of [14] present an XP (i.e. running in nf(k)) dynamic programming algorithm
for Edge Hamiltonian Path on bipartite graphs, where k is the size of the
smaller part (that is, k is the size of a vertex cover). They then, quite naturally,
ask if this can be improved to an FPT algorithm. In this paper we present a
number of results that positively settle not only this, but several other more
general such questions.

Overview of results We give fixed-parameter tractability results for Edge
Hamiltonian Path and its variant Edge Hamiltonian Cycle, which we
show to be essentially equivalent. Our first task is to consider the problem pa-
rameterized by the size of the vertex cover of the input graph. We establish that,
not only is the problem FPT, but it also admits a cubic kernel through an algo-
rithm that locates and deletes irrelevant edges. We then go on to give a much
more general direct FPT algorithm for the problem and show that this algorithm
can still be applied even if we consider the problem on arbitrary hypergraphs
and the parameter is the size of a hitting set which is supplied with the input. As
a corollary, we note that this result implies that (vertex) Hamiltonian Path
is FPT when parameterized by the chromatic number of the complement of the
input graph.

Our next direction is to consider the problem on graphs parameterized by
treewidth and clique-width. The complexity of Edge Hamiltonian Path for
these parameters was previously unknown, since this is also a more general ques-
tion than the one posed in [14]. Our first observation is that fixed-parameter
tractability for Edge Hamiltonian Cycle parameterized by treewidth can be
obtained from standard meta-theorems, if one relies on an alternative character-
ization of the problem. This alternative characterization, which was first given
by Harary and Nash-Williams almost 50 years ago [21], allows one to recast this
ordering problem as the problem of finding an appropriate Eulerian subgraph,
which, with a little work, can be expressed in a variant of Monadic Second Or-
der logic. For the sake of completeness, we also sketch a direct treewidth-based
dynamic programming algorithm using this formulation.

Having settled the problem for treewidth, the natural next step is to con-
sider Edge Hamiltonian Cycle parameterized by clique-width, a prominent
structural graph parameter that generalizes treewidth. It is important to note
here that the (more common) vertex version of the problem exhibits a sharp
complexity jump between these two parameters: Hamiltonian Cycle is FPT
for treewidth but for clique-width the problem is W-hard and therefore does not
admit an FPT algorithm under standard complexity assumptions [18]. In what
is perhaps the most surprising result of this paper, we show that Edge Hamil-
tonian Cycle remains FPT even for clique-width, despite this parameter’s ad-
ditional generality. On a high level, our strategy is to rely on a characterization

2

of bounded clique-width graphs given by Gurski and Wanke [19] which states
roughly that if a graph has small clique-width and no large complete bipartite
subgraphs, then it has small treewidth. We devise an algorithm that locates and
“reduces” large complete bipartite subgraphs in the input graph, without affect-
ing the answer or increasing the clique-width. By repeatedly applying this step
we end up with a graph of small treewidth for which the problem is FPT. We
believe this idea, which is a rare algorithmic application of the characterization
of [19], may be of independent interest.

2 Preliminaries

We assume that the reader is familiar with the basics of parameterized complex-
ity. In particular, we use the definitions of the classes FPT, XP as well as the
notion of a kernelization algorithm and of polynomial kernels (see [15, 17, 25]).

We will use the definition of treewidth, and in particular the notion of “nice”
tree decompositions (see the survey [4]). We also use the notion of clique-width
(see [16, 13, 22]). Let us briefly review the definition. The class of graphs of clique-
width k contains all single-vertex graphs where the only vertex has a label from
{1, . . . , k}. Furthermore, the class is closed under the following operations: dis-
joint union of two graphs; renaming of all vertices with some label i to some
label j; and joining by new edges of all vertices with some label i to all vertices
with some label j. When given a graph of clique-width k we assume, as is cus-
tomary, that we are also supplied a clique-width expression, that is, a rooted
binary tree showing how the graph can be obtained from single-vertex graphs
using the above operations. All graph classes with bounded treewidth also have
bounded clique-width, but the reverse is not true [10].

We will also rely on the following theorem of Gurski and Wanke which intu-
itively states that large complete bipartite graphs are what separates treewidth
from clique-width:

Theorem 1 ([19]).
Let G be a graph of clique-width k. If G does not contain the complete bipartite

graph Kt,t as a subgraph, then the treewidth of G is at most 3kt.

We will consider the Edge Hamiltonian Path and Edge Hamiltonian
Cycle problems. As mentioned, in these problems we are looking for a permu-
tation of the edges of the input graph so that any two consecutive edges share
an endpoint (in the latter problem, also the first and last edge must share an
endpoint). We call such a permutation an edge-Hamiltonian path (respectively
an edge-Hamiltonian cycle). We will mostly view these as graph problems, but
this problem definition applies equally well to hypergraphs, if we require that
two consecutive hyperedges share a common vertex. Hypergraphs are the subject
of Section 4. Recall that for a graph or hypergraph G(V,E), its line graph is the
graph G′(E,H) where (e1, e2) ∈ H if and only if e1, e2 share a vertex in G. The
Edge Hamiltonian Path problem on G is equivalent to the Hamiltonian
Path problem on G′.

3

For the graph case, it will be useful to recast these ordering problems as
subgraph problems. First, recall that a graph is Eulerian if it is connected and
all its vertices have even degree. A Dominating Eulerian Subgraph of a
graph G(V,E) is a subgraph G′(V ′, E′) of G such that all edges of E have an
endpoint in V ′, that is, V ′ is a vertex cover of G, and G′ is Eulerian. We will
use the following classical observation of Harary and Nash-Williams:

Theorem 2 ([21]).
A graph has an edge-Hamiltonian cycle if and only if it contains a dominating

Eulerian subgraph.

Finally, let us mention that we will deal with Edge Hamiltonian Path
and Edge Hamiltonian Cycle interchangeably, depending on which problem
makes the description of our algorithms easier. The reader can easily verify that
all our arguments apply to both problems with very minor modifications. It is
also not hard to show the following:

Lemma 1. For the following parameters, Edge Hamiltonian Path is FPT
if and only if Edge Hamiltonian Cycle is FPT: vertex cover, treewidth,
clique-width and hypergraph hitting set.

3 Vertex Cover

In this section we consider the Edge Hamiltonian Path problem parameter-
ized by the size of the vertex cover k. We show that the problem has a cubic in
k kernel. As in the following sections, we assume that together with the input
graph G(V,E) we are given a vertex cover S of G with |S| = k. Note though,
that this assumption is not important, since a 2-approximate vertex cover can
be found in polynomial time.

Below follow some definitions which will make the presentation of the results
smoother. We assume that the vertices of G are labeled in some lexicographically
ordered fashion, and in particular that S = {u1, . . . , uk}.

Definition 1. An edge e ∈ E is defined to be of type i if it is incident to ui ∈ S
but not incident to any other uj ∈ S for j < i.

Definition 2. Let P be an edge-Hamiltonian path of G. For i ∈ {1, . . . , k}, a
group of type i is a maximal set of edges of type i which are consecutive in P .
We say that an edge is special if it is the first or the last edge of a group.

The special edges essentially form the backbone of the edge-Hamiltonian
path P . A piece of intuition that will become useful later is that, if one fixes
these edges in a proper edge-path, the remaining edges will be easy to deal with,
because they are allowed to move freely in and out of groups.

Our next goal then is to show that if a graph has an edge-Hamiltonian path
P , then it has one where few edges are special. This is summarized in Lemma
2 and Corollary 1. Intuitively, the core idea is a flipping argument: if the same
group types appear too many times in a solution, we can reverse a sub-path to
obtain a solution with fewer groups.

4

Lemma 2. Let G be an edge-Hamiltonian graph. Then, there exists an edge-
Hamiltonian path P of G with the following property: for any i, j ∈ {1, . . . , k},
an edge of type j appears directly after an edge of type i at most once.

Proof. Suppose that P ′ is an edge-Hamiltonian path of G in which there exist
two edges of type i, say ei1, e

i
2, and two edges of type j, say ej1, e

j
2 such that ei1 is

followed by ej1 in the path and ei2 is followed by ej2. Without loss of generality,

assume that ej1 appears before ei2 in the path. We transform the path by reversing

the order of all edges appearing between ej1 and ei2 inclusive. In the new path
ei1 is followed by ei2, which is allowed, since they share a common endpoint (ui).
Similarly, ej1 is followed by ej2.

Observe that the new path has strictly fewer groups. Therefore, repeating this
process at most a linear (in |E|) number of times we obtain an edge-Hamiltonian
path P with the stated property. ut

Corollary 1. Let G be an edge-Hamiltonian graph. Then, there exists an edge-
Hamiltonian path P of G such that for all i ∈ {1, . . . , k}, P contains at most
(k − 1) groups of type i. Therefore, P contains at most k2 groups in total, and
for each i ∈ {1, . . . , k} there exist at most 2k special edges of type i.

We have now proved that if a solution exists, it must have a certain nice
form. Let us make one more easy observation.

Lemma 3. Let G(V,E) be an edge-Hamiltonian graph. Then, there exists an
edge-Hamiltonian path P such that, for all i ∈ {1, . . . , k} for which there exist
at least k edges of type i, P has a group of type i with size at least 2.

Proof. By Corollary 1 there are at most k− 1 groups of type i, so by pigeonhole
principle, one must contain at least two edges. ut

Let us note that Lemma 2, Corollary 1 and Lemma 3 still hold even if G is
a hypergraph. We will make use of this in the next section.

We are now ready to state the main reduction rule and prove its correctness.

Lemma 4. Let G(V,E) be a graph, and S = {u1, . . . , uk} a vertex cover of G
of size k. Suppose that there exists an edge (ui, w) satisfying the following:

1. w /∈ S
2. There are at least k + 1 edges of type i in G
3. For all uj ∈ S such that (uj , w) ∈ E we have |(N(ui) ∩N(uj)) \ S| > 4k

Then G(V,E) has an edge-Hamiltonian path if and only if G′(V,E\{(ui, w)})
does.

Proof. For the easy direction, suppose that G′ has an edge-Hamiltonian path P ′.
There are at least k edges of type i in G′, so by Lemma 3 at least one group of
type i contains two or more edges. Then, (ui, w) can simply be inserted between
two edges of this group to obtain an edge-Hamiltonian path for G.

5

For the converse direction, suppose that G has an edge-Hamiltonian path P .
Let e1, e2 be the edges appearing immediately before and after (ui, w) in P . If
e1, e2 share an endpoint, we can delete (ui, w) from P and obtain a valid solution
for G′. Therefore, suppose they do not, and since they both share an endpoint
with (ui, w) we assume without loss of generality that e1 is incident on ui and
e2 = (uj , w). (Observe that here we have used the fact that G is a graph, so the
rest of our argument do not generalize to hypergraphs).

We know now by the last condition that N(uj) ∩ N(ui) contains at least
4k + 1 vertices of V \ S. Observe that, by Corollary 1, there are at most 2k
special edges of type i and 2k special edges of type j. Thus, there is a vertex of
(N(ui) ∩N(uj)) \ S, call it z, such that (ui, z) and (uj , z) are not special.

Because (ui, z) is not special, the two edges appearing immediately before
and after it are both incident on ui. Therefore, deleting (ui, z) still leaves us
with a valid edge-path. Similar reasoning can be used for (uj , z). We construct
a path P ′ as follows: delete (ui, w), (ui, z) and (uj , z) from P and then insert
(ui, z), (uj , z) between e1 and e2. This is a valid solution for G′. ut

Lemma 4 now leads to the following theorem.

Theorem 3. Edge Hamiltonian Path has a kernel with O(k3) edges, where
k is the size of the input graph’s vertex cover.

4 Hypergraphs

In this section we present an FPT algorithm for Edge Hamiltonian Path on
hypergraphs parameterized by the size of a (supplied) hitting set. As an interest-
ing consequence, our algorithm also establishes fixed-parameter tractability for
a novel parameterization of Hamiltonian Path, namely when the parameter
is the chromatic number of the input graph’s complement.

In this section, G(V,E) will be a hypergraph (that is, E is a collection of
arbitrary subsets of V). We assume that the input also contains a hitting set
S ⊂ V of size k, that is, a set of vertices that intersects all hyperedges. Unlike the
previous section, this is not an inconsequential assumption, since finding even
an approximate hitting set is generally a hard problem.

We will rely on the fact that much of the material of the previous section car-
ries through unchanged. In particular, Definitions 1, 2, also apply to hypergraphs.
Then, Lemma 2, Corollary 1, and Lemma 3 hold for the case of hypergraphs as
well. Unfortunately, Lemma 4 does not seem to generalize naturally in this case.

Let us thus describe a different algorithm for this problem. As mentioned, one
way to proceed is to try to identify the special edges, which form the backbone
of a path. Once these have been found, the problem becomes much easier. We
will use a color-coding scheme to assist us in selecting these special hyperedges.
The high-level idea is the following: for every i ∈ {1, . . . , k} such that there are
at least 2k hyperedges of type i, color these hyperedges with 2k colors uniformly
at random. Then, merge (that is, take the union) of all hyperedges of type i that
took the same color to a single hyperedge. This process results in a hypergraph

6

G′ with O(k2) hyperedges. We want to show that if this hypergraph has an
edge-Hamiltonian path then G does as well, while if G has an edge-Hamiltonian
path then G′ has one with non-negligible probability. The “good colorings” that
give us this non-negligible probability are those that assign a different color to
each special edge.

We are now ready to state the main result of this section.

Theorem 4. Given a hypergraph G(V,E) and a hitting set S = {u1, . . . , uk}
of G, there is an FPT algorithm that decides if G has an Edge Hamiltonian
Path in time 2O(k2)nO(1).

An interesting consequence of Theorem 4 is that it implies fixed-parameter
tractability for a non-standard parameterization of Hamiltonian Path. The
parameterization we are considering is by the complement chromatic number,
that is, the chromatic number of the input graph’s complement. We are naturally
led to this observation, because the line graph of a hypergraph with a hitting
set of size k has a vertex set that can be partitioned into at most k cliques. To
the best of our knowledge, this parameterization of Hamiltonian Path has not
been considered before.

Corollary 2. Given a graph G(V,E) and a proper k-coloring of its complement
graph, there exists an FPT algorithm that decides if G has a Hamiltonian Path
in time 2O(k2)nO(1).

Proof. The vertex set of G can be partitioned into k cliques. We will build a
hypergraph G′(V ′, E′) such that G is the line graph of G′. It follows that G has
a Hamiltonian Path if and only if G′ has an edge-Hamiltonian path.

We set V ′ = {1, . . . , k} ∪E. For each v ∈ V we use I(v) to denote the set of
edges incident on v and c(v) to denote the color that v has in the given coloring.
We set E′ = {I(v) ∪ {c(v)} | v ∈ V }, or in other words, we create a hyperedge
for each vertex and include into it its incident edges and its color. It is not hard
to see that G′ has a hitting set of size k and that G is the line graph of G′. ut

5 Treewidth and Clique-width

In this section we consider the Edge Hamiltonian Cycle problem parame-
terized by treewidth or clique-width. As is customary for these parameters, we
will assume that a decomposition of width k (or a clique-width expression with
k labels) is given to us with the input.

Let us first consider treewidth. One obvious approach we could try to follow
is to use the fact that if G has treewidth k its line graph has clique-width O(k)
([20]). Since deciding Edge Hamiltonian Cycle on G is equivalent to deciding
Hamiltonian Cycle on its line graph, this would give an XP algorithm, using
known results for the latter problem (this is similar to the approach of [14]).
Unfortunately, since Hamiltonian Cycle is W-hard for clique-width, this ap-
proach could not lead to an FPT algorithm for Edge Hamiltonian Cycle on
treewidth. We thus have to recast the problem.

7

We will rely on Theorem 2, which states that the existence of an edge-
Hamiltonian cycle is equivalent to the existence of a dominating Eulerian sub-
graph. Thus, we can view Edge Hamiltonian Cycle as a subgraph problem,
rather than an ordering problem. This formulation allows us to express the prob-
lem in a variant of MSO logic, without reference to orderings. We can then invoke
standard meta-theorems to obtain fixed-parameter tractability for treewidth.

Let us sketch the basic idea. Recall that MSO2 logic allows one to express
properties involving sets of vertices or edges (see [12]). Dominating Eulerian
Subgraph is the problem of looking for a set of vertices V ′ and a set of edges
E′ such that: all edges of E have an endpoint in V ′; the graph G′(V ′, E′) is
connected; all vertices of G′(V ′, E′) have even degree. The first two properties
are well-known to be expressible in MSO logic. Interestingly, the third property
is expressible in Counting MSO2 (CMSO2) logic, an extension of MSO2 which is
still FPT for treewidth [22, 11]. Thus, Edge Hamiltonian Cycle is expressible
in CMSO2 and is therefore FPT for treewidth.

We can use standard techniques to obtain the following:

Theorem 5. Given a graph G and a tree decomposition of width k, there exists
an algorithm deciding if G has an edge-Hamiltonian cycle in time kO(k)nO(1).

Let us now move to the main result of this section, which is the tractability
of Edge Hamiltonian Cycle parameterized by clique-width. Our high-level
strategy will be to eliminate complete bipartite subgraphs from the input graph,
without increasing the graph’s clique-width and without affecting the answer of
the problem. If we can repeat this process we will in the end have a graph with
small clique-width and no large complete bipartite subgraphs. By Theorem 1
the graph will have small treewidth and we can use Theorem 5.

Our main tool will be a reduction lemma (Lemma 6). Roughly speaking, the
lemma states that if we find a sufficiently large complete bipartite graph in G
with bipartition A,B, we can reduce it as follows: first we remove all its edges
and then we add three new vertices which are connected to all vertices of both
A and B. This transformation should not affect the answer.

To prove Lemma 6 it will be useful to first prove the following statement.
Roughly speaking, it says that if a graph contains a K3,3 (or larger) complete
bipartite subgraph then any Dominating Eulerian Subgraph can be edited
to produce a solution using all its vertices.

Lemma 5. Let G(V,E) be a graph and A,B ⊆ V , with A,B disjoint sets,
|A|, |B| ≥ 3 and A × B ⊆ E. If G has a dominating Eulerian subgraph then
it also has a dominating Eulerian subgraph G0(V0, E0) such that (A ∪ B) ⊆ V0

and E0 ∩ (A×B) 6= ∅.

Proof. Suppose that G has a dominating Eulerian subgraph G0(V0, E0). We will
edit this solution by adding vertices and adding or removing edges until the
stated properties are achieved. In the remainder, when we say that we flip an
edge e we mean that, if e ∈ E0 then we remove it from E0, otherwise we add it
to E0 and add its endpoints to V0.

8

Let us first establish that |V0 \ (A ∪ B)| ≤ 1 as follows: if V0 does not fully
contain one of the two sets A,B, it must fully contain the other (because V0 is
a vertex cover). Suppose without loss of generality that B ⊆ V0. If there exist
v1, v2 ∈ A \ V0 then pick two vertices u1, u2 ∈ B. We can flip all the edges of
{u1, u2} × {v1, v2} and produce a valid solution with more vertices.

Now, if there is a single vertex v1 ∈ A \ V0 then we have two cases: if there
exist u1 ∈ B, v2 ∈ A such that (u1, v2) /∈ E0, we pick an arbitrary u2 ∈ B and
flip the edges {u1, u2} × {v1, v2}. This produces a valid dominating Eulerian
subgraph that contains v1. In the final case, all edges of A× B not incident on
v1 are used in E0. Then, picking two arbitrary u1, u2 ∈ B and a vertex v2 ∈ A
and flipping the edges {u1, u2}×{v1, v2} produces a valid solution that includes
v1. We can conclude that A ⊆ V0.

For the second property, observe that if E0 does not use any edges of A×B
then we can add an arbitrary cycle to E0 using edges of A×B producing a valid
solution. ut

Lemma 6. Let G(V,E) be a graph and A,B ⊆ V with A,B disjoint sets,
|A|, |B| ≥ 5 and A× B ⊆ E. Let C be a set of three new vertices. Consider the
graph G′(V ′, E′) where V ′ = V ∪C and E′ = (E \A×B)∪ (A×C)∪ (B ×C).
Then G′ has an edge-Hamiltonian cycle if and only if G does.

Proof. Let us first give a high-level description of the argument, which will be
expressed in terms of the Dominating Eulerian Subgraph problem. Infor-
mally, it will be easy to transform a solution for G to one for G′, by replacing
all edges of A × B used in a dominating Eulerian subgraph by paths of length
2 through the vertices of C. The more interesting part is the converse direction.
Here, we will first select appropriate edges of A × B to give all vertices even
degrees in G. The problem will be to do this in a way that ensures connectivity.
For this we will be needing the fact that we have a sufficiently large complete
bipartite graph. Let us now give the details.

First, suppose that G has a dominating Eulerian subgraph G0(V0, E0). We
will now describe a dominating Eulerian subgraph G′0(V ′0 , E

′
0) of G′. We set

V ′0 = V0 ∪ C, which is clearly a vertex cover of G′. To construct E′0 we begin
with the set of edges E0 \ (A × B). Then, for each (u, v) ∈ E0 ∩ (A × B) we
add to E′0 the three distinct paths of length 2 that go from u to v through C.
Observe that this process ensures that in the end all vertices of A,B have degree
with the same parity as in G0 and all vertices of C have even degree. The graph
constructed is connected, because by Lemma 5 at least one edge of A × B is
included in E0.

For the converse direction, suppose we have a dominating Eulerian subgraph
G′0(V ′0 , E

′
0) of G′. By Lemma 5, because C, (A∪B) form two parts of a sufficiently

large complete bipartite subgraph we can assume that (A ∪B ∪ C) ⊆ V ′0 .
We build a dominating Eulerian subgraph G0(V0, E0) of G as follows. First,

V0 = V ′0 \ C, which is a vertex cover of G. Let EC be the set of edges of E′0
incident on C. It must be the case that |EC | is even, since all vertices of C
have even degree in G′0 and C is an independent set. We start building E0 by

9

including all the edges of E′0\EC . We will now go through two phases of “fixing”
E0 by adding to it edges of A×B.

Initially, we concentrate on making all degree parities even. We will say that
we flip an edge e to mean that, if e ∈ E′0 then we remove it from E′0, otherwise
we add it to E′0. Observe that, for our current selection of E′0, the number of
vertices of A∪B with odd degree is even. This is a consequence of the fact that
|EC | is even and that all vertices have even degrees in G′0. As long as there exist
two vertices of A ∪ B with odd degree, select a shortest path connecting them
and flip its edges. Repeating this will eventually produce a set E0 that makes
the degree of all vertices even.

We now need to augment E0 to make sure that G0 is also connected. It is
not hard to see that if G0 is not connected there must be two vertices of A ∪B
in different components (otherwise, we could find a disconnected component in
G′0).

Suppose that for one of the sets, say A, there exist two vertices v1, v2 ∈
A such that v1, v2 are in different components. Clearly, their neighborhoods
N(v1), N(v2) must be disjoint. At the same time, if v1, v2 have two common
non-neighbors u1, u2 ∈ B, we can add the edges of {u1, u2}× {v1, v2} to E0 and
obtain a valid solution with fewer components. Thus, it must be the case that
N(v1), N(v2) cover all of B, except for at most one vertex. Because of the size
of B this means that for one of them, say v1, we have |N(v1) ∩B| ≥ 2.

Consider now an arbitrary v3 ∈ A. Clearly, it either has no neighbors in
N(v1) or its has no neighbors in N(v2) (otherwise v1, v2 would be in the same
component). If it has no neighbors in N(v1) then we add all edges between
{v2, v3} and two arbitrary vertices of N(v1) to improve the solution. Therefore,
every vertex of A except v2 has some neighbor in N(v1). Thus, by the above
steps we have made sure that, if A is not contained in a single component, then
there exists a component that contains all but one of the vertices of A.

Let S be the component that contains almost all the vertices of A. If there
are two vertices u1, u2 ∈ B \ S then u1, u2 have two common non-neighbors in
S and we can again augment the solution. Thus, S also contains B, except for
at most one vertex.

We are now almost done. If there exists v2 ∈ A \ S we can handle it as
follows. If there are v1 ∈ A ∩ S, u1 ∈ B ∩ S such that (v1, u1) /∈ E0 then
select an arbitrary vertex u2 ∈ B and flip the edges of {u1, u2} × {v1, v2}. This
improves the solution by including v2 in S. If on the other hand all edges of
(A ∩ S)× (B ∩ S) are in E0 we can select arbitrary v2 ∈ A ∩ S and u1, u2 ∈ B
and flip the edges of {u1, u2} × {v1, v2}. Because |B ∩ S| ≥ 3 and |A ∩ S| ≥ 2
this will strictly increase the component S. A symmetric argument can handle
the possible remaining vertex of B. ut

We are now almost ready to proceed with our algorithm. To simplify pre-
sentation, we will only apply Lemma 6 to subgraphs which are at least as large
as K7,7. Observe that in such a case, G′ has strictly fewer edges than G. It is
then clear that the reduction is making progress and after a bounded number of
applications we get a graph with no large complete bipartite subgraphs.

10

There is, however, one problem that remains. We must also show that we
can apply Lemma 6 repeatedly without increasing the graph’s clique-width. If
we cannot guarantee this, then, even though we will have eliminated large Kt,t

subgraphs, we will not be able to invoke Theorem 1 in the end. We therefore
have to take care to only apply the reduction rule in some specific situations.
For this, we will have to work with the given clique-width expression of G.

Our first step is to handle an obvious part of the given clique-width expression
where large bipartite subgraphs are constructed, namely, the join operation.

Lemma 7. Given a graph G and a clique-width expression with k labels it is
possible to produce in polynomial time a graph G′ and a clique-width expression
with k + 2 labels such that:

1. G has an edge-Hamiltonian cycle if and only if G′ does
2. For every join operation in the expression of G′, one of the two involved sets

of vertices contains at most 6 vertices.

Unfortunately, Lemma 7 is not enough to guarantee the elimination of large
complete bipartite subgraphs, since these may also be constructed gradually.
However, eliminating big joins gives our clique-width expression a certain struc-
ture which we can leverage to deal with the remaining bi-cliques efficiently.

Lemma 8. Given a graph G(V,E) and a clique-width expression with k labels
and the property that for all join operations one involved set has size at most 6,
we can in polynomial time produce a graph G′ with clique-width k + 2 such that
G′ does not contain K21k,21k as a subgraph.

We can now describe our algorithm. Given a graph G and a clique-width
expression with k labels, we first invoke the algorithms of Lemmata 7,8. We
are thus left with a graph with clique-width at most k + 4 and no complete
bipartite subgraph larger than Kt,t for t = O(k). By Theorem 1, this graph has
treewidth O(k2). We can now apply an FPT algorithm to obtain a reasonable
tree decomposition (see e.g. [3]) and then invoke Theorem 5.

Theorem 6. Given a graph G and a clique-width expression with k labels, there
exists an algorithm that decides if G has an edge-Hamiltonian cycle in time
kO(k2)nO(1).

References

1. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

2. A. A. Bertossi. The edge Hamiltonian path problem is NP-complete. Information
Processing Letters, 13(4):157–159, 1981.

3. H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and
M. Pilipczuk. An O(ckn) 5-Approximation Algorithm for Treewidth. In FOCS,
pages 499–508. IEEE Computer Society, 2013.

11

4. H. L. Bodlaender and A. M. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

5. R. A. Brualdi and R. F. Shanny. Hamiltonian line graphs. Journal of Graph
Theory, 5(3):307–314, 1981.

6. P. A. Catlin. Supereulerian graphs: a survey. Journal of Graph theory, 16(2):177–
196, 1992.

7. G. Chartrand. On hamiltonian line-graphs. Transactions of the American Mathe-
matical Society, pages 559–566, 1968.

8. Z.-H. Chen, H.-J. Lai, X. Li, D. Li, and J. Mao. Eulerian subgraphs in 3-
edge-connected graphs and hamiltonian line graphs. Journal of Graph Theory,
42(4):308–319, 2003.

9. L. Clark. On hamiltonian line graphs. Journal of graph theory, 8(2):303–307, 1984.
10. D. G. Corneil and U. Rotics. On the relationship between clique-width and

treewidth. SIAM Journal on Computing, 34(4):825–847, 2005.
11. B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of

finite graphs. Inf. Comput., 85(1):12–75, 1990.
12. B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic:

A Language-Theoretic Approach. Cambridge University Press, 2012.
13. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimiza-

tion problems on graphs of bounded clique-width. Theory of Computing Systems,
33(2):125–150, 2000.

14. E. D. Demaine, M. L. Demaine, N. J. A. Harvey, R. Uehara, T. Uno, and Y. Uno.
UNO is hard, even for a single player. Theor. Comput. Sci., 521:51–61, 2014.

15. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 1999.
16. W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on

clique-width bounded graphs in polynomial time. In A. Brandstädt and V. B. Le,
editors, WG, volume 2204 of Lecture Notes in Computer Science, pages 117–128.
Springer, 2001.

17. J. Flum and M. Grohe. Parameterized complexity theory, volume 3. Springer, 2006.
18. F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Clique-width: on

the price of generality. In C. Mathieu, editor, SODA, pages 825–834. SIAM, 2009.
19. F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without

Kn,n. In U. Brandes and D. Wagner, editors, WG, volume 1928 of Lecture Notes
in Computer Science, pages 196–205. Springer, 2000.

20. F. Gurski and E. Wanke. Line graphs of bounded clique-width. Discrete Mathe-
matics, 307(22):2734–2754, 2007.

21. F. Harary and C. S. J. Nash-Williams. On eulerian and hamiltonian graphs and
line graphs. Canadian Mathematical Bulletin, 8:701–709, 1965.

22. P. Hliněnỳ, S.-i. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-
width and their applications. The computer journal, 51(3):326–362, 2008.

23. H.-J. Lai. Eulerian subgraphs containing given vertices and hamiltonian line
graphs. Discrete Mathematics, 178(1):93–107, 1998.

24. T.-H. Lai and S.-S. Wei. The edge Hamiltonian path problem is NP-complete for
bipartite graphs. Information processing letters, 46(1):21–26, 1993.

25. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. OUP Oxford, 2006.

26. Z. Ryjácek, G. J. Woeginger, and L. Xiong. Hamiltonian index is NP-complete.
Discrete Applied Mathematics, 159(4):246–250, 2011.

27. J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM Journal on Computing, 19(5):775–786, 1990.

12

A Omitted Proofs

A.1 Proof of Lemma 1

Proof. Suppose that Edge Hamiltonian Cycle is FPT for one of these pa-
rameters. We are given a graph G(V,E) where we want to decide Edge Hamil-
tonian Path. Let u, v ∈ V and let G′ be obtained from G by adding a path of
length 3 (through new vertices) from u to v. It is not hard to see that G′ has
an Edge Hamiltonian Cycle if and only if G has an Edge Hamiltonian
Path where u appears in the first edge and v in the last. Repeating this process
for all pairs of vertices u, v ∈ V allows us to decide Edge Hamiltonian Path
on G. Observe that for all considered parameters their values are only changed
by an additive constant.

For the converse direction, suppose that we have an FPT algorithm for Edge
Hamiltonian Path and we want to decide Edge Hamiltonian Cycle on
G(V,E). Select a vertex u ∈ V and attach to it two distinct paths of length
two (through new vertices). The new graph has an Edge Hamiltonian Path
(which must start and end at the endpoints of the new paths) if and only if G
has an Edge Hamiltonian Cycle where the first and last edges both include
u. Trying all possibilities for u lets us decide Edge Hamiltonian Cycle on G.
Again the parameters are not affected by more than an additive constant. ut

A.2 Proof of Theorem 3

Proof. The algorithm is simple: as long as there exists an edge (ui, w) for which
the conditions of Lemma 4 apply, delete this edge. This can be done in polynomial
time. We will show that, once we can no longer apply this reduction, the graph
has the promised size. To prove this, for each vertex ui ∈ S, we will we show
that the number of edges of type i incident on V \ S is at most 4k2. Observe
that the theorem then immediately follows.

Suppose that, for some i ∈ {1, . . . , k}, there exist 4k2 edges of type i incident
on V \S. As a first step, note that if N(ui) \S contains any vertices of degree 1,
we can apply Lemma 4, because for such vertices the last condition is vacuously
true. Suppose then that all vertices of N(ui) \ S have another neighbor in S.

We say that uj has a small overlap with ui if |(N(ui)∩N(uj)) \S| ≤ 4k. All
vertices of N(ui) \ S satisfy the first condition of Lemma 4, while i satisfies the
second one. Thus, to prove that we can still apply the rule we only need to find
a vertex of N(ui) \S such that all its neighbors in S have large overlap with ui.

There are at most k− 1 vertices in S that have small overlap with ui. These
have at most 4k(k − 1) neighbors in N(ui) \ S. Thus, if this set has size 4k2 >
4k(k − 1), there must exist an edge to which we can apply the reduction rule,
because its endpoint in V \S only has neighbors with a large overlap with ui. ut

13

A.3 Proof of Theorem 4

Proof. We will first describe a randomized color-coding algorithm that achieves
the promised result. In the end, we also explain how this algorithm can be
derandomized with standard techniques.

Let us describe the algorithm more formally. For each i ∈ {1, . . . , k} let Ei be
the set of hyperedges of type i. If |Ei| > 2k then do the following: Randomly se-
lect 2k hyperedges of type i and color each with a distinct color from {1, . . . , 2k}.
Then color all remaining hyperedges of type i uniformly at random with a color
from {1, . . . , 2k}. Note that this process ensures that all colors are used at least
once, which will simplify some arguments.

Let Ec
i be the set of hyperedges of type i that received color c. Now for each

colored set Ec
i construct a new hyperedge ei,c = ∪e∈Ec

i
e. Remove all hyperedges

of Ec
i from G and replace them with the new hyperedge ei,c. After performing

this process for all i ∈ {1, . . . , k} the hypergraph has at most 2k2 hyperedges. We
then use an exponential-time algorithm to solve Edge Hamiltonian Path on
this new graph in time 2O(k2). If the new graph G′ has an Edge Hamiltonian
Path we decide that G also does, otherwise we reply that it does not.

To show that the problem can be solved with the above procedure we will
establish two properties:

– if G has an edge-Hamiltonian path P , then there exists an edge-Hamiltonian
path P ′ for the new hypergraph G′ with probability at least e−2k

2

;
– if the new hypergraph G′ has an edge-Hamiltonian path P ′, then there exists

an edge-Hamiltonian path P in the original graph.

Observe that if we achieve the above, a randomized FPT algorithm which
correctly decides the problem follows by simply repeating this process a suffi-
ciently large number of times. Let us therefore establish these properties.

For the first direction, assume that G has an edge-Hamiltonian path P and
(by Corollary 1) there are at most 2k special hyperedges of each type. We say
that the coloring of the edges of Ei is good if all the special hyperedges of type
i received different colors. The probability that the coloring of Ei is good is at

least (2k)!
(2k)2k

> e−2k. The probability that all edge types which were randomly

colored received a good coloring is therefore at least e−2k
2

. We can now show
that if the coloring is good for all edge types then G′ has an edge-Hamiltonian
path. Start with P . If P contains two hyperedges of the same type and color,
one of them is not special (because the coloring is good). Delete the non-special
hyperedge from the path. The path is still valid, since the two neighbors of the
deleted hyperedge share a common endpoint. Repeat this until in the end we
are left with a single hyperedge of each color. Replace the remaining hyperedge
of type i that received color c with the hyperedge ei,c of G′. Doing this for each
type i that was randomly colored produces a valid edge-Hamiltonian path of G′.

For the converse direction, suppose we have an edge-Hamiltonian path P ′

of G′. We will first build from this a valid edge-path of G, and then insert into
it the remaining hyperedges to obtain an edge-Hamiltonian path. For the first

14

step, as long as P ′ contains one of the new hyperedges ei,c do the following: find
a vertex v1 that is common between ei,c and the hyperedge that precedes it and
a vertex v2 that is common with the hyperedge that follows. It must be the case
that some hyperedge of type i and color c contains v1, call it e1. Similarly, some
hyperedge (not necessarily distinct from e1) contains v2, call it e2. Replace the
hyperedge ei,c with e1, e2 (or just e1 if they are the same hyperedge). This is
still a valid edge-path, so repeating this process gives a valid edge-path made up
of original hyperedges of G. Let Es be the set of hyperedges of this path.

By definition, the graph G′′(V,Es) contains an edge-Hamiltonian path. Recall
now that for all i that were randomly colored and all colors c, G′ contained a
hyperedge ei,c, which has now been replaced by one or two hyperedges of type i
in Es. This means that Es contains at least 2k hyperedges of type i. By Lemma
3, G′′(V,Es) has an edge-Hamiltonian path containing a group of type i with at
least two hyperedges. Take all hyperedges of Ei\Es and insert them between two
hyperedges of that group. Repeating this process produces an edge-Hamiltonian
path of G.

Finally, let us sketch how the above algorithm can be derandomized. The
important point of this analysis is that there exist at most 2k2 special edges for
which we hope to use distinct colors. Rather than coloring each type indepen-
dently then, we could color all affected hyperedges with colors from {1, . . . , 2k2}.
It is now sufficient to try a set of colorings such that any set of 2k2 hyperedges
becomes colorful for some coloring. As is standard in these situations, we can
use a perfect hash function family from {1, . . . , |E|} to {1, . . . , 2k2}. There exist

such families with size 2O(k2) log |E| ([1, 27]). ut

A.4 Proof of Theorem 5

Proof. We only sketch the algorithm, since it follows the usual treewidth dynamic
programming pattern. We follow the conventions of [4]. For each node i of a nice
tree decomposition let Gi be the subgraph of G induced by vertices appearing in
the bags of the sub-tree rooted at i. We define a dynamic programming table Ci

that characterizes a partial solution when restricted to the graph Gi. If Xi is the
set of vertices contained in the bag i, then Ci is a set of triples (S,R, P) where
P ⊆ S ⊆ Xi, and R is an equivalence relation on S (i.e. a partition of S). The
intuitive meaning is the following: S contains the vertices of the bag which have
been selected as part of the Dominating Eulerian Subgraph (and therefore
must form part of a vertex cover of the graph). We use P to remember which
vertices of S have an odd number of edges incident on them selected. In addition,
we use R to remember which vertices of S are in the same connected component,
in the graph constructed using already selected edges.

More formally, we want to make sure that a triple (S,R, P) belongs in Ci if
and only if there exists a subgraph G′i(Vi, Ei) of Gi such that:

1. Vi is a vertex cover of Gi and Vi ∩Xi = S
2. For all u, v ∈ S we have uRv if and only if u is reachable from v in G′i.

Furthermore, all vertices of Vi \Xi are reachable from some vertex of S in
G′i

15

3. For all u ∈ S we have u ∈ P if and only if u has odd degree in G′i. Further-
more, all u ∈ Vi \Xi have even degree in G′i

Given the above description, the dynamic programming table for each node
can be computed using standard techniques: we just need to make sure that S
is a vertex cover, and that we never “forget” a vertex with odd degree or the
last vertex of a component. In the end, we check if the root contains an entry
(S, {S}, ∅) for some set S. Notice that the running time is dominated by the
size of the dynamic programming tables, which are in turn dominated by the
number of partitions of S. This is upper-bounded by the k-th Bell number, which
is asymptotically less than kk. ut

A.5 Proof of Lemma 7

Proof. We will use two new labels k + 1, k + 2. Informally, the first is a “work”
label and the second a “garbage” label. Given the clique-width expression of G we
can identify in polynomial time a large join operation. Suppose that there is an
operation joining labels i, j and the sets Vi, Vj of vertices with the corresponding
labels have size at least 7.

Remove the offending join operation and replace it with the following oper-
ations: introduce 3 new vertices with label k + 1, join labels i and k + 1, join
labels j and k + 1, rename label k + 1 to k + 2.

The fact that the anwer to the Edge Hamiltonian Cycle problem does not
change follows directly from Lemma 6. Repeating the above process eliminates
all large joins in polynomial time. ut

A.6 Proof of Lemma 8

Proof. As mentioned, we view the given clique-width expression as a rooted
binary tree. Given a node x of that tree, Gx(Vx, Ex) is the graph corresponding
to the clique-width sub-expression rooted at x.

Consider a graph Gx and the set of vertices with label i in Gx, call it V x
i . If

there also exists a set B ⊆ V \Vx such that |B|, |V x
i | ≥ 7 and B×V x

i ⊆ E we apply
a simplifying transformation. Specifically, immediately after the construction of
Gx we insert the following operations: introduce 3 vertices with label k + 1, join
i to k + 1, rename i to k + 2, rename k + 1 to i.

Correctness of the above transformation again follows from Lemma 6. The
important point here is that we can set all the vertices of V x

i to the “garbage”
label k + 2 and allow them to be “represented” by the 3 new vertices. Any
vertex of V \ Vx that had an edge to a vertex of V x

i had an edge to all of them
in G. Such vertices can therefore be assumed to belong to B. These vertices
will be connected to the three newly introduced vertices. Observe also that this
procedure can be carried out in polynomial time, since if we fix one side of a
complete bipartite subgraph (in this case V x

i) it is easy to find the maximum B
in G.

16

What remains to argue is that repeated applications of the above procedure
will necessarily remove all large bi-cliques. Equivalently, we need to prove that
if G has a large bi-clique then there exists a V x

i to which the above reduction
rule applies. We will also use the fact that no large joins exist in the clique-width
expression.

Suppose that a graph Gx corresponding to some sub-expression contains
Kt,t, t ≥ 14k as a subgraph on the sets of vertices Ax, Bx. We claim that there
exists a descendant y of x such that Gy contains Kt′,t′ as a subgraph on the sets
Ay ⊆ Ax, By ⊆ Bx, with t−7k ≤ t′ < t and t′ maximal. To see this, observe that
if the claim were not true, the two closest disjoint descendants of Gx, call them
Gy, Gz, that contain vertices of Ax, Bx would both contain at least 7k vertices.
This would mean (without loss of generality) that Gy would contain 7 vertices
of Ax having the same label and Gz would contain 7 vertices of Bx having the
same label. But, since we disallow large joins it would be impossible to construct
the edges joining these vertices in Gx.

Suppose now that G contains a K21k,21k on the sets A,B. By repeated ap-
plication of the above claim there is a subgraph Gx containing a Kt,t on sets
Ax ⊆ A, Bx ⊆ B, where 7k ≤ t ≤ 14k and t is maximal. Consider the larger
of the two sets Ax, Bx, say Ax. It must contain 7 vertices with the same label,
call this set V x

i . On the other hand there are at least 7k ≥ 7 vertices in B \Bx,
which will eventually all be joined to V x

i . We have thus found a set to which we
could apply our reduction rule. ut

17

