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Abstract. Several real-life complex systems, like human societies or eco-
nomic networks, are formed by interacting units characterized by pat-
terns of relationships that may generate a group-based social hierarchy.
In this paper, we address the problem of how to rank the individuals with
respect to their ability to “influence” the relative strength of groups in a
society. We also analyse the effect of basic properties in the computation
of a social ranking within specific classes of (ordinal) coalitional situa-
tions. We show that the pairwise combination of these natural properties
yields either to impossibility (i.e., no social ranking exists), or to flatten-
ing (i.e., all the individuals are equally ranked), or to dictatorship (i.e.,
the social ranking is imposed by the relative comparison of coalitions of
a given size). Then, we turn our attention to an algorithmic approach
aimed at evaluating the frequency of “essential” individuals, which is a
notion related to the (ordinal) marginal contribution of individuals over
all possible groups.
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1 Introduction

Ranking is a fundamental ingredient of many real-life situations, like the ranking
of candidates applying to a job, the rating of universities around the world, the
distribution of power in political institutions, the centrality of different actors
in social networks, the accessibility of information on the web, etc. Often, the
criterion used to rank the items (e.g., agents, institutions, products, services,
etc.) of a set N also depends on the interaction among the items within the
subsets of N (for instance, with respect to the users’ preferences over bundles
of products or services). In this paper we address the following question: given
a finite set N of items and a ranking over its subsets, can we derive a “social”
ranking over N according to the “overall importance” of its single elements?
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For instance, consider a company with three employees 1, 2 and 3 working in
the same department. According to the opinion of the manager of the company,
the job performance of the different teams S ⊆ N = {1, 2, 3} is as follows:
{1, 2, 3} < {3} < {1, 3} < {2, 3} < {2} < {1, 2} < {1} < ∅ (S < T , for
each S, T ⊆ N , means that the performance of S is at least as good as the
performance of T ). Based on this information, the manager asks us to make a
ranking over his three employees showing their attitude to work with others as
a team or autonomously. Intuitively, 3 seems to be more influential than 1 and
2, as employee 3 belongs to the most successful teams in the above ranking. Can
we state more precisely the reasons driving us to this conclusion? And what
can we say if we have to decide who between 1 and 2 is more productive and
deserves a promotion? In this paper we analyse different properties of ordinal
social rankings in order to get some answers to such questions.

The problem studied in this paper can be seen as an ordinal counterpart of
the one about how to measure the power of players in simple games, which are
coalitional games where coalitions may be winning or not [1, 4]. However, our
framework is different for at least two reasons: first, we face coalitional situations
where only a qualitative (ordinal) comparison of the strength of coalitions is
given; second, we look for a ranking over the single objects in N , and we do not
require a quantitative assessment of the “power” of the players. As far as we
know, the only attempt in the literature to generalize the notions of coalitional
game and power index within an ordinal framework has been provided in Moretti
[10], where, given a total preorder representing the relative strength of coalitions,
a social ranking over the player set is provided according to a notion of ordinal
influence and using the Banzhaf index [1] of a “canonical” coalitional game.

In the literature of simple games, related questions deal with the ordinal
equivalence of power indices (see, for instance, [3, 6, 9]) and the analysis of the
differences between rankings generated by alternative power indices on special
classes of simple games (e.g, the papers [14, 8]). Similarly to our work, in Taylor
and Zwicker [15] the authors investigated alternative notions of ordinal power
on different classes of simple games. All the aforementioned papers focus on the
notion of simple game, that is a numerical representation of a dichotomous power
relation (i.e., winning or losing coalitions), a much more restricted domain than
the one considered in this work, where a power relation can be any total preorder
over the coalitions. In a still different context, a model of coalition formation has
been introduced in Piccione and Razin [12], where the relative strength of disjoint
coalitions is represented by an exogenous binary relation and the players try to
maximize their position in a social ranking. We also notice a connection with
some kind of “inverse problems”, precisely, how to derive a ranking over the set
of all subsets of N in a way that is “compatible” with a primitive ranking over
the single elements of N (see, for instance, [2]; see [11] for an approach using
coalitional games).

In this paper, a social ranking is defined as a map associating to each power
relation (i.e., a total preorder over the set of all subsets of N) a total preorder
over the elements of N . The properties for social rankings that we analyse in
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this paper have classical interpretations, such as symmetry, basically saying that
the relative social ranking of “symmetric”1 pairs of elements i, j and p, q should
coincide (i.e., i is in the social ranking relation with j if and only if p is in
the social ranking relation with q); or the dominance, saying that an element
i ∈ N should be ranked higher than an element j ∈ N whenever i dominates
j, i.e. a coalition S ∪ {i} is stronger than S ∪ {j} for each S ⊂ N containing
neither i nor j. Another property we study in this paper is the independence of
irrelevant coalitions, saying that the social ranking between two elements i and
j should only depend on their respective contributions when added to coalitions
containing neither i nor j (in other words, the information needed to rank i
and j is provided by the relative comparison of coalitions U,W ⊂ N such that
U \ {i} = W \ {j}).

We use these properties to axiomatically analyse social rankings on particular
classes of power relations. We first notice that two natural properties, precisely,
dominance and symmetry, are not compatible over the class of all power relations
(see Theorem 1 in Section 4), despite the fact that, in some related axiomatic
frameworks (see, for instance, [2]), similar axioms have been successfully used
in combination. On the other hand, the properties of independence of irrelevant
coalitions and symmetry, when applied in combination to a a large class of power
relations, determine a flattening of the social ranking, where all the items are
equivalent (see Proposition 2 in Section 4). Moreover, we prove that the property
of independence of irrelevant coalitions and dominance property determine a
kind of ‘dictatorship of the cardinality’ when a relation of strong dominance
among coalitions of the same size holds: in this case, the only social ranking
satisfying those two properties is the one imposed by the relation of dominance
of a given cardinality s ∈ {1, . . . , |N |} (see Theorem 2 in Section 5). Finally, we
focus on an alternative algorithmic approach aimed at representing the influence
of an item i as the number of coailtions S for which item i results to be essential
[13], i.e., S ∪ {i} is strictly stronger than S.

The structure of the paper is the following. In the next section, we present
some related approaches from the literature and our main contributions. Basic
notions and definitions are presented in Section 2. In Section 3 we introduce and
discuss some properties for social rankings. In Section 4 we study the compat-
ibility of certain axioms and their effect on some elementary notions of social
ranking. In Section 5 we focus on the analysis of social rankings that satisfy
both the dominance property and the property of independence of irrelevant
coalitions, and that, on particular power relations, are specified by the ordering
of coalitions of the same size. In Section 6 we introduce a procedure to define a
social ranking based on the cardinality of particular essential set and we finally
provide some future research directions.

1 Roughly speaking, two pairs of single elements i, j and p, q are said to be symmetric
if, for coalitions S with the same cardinality, the number of times that S ∪ {i} is
stronger than S∪{j} equals the number of times that S∪{p} is stronger than S∪{q},
and the number of times that S ∪ {j} is stronger than S ∪ {i} equals the number of
times that S ∪ {q} is stronger than S ∪ {p} (for more details, see Definition 3).
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2 Preliminaries and notations

A binary relation R on a finite set N = {1, . . . , n} is a collection of ordered pairs
of elements of N , i.e. R ⊆ N × N . for all x, y ∈ N , the more familiar notation
xRy will be often used instead of the more formal one (x, y) ∈ R. We provide
some standard properties for R. Reflexivity : for each x ∈ N , xRx; transitivity :
for each x, y, z ∈ N , xRy and yRz ⇒ xRz; totality : for each x, y ∈ N , x 6= y
⇒ xRy or yRx; antisymmetry : for each x, y ∈ N , xRy and yRx ⇒ x = y. A
reflexive and transitive binary relation is called preorder. A preorder that is also
total is called total preorder. A total preorder that also satisfies antisymmetry
is called linear order. The notation ¬(xRy) means that xRy is not true. We

denote by 2N the power set of N and we use the notations T N and T 2N to
denote the set of all total preorders on N and on 2N , respectively. Moreover,
the cardinality of a set S ∈ 2N is denoted by |S|. In the remaining of the paper,
we will also refer to an element S ∈ 2N as a coalition S. Consider a total
preorder <⊆ 2N × 2N over the subsets of N . Often we will use the notation
S � T to denote the fact that S < T and ¬(T < S) (in this case, we also
say that the relation between S and T is ‘strict’), and the notation S ∼ T to
denote the fact that S < T and T < S (in this case, we say that S and T
are indifferent in <). For each i, j ∈ N , i 6= j, and all k = 1, . . . , n − 2, we
denote by Σk

ij = {S ∈ 2N\{i,j} : |S| = k} the set of all subsets of N containing
neither i nor j with k elements. Moreover, for each i, j ∈ N , we define the set
Dk

ij(<) = {S ∈ Σk
ij : S ∪ {i} < S ∪ {j}} as the set of coalitions S ∈ 2N\{i,j}

of cardinality k such that S ∪ {i} is in relation with S ∪ {j} (and, changing the
ordering of i and j, the set Dk

ji(<) = {S ∈ Σk
ij : S ∪ {j} < S ∪ {i}}).

3 Axioms for social rankings

In the remaining of this paper, we interpret a total preorder < on 2N as a power
relation, that is, for each S, T ∈ 2N , S < T stands for ‘S is considered at least
as strong as T according to the power relation <’.

Given a class C2N ⊆ T 2N of power relations, we call a map ρ : C2N −→ T N ,

assigning to each power relation in C2N a total preorder on N , a social ranking
solution or, simply, a social ranking. Then, given a power relation <, we will
interpret the total binary relation ρ(<) associated to < by the social ranking ρ, as
the relative power of items (e.g., agents) in a society under relation <. Precisely,
for each i, j ∈ N , iρ(<)j stands for ‘i is considered at least as influential as j
according to the social ranking ρ(<)’, where the influence of an item is intended
as its ability to join coalitions in the strongest positions of a power relation. Note
that we require that ρ(<) is a total preorder over the elements of N , that is we
always want to express the relative comparison of two items, and such a relation
must be transitive. Two elements i, j ∈ N such that iρ(<)j and jρ(<)i are said
to be indifferent in ρ(<).

Let <∈ C2N ⊆ T 2N . A social ranking ρ : C2N −→ T N such that iρ(<)j ⇔
{i} < {j} for each i, j ∈ N is said to be primitive on < (i.e., it neglects any
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information contained in < about the comparison of coalitions of cardinality

different from 1). A social ranking ρ : C2N −→ T N such that iρ(<)j and jρ(<)i
for all i, j ∈ N is said to be unanimous on < (N is an indifference class with
respect to ρ(<)).

Now we introduce some properties for social rankings. The first axiom is the
dominance one: if each coalition S containing item i but not j is stronger than
coalition S with j in the place of i, then item i should be ranked higher than

item j in the society, for any i, j ∈ N . Precisely, given a power relation <∈ T 2N

and i, j ∈ N we say that i dominates j in < if S ∪ {i} < S ∪ {j} for each
S ∈ 2N\{i,j} (we also say that i strictly dominates j in < if i dominates j and
in addition there exists S ∈ 2N\{i,j} such that S ∪ {i} � S ∪ {j}).

Definition 1 (DOM). A social ranking ρ : C2N −→ T N satisfies the domi-

nance (DOM) property on C2N ⊆ T 2N if and only if for all <∈ C2N and i, j ∈ N ,
if i dominates j in < then iρ(<)j (and ¬(jρ(<)i) if i strictly dominates j in <).

The following axiom states that the relative strength of two items i, j ∈ N
in the social ranking should only depend on their effect when they are added to
each possible coalition S containing neither i nor j, and the relative ranking of
the other coalitions is irrelevant. Formally:

Definition 2 (IIC). A social ranking ρ : C2N −→ T N satisfies the Indepen-

dence of Irrelevant Coalitions (IIC) property on C2N ⊆ T 2N iff

iρ(<)j ⇔ iρ(w)j

for all i, j ∈ N and all power relations <,w∈ C2N such that for each S ∈ 2N\{i,j}

S ∪ {i} < S ∪ {j} ⇔ S ∪ {i} w S ∪ {j}.

Let <∈ T 2N , and let i, j, p, q ∈ N be such that |Dk
ij(<)| = |Dk

pq(<)| and

|Dk
ji(<)| = |Dk

qp(<)| for each k = 0, . . . , n − 2. Differently stated, for coalitions
S of fixed cardinality, we have that the number of times that S ∪ {i} is stronger
than S ∪ {j} equals the number of times that S ∪ {p} is stronger than S ∪ {q}
(and the number of times that S∪{j} is stronger than S∪{i} equals the number
of times that S ∪ {q} is stronger than S ∪ {p}). In this symmetric situation, the
following axiom states a principle of equivalence between the pairs {i, j} and
{p, q}.

Definition 3 (SYM). A social ranking ρ : C2N −→ T N satisfies the symmetry

(SYM) property on C2N ⊆ T 2N iff

iρ(<)j ⇔ pρ(<)q

for all i, j, p, q ∈ N and <∈ C2N such that |Dk
ij(<)| = |Dk

pq(<)| and |Dk
ji(<)| =

|Dk
qp(<)| for each k = 0, . . . , n− 2.
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Remark 1. Note that if a social ranking ρ satisfies the SYM axiom on C2N ⊆
T 2N , then for every <∈ C2N and i, j ∈ N , if |Dk

ij(<)| = |Dk
ji(<)| for each

k = 0, . . . , n− 2, then iρ(<)j and jρ(<)i, that is i and j are indifferent in ρ(<)
(to see this, simply take p = i and q = j in Definition 3).

Remark 2. If we want to check if a given social ranking solution satisfies DOM,
IIC, or SYM only partial information on < is needed. In fact, conditions on the
ranking ρ(<) between two elements i and j only depend on the comparisons of
subsets S ∪ {i} and S ∪ {j}, for all S ∈ 2N\{i,j}.

We conclude this section with an example showing that an apparently natural
procedure (namely, the majority rule) to rank the items of N may fail to provide
a transitive social ranking. We first formally introduce such a procedure.

Definition 4 (Majority rule). The majority rule (denoted by M) is the map

assigning to each power relation <∈ T 2N the total binary relation M(<) on N
such that

iM(<)j ⇔ dij(<) ≥ dji(<).

where dij(<) =
∑n−2

k=0 |Dk
ij(<)| for each i, j ∈ N .

Example 1. One can easily check that the majority rule M satisfies the property

of DOM, IIC and SYM on the class T 2N . On the other hand, it is also easy to
find an example of power relation < such that M(<) is not transitive. Consider

for instance the power relation <∈ T 2N with N = {1, 2, 3, 4} such that: 2 � 1 �
3 � 23 � 13 � 12 � 14 � 34 � 24 � 134 ∼ 124 ∼ 234.

We rewrite the relevant information about < by means of Table 1 (From now,
we will sometimes omit braces and commas to separate elements, for instance,
ij denotes the set {i, j}). Note that d12(<) = 2, d21(<) = 3, d23(<) = 2,
d32(<) = 3, d13(<) = 3 and d31(<) = 2. So, we have that 2M(<)1, 3M(<)2 and
1M(<)3, but ¬(3M(<)1)): M(<) is not a transitive relation.

Table 1. The relevant information about < of Example 1.

1 vs. 2 2 vs. 3 1 vs. 3

1 ≺ 2 2 � 3 1 � 3
13 ≺ 23 12 ≺ 13 12 ≺ 23
14 � 24 24 ≺ 34 14 � 34

134 ∼ 234 124 ∼ 134 124 ∼ 234

4 Primitive and unanimous social rankings

In this section we study the relations between the axioms introduced in the
previous section and the social ranking solutions. In the following, we show that
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DOM and SYM are not compatible in a general case, for N > 3 (see Theorem
1), whereas SYM and IIC determine a unanimous social ranking on particular
power relations.

We start with showing some consequences of using the axioms introduced in
the previous section when the cardinality of the set N is 3 or 4. The analysis
for cardinality |N | = 3 is easy since we can enumerate all the cases. As we will
present in the following, the notion of complementarity plays an important role
in this case. We denote by S∗ the complement of the subset S (S∗ = N \S), and
we say that a social ranking ρ such that iρ(<)j ⇔ {j}∗ < {i}∗ for each i, j ∈ N
is complement primitive on < (i.e., it neglects any information contained in <
about the comparison of coalitions of cardinality different from n− 1).

Proposition 1. If |N | = 3, the only social ranking solution satisfying the DOM

and SYM axioms can be either primitive or complement primitive on <∈ T 2N .

Proof. Let N = {1, 2, 3} with 1 < 2 < 3. Then six cases may occur in <: case 1)
13 < 23 < 12, case 2) 13 < 12 < 23, case 3) 23 < 13 < 12, case 4) 12 < 13 < 23,
case 5) 23 < 12 < 13 and case 6) 12 < 23 < 13.

DOM and SYM impose that:

case 1) by DOM :1ρ(<)2, by SYM (1ρ(<)3 and 2ρ(<)3) or (3ρ(<)1 and 3ρ(<)2).
Hence we have 1ρ(<)2ρ(<)3 (primitive) or 3ρ(<)1ρ(<)2 (complement prim-
itive)

case 2) by DOM :1ρ(<)2 and 1ρ(<)3. We can have 2ρ(<)3 or 3ρ(<)2. Hence we
have 1ρ(<)2ρ(<)3 (primitive) or 1ρ(<)3ρ(<)2 (complement primitive)

case 3) by SYM : (1ρ(<)2, 1ρ(<)3 and 2ρ(<)3) or (2ρ(<)1 , 3ρ(<)1 and 3ρ(<)2).

case 4) by DOM 1ρ(<)2ρ(<)3

case 5) by DOM :2ρ(<)3, by SYM (1ρ(<)2 and 1ρ(<)3) or (2ρ(<)1 and 3ρ(<)1).
Hence we have 1ρ(<)2ρ(<)3 (primitive) or 2ρ(<)3ρ(<)1 (complement prim-
itive)

case 6) by DOM :1ρ(<)3 and 2ρ(<)3. We can have 1ρ(<)2 or 2ρ(<)1. Hence we
have 1ρ(<)2ρ(<)3 (primitive) or 2ρ(<)1ρ(<)3 (complement primitive)

Corollary 1. If |N | = 3 and <∈ T 2N such that for all S,Q ⊆ N , S < Q implies
Q∗ < S∗ (i.e., according to [5], < is said to be “self-reflecting”), then a social
ranking satisfying the DOM property is primitive on <.

Proof. Let N = {i, j, k}. Self-reflecting implies that for all i, j ∈ N i < j ⇔ j∗ <
i∗ ⇔ ik < jk. By DOM we get for all i, j, k ∈ N iρ(<)j ⇔ i < j ⇔ j∗ < i∗ ⇔
ik < jk.

Next theorem shows that on the class T 2N (all possible total preorders) the
properties of DOM and SYM are not compatible.

Theorem 1. Let |N | > 3. There is no social ranking solution ρ : T 2N −→ T N

which satisfies DOM and SYM on T 2N .
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Proof. We first show a particular situation where DOM and SYM are not com-

patible. Consider a power relation <∈ T 2N with N = {1, 2, 3, 4} and such that

1 ∼ 2 ∼ 3 � 13 � 23 � 12 � 24 ∼ 14 � 34 � 1234 ∼ 123 ∼ 124 ∼ 134 ∼ 234

We rewrite the relevant information about < and the elements 1, 2 and 3 by
means of the following Table 2. By Remark 1, a social ranking solution ρ :

T 2N −→ T N which satisfies SYM should be such that 2ρ(<)3, 3ρ(<)2, 1ρ(<)3,
3ρ(<)1. By the DOM property, we should have 1ρ(<)2, and ¬(2ρ(<)1), which
yields a contradiction with the transitivity of the ranking ρ(<).

Table 2. The relevant information about < and the elements 1, 2 and 3.

1 vs. 2 2 vs. 3 1 vs. 3

1 ∼ 2 2 ∼ 3 1 ∼ 3
13 � 23 12 ≺ 13 12 ≺ 23
14 ∼ 24 24 � 34 14 � 34

134 ∼ 234 124 ∼ 134 124 ∼ 234

The incompatibility between DOM and SYM also holds for power relations on
2N with |N | > 4. This conclusion directly follows from the fact that one can

generate power relations in T 2N , with N ⊇ {1, 2, 3, 4}, that are obtained from
the power relation < defined above and assigning all the additional subsets of
N not contained in {1, 2, 3, 4} in the same indifference class. More precisely, the
arguments used to show the incompatibility of DOM and SYM on < also hold

for a power relation <′∈ T 2N with N ⊃ {1, 2, 3, 4} and such that

U <′ W :⇔ U <W

for all the subsets U,W ⊆ {1, 2, 3, 4} (i.e., the subsets of {1, 2, 3, 4} are ranked
in <′ precisely as in <) and

U <′ W and W <′ U

for all the other subsets of N not included in {1, 2, 3, 4} (i.e., all the sets not
contained in {1, 2, 3, 4} are indifferent with respect to the power relation <′).

The following proposition shows that the adoption of properties IIC and SYM
yields a unanimous social ranking over all those power relations <∈ T N such
that, for some i, j ∈ N and k ∈ {0, . . . , |N | − 2}, the relation between S ∪ {j}
and S ∪ {i} holds strict in the two directions for some S ∈ 2N\{i,j} with |S| = k
(precisely, Dk

ij(<) \ Dk
ji(<) 6= ∅ and Dk

ji(<) \ Dk
ij(<) 6= ∅), whereas for all the

cardinalities t 6= k, we have that S ∪ {j} and S ∪ {i} are indifferent for each
S ∈ 2N\{i,j} with |S| = t (precisely, Dt

ji(<) = Dt
ij(<)).



Some axiomatic and algorithmic perspectives on the social ranking problem 9

Proposition 2. Let ρ : T 2N −→ T N be a social ranking satisfying IIC and

SYM. Let <∈ T 2N , i, j ∈ N and k ∈ {0, . . . , |N |−2} be s.t. Dk
ij(<)\Dk

ji(<) 6= ∅
and Dk

ji(<) \Dk
ij(<) 6= ∅, and s.t. Dt

ji(<) = Dt
ij(<), for all t 6= k. Then iρ(<)j

and jρ(<)i.

Proof. Take i, j ∈ N such that |Dk
ij(<)| ≥ |Dk

ji(<)|. Define another power rela-

tion w∈ T 2N such that

S ∪ {i} < S ∪ {j} ⇔ S ∪ {i} w S ∪ {j}

for each S ∈ 2N\{i,j} with |S| = k, and S w T and T w S for all the other
coalitions S, T ∈ 2N with |S| = |T | 6= k + 1. We still need to define relation w
on the remaining coalitions of size k.

Take l ∈ N \ {i, j}. Let D ⊆ Dk
ij(<) be such that |D| = |Dk

ji(<)|. Define the
remaining comparisons in w as follows (an illustrative example of these cases are
given in Table 3):
case 1) for each S ∈ Dk

ji(<) with l ∈ S, let S ∪ {i, j} \ {l} v S ∪ {j} and S ∪
{i, j} \ {l} w S ∪ {i};
case 2) for each S ∈ Dk

ji(<) with l /∈ S, let S∪{i} v S∪{l} and S∪{j} w S∪{l};
case 3) For each S ∈ D with l ∈ S, let S ∪ {i, j} \ {l} v S ∪ {j} and S ∪ {i, j} \
{l} v S ∪ {i};
case 4) for each S ∈ D with l /∈ S, let S ∪ {i} v S ∪ {l} and S ∪ {j} v S ∪ {l};
case 5) for each S ∈ Dk

ij \ D with l ∈ S, let S ∪ {i, j} \ {l} w S ∪ {j} and S ∪
{i, j} \ {l} w S ∪ {i};
case 6) for each S ∈ Dk

ij\D with l /∈ S, let S∪{i} w S∪{l} and S∪{j} w S∪{l}.
Notice that |Dk

ji(<)| = |Dk
li(w)| = |Dk

jl(w)| and |Dk
ij(<)| = |Dk

il(w)| = |Dk
lj(w)|.

Table 3. An illustrative example of the six possible cases for a power relation w as the
one considered in Proposition 2 with N = {1, 2, 3, i, j, l}, k = 2 and D = {{1, 2}, {2, l}}.

i vs j i vs. l j vs. l

case 1): S = {3, l} {3, i, l} v {3, j, l} {3, i, j} v {3, j, l} {3, i, j} w {3, i, l}
case 2): S = {2, 3} {2, 3, i} v {2, 3, j} {2, 3, i} v {2, 3, l} {2, 3, j} w {2, 3, l}
case 3): S = {2, l} {2, i, l} w {2, j, l} {2, i, j} v {2, j, l} {2, i, j} v {2, i, l}
case 4): S = {1, 2} {1, 2, i} w {1, 2, j} {1, 2, i} v {1, 2, l} {1, 2, j} v {1, 2, l}
case 5): S = {1, l} {1, i, l} w {1, j, l} {1, i, j} w {1, j, l} {1, i, j} w {1, i, l}
case 6): S = {1, 3} {1, 3, i} w {1, 3, j} {1, 3, i} w {1, 3, l} {1, 3, j} w {1, 3, l}

|Dij(w)| = 4 |Dil(w)| = 2 |Djl(w)| = 4
|Dji(w)| = 2 Dli(w)| = 4 |Dlj(w)| = 2

Suppose now that iρ(<)j. By IIC, we have iρ(w)j. By SYM, jρ(w)l and lρ(w)i.
By transitivity of ρ(w), jρ(w)i. By IIC we conclude that jρ(<)i too. In a similar
way, if we suppose jρ(<)i, then we end up with the conclusion that iρ(<)j too,
and the proof follows.
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5 Dictatorship of the coalition size

In this section, we define a class of power relations (namely, the per size-strong
dominant relations) characterized by the fact that a relation of dominance always
exists with respect to coalitions of the same size, but the dominance may change
with the cardinality (for instance, an element i could dominate another element
j when coalitions of size s are considered, but j could dominate i over coalitions
of size t 6= s). We first need to introduce the notion of s-strong dominance.

Definition 5. Let <∈ T 2N , i, j ∈ N and s ∈ {0, . . . , n − 2}. We say that i
s-strong dominates j in <, iff

S ∪ {i} � S ∪ {j} for each S ∈ 2N\{i,j} with |S| = s. (1)

Definition 6. We say that <∈ T 2N is per size-strong dominant (shortly, ps-
sdom) iff for each s ∈ {0, . . . , n− 2} and all i, j ∈ N , we have either

[i s-strong dominates j in <] or [j s-strong dominates i in <].

The set of all ps-sdom power relations is denoted by S2N ⊆ T 2N .

Now, we study the effect of the combination of the properties of DOM and
IIC on a specific instance of ps-sdom power relations where there exist elements
that are always placed at the top or at the bottom in the rankings of coalitions
of equal cardinality.

Example 2. Consider a power relation <∈ S2N with N = {1, 2, 3, 4} and such
that

1 � 2 � 3 � 4 � 34 � 24 � 14 � 23 � 13 � 12 � 123 � 134 � 124 � 234.

We rewrite the relevant information about < by means of Table 4.

Table 4. The relevant information about < of Example 2.

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 � 2 2 � 3 1 � 3 1 � 4 2 � 4 3 � 4
13 ≺ 23 12 ≺ 13 12 ≺ 23 12 ≺ 24 12 ≺ 14 13 ≺ 14
14 ≺ 24 24 ≺ 34 14 ≺ 34 13 ≺ 34 23 ≺ 34 23 ≺ 24

134 � 234 124 ≺ 134 124 � 234 123 � 234 123 � 134 123 � 124

Note that for all S ⊆ N \ {1} and each l ∈ N \ (S ∪{1}), it holds that S ∪{1} <
S ∪ {l} if |S| ∈ {0, 2} (i.e., coalition S ∪ {1} is ranked above coalition S ∪ {l},
for all S containing 0 or 2 elements), whereas S ∪ {1} 4 S ∪ {l} if |S| = 1 (i.e.,
coalition S ∪ {1} is ranked below coalition S ∪ {l}, for all S containing precisely
one element). So, elements 1 (or, similar, element 4) is an “extreme” element of
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N in <, where for extreme element we mean an element i ∈ N such that, for all
coalitions S of the same size and not containing i, we have either S∪{i} < S∪{l}
for all l ∈ N \(S∪{i}), or, S∪{l} < S∪{i} for all l ∈ N \(S∪{i}). In Proposition
3 we argue that on this kind of power relations, a social ranking satisfying both
DOM and IIC cannot rank “extreme” elements in between two others.

Proposition 3. Let ρ : S2N −→ T N be a social ranking satisfying IIC and

DOM on S2N . Let <∈ S2N and i ∈ N be such that for each s ∈ {0, . . . , n − 2}
either

[S ∪ {i} � S ∪ {j} for all j ∈ N \ {i} and S ∈ 2N\{i,j} with |S| = s] (2)

or

[S ∪ {j} � S ∪ {i} for all j ∈ N \ {i} and S ∈ 2N\{i,j} with |S| = s]. (3)

Then, [iρ(<)j for all j ∈ N ] or [jρ(<)i for all j ∈ N ].

Proof. Suppose on the contrary that there exist j, k ∈ N \ {i}, such that

jρ(<)i and iρ(<)k. (4)

Define w∈ S2N such that

S ∪ {i} A S ∪ {j} ⇔ S ∪ {i} � S ∪ {j} for all S ⊆ N \ {i, j}, (5)

S ∪ {i} A S ∪ {k} ⇔ S ∪ {i} � S ∪ {k} for all S ⊆ N \ {i, k}, (6)

and
S ∪ {k} A S ∪ {j} for all S ⊆ N \ {j, k}. (7)

(note that each coalition S ∪ {i}, with S ⊆ N \ {i}, by condition (2) and (3),
is ranked strictly higher or lower than each other coalition S ∪ {j}, j 6= i, so
condition (7) does not violate the transitivity of w.)

By IIC, we have that iρ(<)j ⇔ iρ(w)j and iρ(<)k ⇔ iρ(w)k. So, by relation
(4), jρ(w)i and iρ(w)k. On the other hand, by DOM we have kρ(w)j and ¬(jρ(w
)k), which yields a contradiction with the transitivity of ρ(w).

Proposition 3 shows that if there is an element i ∈ N having “contradictory” and
“radical” behavior depending on the size of coalitions, then the social ranking
satisfying IIC and DOM can not give him an intermediate position. In the fol-

lowing, we argue that if a power relation is in S2N and a social ranking satisfies

both DOM and IIC on the set of ps-sdom power relations S2N , then it must
exist a cardinality t∗ ∈ {0, . . . , n − 2} whose relation of t∗-strong dominance
(dictatorially) determines the social ranking. We first introduce the next lemma.

Lemma 1. Let i ∈ N and ρ : S2N −→ T N be a social ranking satisfying IIC

and DOM on S2N . There exists t∗ ∈ {0, . . . , n− 2} such that

jρ(<)k ⇔ j t∗-strong dominates k in <,

for all j, k ∈ N \ {i} and <∈ S2N .
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Proof. Given a power relation <∈ S2N , define another power relation <0∈ S2
N

such that for each S ⊆ N \ {i} we have

S ∪ {l} �0 S ∪ {i} for all l ∈ N \ (S ∪ {i}), (8)

and U <0 W :⇔ U < W for all the other possible pairs of coalitions U,W
whose comparison is not already considered in (8). Roughly speaking, the only
difference between <0 and < is that coalitions of size s containing i are placed
at the bottom of the ranking induced by < over the coalitions of the same size.
By DOM, it follows that lρ(<0)i for every l ∈ N .

Now, for each t ∈ {0, . . . , n− 2}, define a power relation <t∈ T 2N such that

S ∪ {i} �t S ∪ {l} for each l ∈ N and S ∈ 2N\{i,l} with |S| = s, (9)

where s ∈ {0, . . . , t}, and U <t W :⇔ U <t−1 W for all the other possible
pairs of coalitions U,W whose comparison is not already considered in (9). So,
the only difference between <t and <t−1, for each t ∈ {1, . . . , n− 2}, is that in
<t coalitions of size t containing i are placed at the top of the ranking induced
by <t−1 over coalitions of the same size t, and all the remaining comparisons
remain the same as in <t−1.

Note that by Proposition 3, we have that either lρ(<t)i for every l ∈ N , or
iρ(<t)l for every l ∈ N . Moreover, By DOM, it follows that iρ(<n−2)l for every
j ∈ N . Let t∗ be the smallest number in {0, . . . , n− 2} such that lρ(<t∗−1)i for
every l ∈ N and iρ(<t∗)l for every l ∈ N (for the considerations above such
a t∗ must exist, being, at most, t∗ = n − 2). Next, we argue that for every
j, k ∈ N \{i}, the social ranking between j and k in < is imposed by the relation
of t∗-strong dominance in <. W.l.o.g., suppose that S ∪{j} < S ∪{k} (and, as a
consequence, S ∪ {j} <t∗ S ∪ {k}) for each S ∈ 2N\{j,k}, and |S| = t∗. Consider

another power relation w∈ T 2N obtained by <t∗ and such that:

S ∪ {j} A S ∪ {i} for each S ∈ 2N\{i,j} with |S| = t∗, (10)

S ∪ {i} A S ∪ {k} for each S ∈ 2N\{i,k} with |S| = t∗, (11)

S ∪ {j} A S ∪ {k} for each S ∈ 2N\{j,k} \
(
2N\{i,j} ∪ 2N\{i,k}

)
, and |S| = t∗,

(12)
and, finally,

U w V :⇔ U <t∗ V (13)

for all the other relevant pairs of coalitions U,W of size s 6= t∗+1. By IIC jρ(w)i
(since in w the comparisons between coalitions containing i and j are precisely
as in <t∗−1 and, as previously stated, jρ(<t∗−1)i) and iρ(w)k (since in w the
comparisons between coalitions containing i and k are precisely as in <t∗ and,
as previously stated, iρ(<t∗)k). Then, by transitivity of ρ(w) we have jρ(w)k.
Note that by IIC, jρ(w)k ⇔ jρ(<t∗)k ⇔ jρ(<)k. We have then proved that
whenever j t∗-dominates k, then jρ(<)k.

The following theorem states the “dictatorship of the coalition’s size”.
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Theorem 2. Let ρ : S2N −→ T N be a social ranking satisfying IIC and DOM

on S2N . There exists t∗ ∈ {0, . . . , n− 2} such that

iρ(<)j ⇔ i t∗-strong dominates j in <,

for all i, j ∈ N and <∈ S2N .

Proof. Given a power relation <∈ S2N , let i ∈ N and define <t∗ starting from
< and i precisely as in the proof of Lemma 1.

Now take k ∈ N\{i} and apply Lemma 1 with k in the role of i. Consequently,
we have that there exists t̂ ∈ {0, . . . , n− 2} such that

hρ(<)l⇔ h t̂-strong dominates l in <,

for each h, l ∈ N \ {k}, and in particular

iρ(<)l⇔ i t̂-strong dominates l in <,

for any complete power relation <∈ S2N . But in the proof of Lemma 1 we have
shown that

iρ(<)l⇔ i t∗-strong dominates l in <t∗

(remember that t∗ in the proof of Lemma 1 is the smallest number in {0, . . . , n−
2} such that lρ(<t∗−1)i for every l ∈ N and iρ(<t∗)l for every l ∈ N). Then it
must be t̂ = t∗, and the proof follows.

6 An algorithmic approach

In view of the results provided in the previous axiomatic analysis, each combi-
nation of two axioms yields either no social ranking or an unsatisfactory one.
It is worth noting that all the axioms that we studied in this paper are based
on the comparison of subsets having the same number of elements. Therefore,
it would be interesting to study properties based on the comparison among
subsets with different cardinalities. Following this idea, an interesting property
is the notion of essential alternative that has been introduced in Puppe [13]
as a necessary condition for a power relation representing the preferences of
a decision maker over menus (in this context, the preference over menus of a
decision maker should reflect her or his freedom to chose a most preferred alter-

native from any selected menu). Given a power relation <∈ T 2N and a coalition
S ∈ 2N , an element i ∈ N \ S is said to be essential for S if S ∪ {i} � S. In
our framework, where a power relation represents the relative strength of coali-
tions, an item i is essential for a coalition S not containing i if coalition S ∪ {i}
is strictly stronger than S. Differently stated, an item i is essential for S (not
containing i), if the marginal contribution v(S ∪ {i}) − v(S) of i to S ∪ {i} is
strictly positive, for every utility function v : 2N → R associated to the power
relation < and such that v(T ) ≥ v(U) :⇔ T < U , for each T,U ∈ 2N . Our
goal in this section is to assess the influence of items in terms of the number of
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coalitions in which each item i is essential under a given power relation. More
precisely, for each item i ∈ N we first need to introduce the notion of essential
set Ei(<) := {S ∈ 2N\{i} : S ∪ {i} � S}. Then we define the social ranking

solution ρe : T 2N −→ T N such that

iρe(<)j :⇔ |Ei(<)| ≥ |Ej(<)| (14)

for each i, j ∈ N and <∈ T 2N . It is easy to check that ρe does not satisfy any
of the axioms studied in the previous sections.

Example 3. Consider the power relation <∈ T 2N with N = {1, 2, 3, 4} such that
2 � 4 � 23 � 123 � 13 ∼ 134 ∼ 124 ∼ 234 ∼ N ∼ 12 � 14 � 1 � 3 � 34 � 24 �
∅. Notice that the relevant information presented in Table 1 of Example 1 is still
compatible with this power relation. Moreover, the essential sets for players in N
are: E1(<) = {∅, {3}, {2, 4}, {3, 4}}, E2(<) = {∅, {3}, {1}, {1, 3}, {1, 4}, {3, 4}},
E3(<) = {∅, {1, 2}, {1, 4}, {2, 4}} and E4(<) = {∅, {1}}. Consequently, accord-
ingly to the social ranking ρe, 2 is the most influential item (|E2(<)| = 6),
followed by 1 and 3 with the same score (|E1(<)| = E3(<)| = 4), and finally by
item 4 (|E4(<)| = 2).

Notice that the definition of an essential set Ei(<), for all i ∈ N , involves
the comparison of 2n−1 pairs of coalitions S and S ∪ {i}, with S ⊆ N \ {i}.
On the other hand, several coalitions are compared multiple times over different
essential sets. So, it is computationally useful to design a procedure aimed at
computing the social ranking ρe(<) avoiding those multiple comparisons (see
Algorithm 1). To this aim, we first group coalitions over classes of indifferences
with respect to <: suppose we have S1 < S2 < S3 < . . . < S2n then we shall
write Σ1 � Σ2 � Σ3 � . . . � Σl, to denote the power relation <, but having
grouped in Σ1 all the coalitions indifferent to S1 (i.e., all T ∈ 2N s.t. T < S1

and S1 < T ), in Σ2 all the coalitions indifferent to the first coalition strictly
less strong than S1 in the ranking <, and so on. Then, a coalition S in Σk is
strictly stronger than any coalition in Σk+1. Notice that at each iteration k,

Algorithm 1: A procedure to find a social ranking based on the cardinality of the essential sets.

Input : A power < on 2N in the form of indifference classes Σ1 � Σ2 � . . . � Σl.
Output: A vector d ∈ RN such that di = |Ei(<)| for each i ∈ N.

1 initialisation: di := 0 for each i ∈ N ; X := ∅ ;
2 for k = 1 to l do
3 X := X ∪ Σk;
4 for every S ∈ Σk do
5 for every i ∈ S do
6 if {S \ {i}} /∈ X then
7 di := di + 1;
8 end

9 end

10 end

11 end
12 return d.

k ∈ {1, . . . , l}, the test to establish whether i is essential for S ∈ Σk is done by
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means of the if condition in line 6 (if S \ {i} belongs to some Σt, t ≤ k, then i
is not essential for S).

A possible direction for future research is the open question about which
axioms could be used to characterize a social ranking based on the essential sets
introduced in this section. It would also be interesting to consider social ranking
based on alternative definitions of essential item. For instance, consider a set of
items N = {1, 2, 3} and a power relation such that {2, 3} � {1, 3} � {1} ∼ {2}.
Clearly items 1 and 2 are essential for {1, 3} and {2, 3}, respectively, but 2 seems
“more” essential than 1, in the sense that the contribution of 2 to the power of
coalition {2, 3} is larger than the contribution of 1 to {1, 3} ({1} and {2} are
indifferent, but {2, 3} is strictly stronger than {1, 3}). This kind of consideration
about the “intensity” of items’ contribution requires a more complex algorithmic
analysis of the structure of a power relation aimed at comparing the role of
elements over sets of different size, as for the particular instance described above.
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