An improved algorithm for finding minimum cycle bases in undirected graphs

Edoardo Amaldi

Dipartimento di Elettronica e Informazione (DEI), Politecnico di Milano, Italy

Joint work with C. Iuliano (DEI), R. Rizzi (Univ. Udine) K. Mehlhorn and T. Jurkiewicz (MPI, Saarbrücken)

Outline

- Cycle bases in undirected graphs
- The minimum cycle basis problem
- Previous and related work
- New hybrid algorithm
- Some computational results
- Concluding remarks

Preliminaries

Simple connected undirected graph G = (V, E), n = |V|, m = |E|, with a weight $w_e \ge 0$ for each edge $e \in E$

Elementary cycle = connected subset of edges whose nodes have degree 2

Cycle = subset of edges $C \subseteq E$ such that every node of V is incident with an even number of edges in C

Cycles can be viewed as the (possibly empty) union of edge-disjoint elementary cycles

Cycle composition

Cycles can be represented by edge-incidence vectors in $\{0,1\}^{|E|}$

Composition of two cycles:

- symmetric difference of the edge-sets $(C_1 \cup C_2) \setminus (C_1 \cap C_2)$
- modulo 2 addition of the incidence vectors

Cycle bases

The collection of all cycles forms a vector space over GF(2), called the cycle space \mathcal{C}

A cycle basis $B = \{b_1, \ldots, b_\nu\}$ of C is of dimension $\nu = m - n + 1$

The problem

MIN CB:

Given a connected graph G = (V, E) with a weight $w_e \ge 0$ for each $e \in E$, find a Minimum Cycle Basis $B = \{b_1, \ldots, b_\nu\}$, i.e., B with minimum $w(B) = \sum_{i=1}^{\nu} \sum_{e \in b_i} w_e$.

The problem

MIN CB:

Given a connected graph G = (V, E) with a weight $w_e \ge 0$ for each $e \in E$, find a Minimum Cycle Basis $B = \{b_1, \ldots, b_\nu\}$, i.e., B with minimum $w(B) = \sum_{i=1}^{\nu} \sum_{e \in b_i} w_e$.

The problem

MIN CB:

Given a connected graph G = (V, E) with a weight $w_e \ge 0$ for each $e \in E$, find a Minimum Cycle Basis $B = \{b_1, \ldots, b_\nu\}$, i.e., B with minimum $w(B) = \sum_{i=1}^{\nu} \sum_{e \in b_i} w_e$.

Applications:

- test of electrical circuits
- structural engineering
- frequency analysis of computer programs
- planning complex syntheses in organic chemistry
- periodic event scheduling,...

Previous work

- Early methods (Stepanec 64, Zykov 69, Hubicka and Syslo 76) are not polynomial
- First polynomial algorithm by Horton (87) is $O(m^3n)$
- Improved $O(m^{\omega}n)$ version, where $\omega < 2.376$ is the exponent of fast matrix multiplication (Golynski and Horton 02)
- Different $O(m^3 + mn^2 \log n)$ algorithm (de Pina 95)
- Improved $O(m^2n + mn^2 \log n)$ variant of de Pina's algorithm using fast matrix multiplication (Kavitha, Mehlhorn et al. 04)

Previous work

• $O(m^2n^2)$ hybrid algorithm (Mehlhorn and Michail 06)

O(m²n) algorithm based on minimum feedback vertex set, can be improved to O(m²n/log n + mn²) using a bit packing trick (Mehlhorn and Michail 07)

Related problem

Let T be an arbitrary spanning tree of G, the ν cycles obtained by adding $e \in E \setminus T$ form a fundamental cycle basis (FCB) of G

Not all cycle bases are fundamental

MIN FCB is NP-hard (Deo et al. 82), in fact APX-hard but approximable within $O(\log^2 n \log \log n)$ (Galbiati, A. and Rizzi 07)

Edge-swapping algorithm (A., Liberti et al. 04/09)

Assumption: shortest paths are unique (lexicographic order)

Proposition: the collection of cycles

$$\mathcal{H} = \{ P_{u,v_1} \cdot e \cdot P_{v_2,u} \mid u \in V, e = [v_1, v_2] \in E \}$$

contains a minimum cycle basis.

Since the set of all cycles forms a **matroid**, a greedy procedure yields a minimum CB

Need to test linear independence because not all cycles in ${\mathcal H}$ are in a minimum CB

1) For each node u, determine **shortest path tree**

 $O(nm \log n)$ Dijkstra with heap

2) Construct the candidate cycles in \mathcal{H} and order them by non-decreasing weight ($|\mathcal{H}| \le \nu n \le mn$)

 $O(mn^2)$ construction and $O(mn \log n)$ ordering

3) Find a minimum cycle basis by selecting the ν lightest **linearly** independent candidate cycles

 $O(m^3n)$ see below

Overall complexity: $O(m^3n)$

Binary Gaussian elimination:

each row can be processed in O(mr), where r is the number of rows above since $r \leq \nu$ and $|\mathcal{H}| \leq n\nu$, we have $O(m\nu^2 n) = O(m^3 n)$

Improved de Pina algorithm

Idea: determine cycles of min CB **sequentially**, considering at each step a basis orthogonal to the lin. subspace generated by cycles computed so far.

Let T be any spanning tree of G, and e_1, \ldots, e_{ν} the edges in $E \setminus T$ in some arbitrary order.

Any cycle of G can be viewed as a restricted incidence vector in $\{0,1\}^{\nu}$ (lin. indep. of the restricted and full vectors is equivalent).

Improved de Pina algorithm

Let $\{S_1, \ldots, S_{\nu}\}$ be the canonical basis for i=1 to ν do Find C_i as the shortest cycle in G s.t. $\langle C_i, S_i \rangle = 1$ for j = i+1 to ν do if $\langle S_j, C_i \rangle = 1$ then $S_j := \langle S_j, S_i \rangle$

Since S_i is orthogonal to C_1, \ldots, C_{i-1} and $\langle C_i, S_i \rangle = 1$, C_i is lin. indep.

A shortest C_i with $\langle C_i, S_i \rangle = 1$ can be found by shortest path computations in a two level graph

Update S_j 's so that $\{S_{i+1}, \ldots, S_{\nu}\}$ is still a basis of the subspace orthogonal to $\{C_1, \ldots, C_i\}$.

 $O(m^3 + mn^2 \log n)$ can be reduced to $O(m^2n + mn^2 \log n)$ with fast matrix multiplication (Kavitha, Mehlhorn et al. 04)

FVS-based algorithm

Mehlhorn and Michail 07

Consider only Horton candidate cycles whose node *u* belongs to a close-to-minimum feedback vertex set (FVS) – NP-hard but 2-approximable

 $O(m^2n + mn^2)$ algorithm with a "simple" way to extract a minimum CB from the above set of candidate cycles

 $O(m^2n/\log(n) + mn^2)$ variant by using a bit-packing trick

New hybrid algorithm

Main ideas:

1) Substantially reduce the number of candidate cycles (trim \mathcal{H}) the candidate cycles in $\mathcal{H}' \subseteq H$ are "sparse"

2) Devise an adaptive variant of the linear independence test à la de Pina that iteratively builds the spanning tree T.

Algorithm: order the candidate cycles in \mathcal{H}' by non-decreasing weight, and select the lightest ν linear independent ones

Reduced candidate cycle set

Besides discarding duplicates

Only keep in \mathcal{H}' the **isometric cycles** $C \in \mathcal{H}$, i.e., which have for **each node** u an **edge** $e = [v_1, v_2]$ in C s.t. $C = P_{u,v_1} \cdot e \cdot P_{v_2,u}$

Reduced candidate cycle set

Isometric cycles can be found in $O(mn \log n)$ by using binary search

Although we still have $|\mathcal{H}'| = O(mn)$, the incidence vectors of these candidate cycles are sparse!

Property (sparsity): $\sum_{C_i \in \mathcal{H}'} |C_i| \le mn$, where $|C_i|$ denotes the number of edges in C_i .

Obvious because each $C_i \in \mathcal{H}'$ represents $|C_i|$ cycles in \mathcal{H} and $|\mathcal{H}| \leq mn$.

Example: K_n

Reduced candidate cycle set

We can also discard any C that admits a wheel decomposition, that is s.t. $C = C_1 + \ldots + C_k$ w.r.t. some root r and with $|C_j| < |C|$ for all $j = 1, \ldots, k$

NB: non-isometric is special case with k = 2 and $r \in C$

Complexity: $O(mn^2)$

New independence test à la de Pina

Idea: Build the spanning tree T and order the co-tree edges e_1, \ldots, e_{ν} (and hence the witnesses S_i) adaptively so as to reduce the computational load.

We try to avoid updating the other witnesses...

Complexity: $O(m^2n)$ – the bottleneck

Instances:

- Hypercubes with $n = 2^d$; random graphs with densities 0.3, 0.5, 0.9or sparse (m = 2n) and random weights (Mehlhorn and Michail 06)
- Euclidean graphs with density 0.1 0.9, weighted hypercubes, toroidal graphs

Intel Xeon(TM) with 2.80 GHz and 2GB RAM

Cpu time for random graphs with density=0.5

			Horton	Hybrid Mehlhorn et al.	New-isometric
n	m	ν	avg - stddev	avg - stddev	avg - stddev
50	612	563	0.01 - 0.00	0.04 - 0.01	0.00 - 0.00
60	885	826	0.02 - 0.01	0.08 - 0.01	0.01 - 0.01
70	1207	1138	0.03 - 0.01	0.19 - 0.03	0.01 - 0.01
80	1580	1501	0.07 - 0.01	0.34 - 0.03	0.02 - 0.01
90	2002	1913	0.10 - 0.01	0.51 - 0.02	0.02 - 0.01
100	2475	2376	0.11 - 0.01	0.72 - 0.03	0.03 - 0.01
125	3875	3751	0.33 - 0.01	5.87 - 0.24	0.05 - 0.01

Efficient implementation of Horton algorithm performs better than the other algorithms in the literature with better worst-case complexity

Number of candidate cycles and cpu time for Euclidean graphs with n=150

density	m	ν	Horton	New-isometric	New-no-wheels
0.1	1228	1079	21311 - 0.03	3289 - 0.02	1163 - 0.09
0.2	2388	2239	54626 - 0.07	9963 - 0.03	2342 - 0.15
0.3	3452	3303	106971 - 0.11	21531 - 0.04	3436 - 0.28
0.4	4613	4464	155120 - 0.17	43860 - 0.07	4577 - 0.34
0.5	5668	5519	200715 - 0.28	76318 - 0.16	5625 - 0.84
0.6	6725	6576	262562 - 0.50	122494 - 0.31	6670 - 1.00
0.7	7866	7717	334915 - 0.59	190806 - 0.36	7791 - 1.70
0.8	8936	8787	398996 - 0.62	276504 - 0.49	8872 - 2.14
0.9	10108	9959	472676 - 0.74	397897 - 0.57	10015 - 3.51

Cpu time for Euclidean graphs with n=1000

density	Horton	New-isometric	
0.1	31.59	9.44	
0.2	122.16	21.36	
0.3	289.26	37.41	
0.4	630.49	64.38	
0.5	1321.30	105.48	
0.6	_	152.73	
0.7	_	221.61	
0.8	_	331.72	

Concluding remarks

- A version of our new hybrid algorithm has a $O(m^2n/\log n)$ worst-case complexity
- In practice it performs at least as well and in general much better than other algorithms
- Since the adaptive linear independence test à la de Pina is very efficient, the version without wheel decomposition is faster
- Is there still margin for improvement? Can we do without independence test —even though it is unlikely to lead to an overall more efficient algorithm?