An improved algorithm for finding minimum cycle bases in undirected graphs

Edoardo Amaldi

Dipartimento di Elettronica e Informazione (DEI), Politecnico di Milano, Italy

Joint work with C. Iuliano (DEI), R. Rizzi (Univ. Udine)
K. Mehlhorn and T. Jurkiewicz (MPI, Saarbrücken)

Outline

- Cycle bases in undirected graphs
- The minimum cycle basis problem
- Previous and related work
- New hybrid algorithm
- Some computational results
- Concluding remarks

Preliminaries

Simple connected undirected graph $G=(V, E), n=|V|, m=|E|$, with a weight $w_{e} \geq 0$ for each edge $e \in E$

Elementary cycle $=$ connected subset of edges whose nodes have degree 2
Cycle $=$ subset of edges $C \subseteq E$ such that every node of V is incident with an even number of edges in C

Cycles can be viewed as the (possibly empty) union of edge-disjoint elementary cycles

Cycle composition

Cycles can be represented by edge-incidence vectors in $\{0,1\}^{|E|}$
Composition of two cycles:

- symmetric difference of the edge-sets $\left(C_{1} \cup C_{2}\right) \backslash\left(C_{1} \cap C_{2}\right)$
- modulo 2 addition of the incidence vectors

Cycle bases

The collection of all cycles forms a vector space over $G F(2)$, called the cycle space \mathcal{C}

A cycle basis $B=\left\{b_{1}, \ldots, b_{\nu}\right\}$ of \mathcal{C} is of dimension $\nu=m-n+1$

The problem

Min CB:

Given a connected graph $G=(V, E)$ with a weight $w_{e} \geq 0$ for each $e \in E$, find a Minimum Cycle Basis $B=\left\{b_{1}, \ldots, b_{\nu}\right\}$, i.e., B with minimum $w(B)=\sum_{i=1}^{\nu} \sum_{e \in b_{i}} w_{e}$.

The problem

Min CB:

Given a connected graph $G=(V, E)$ with a weight $w_{e} \geq 0$ for each $e \in E$, find a Minimum Cycle Basis $B=\left\{b_{1}, \ldots, b_{\nu}\right\}$, i.e., B with minimum $w(B)=\sum_{i=1}^{\nu} \sum_{e \in b_{i}} w_{e}$.

The problem

Min CB:

Given a connected graph $G=(V, E)$ with a weight $w_{e} \geq 0$ for each $e \in E$, find a Minimum Cycle Basis $B=\left\{b_{1}, \ldots, b_{\nu}\right\}$, i.e., B with minimum $w(B)=\sum_{i=1}^{\nu} \sum_{e \in b_{i}} w_{e}$.

Applications:

- test of electrical circuits
- structural engineering
- frequency analysis of computer programs
" planning complex syntheses in organic chemistry
" periodic event scheduling,...

Previous work

- Early methods (Stepanec 64, Zykov 69, Hubicka and Syslo 76) are not polynomial
- First polynomial algorithm by Horton (87) is $O\left(m^{3} n\right)$
- Improved $O\left(m^{\omega} n\right)$ version, where $\omega<2.376$ is the exponent of fast matrix multiplication (Golynski and Horton 02)
- Different $O\left(m^{3}+m n^{2} \log n\right)$ algorithm (de Pina 95)
- Improved $O\left(m^{2} n+m n^{2} \log n\right)$ variant of de Pina's algorithm using fast matrix multiplication (Kavitha, Mehlhorn et al. 04)

Previous work

- $O\left(m^{2} n^{2}\right)$ hybrid algorithm (Mehlhorn and Michail 06)
- $O\left(m^{2} n\right)$ algorithm based on minimum feedback vertex set, can be improved to $O\left(m^{2} n / \log n+m n^{2}\right)$ using a bit packing trick (Mehlhorn and Michail 07)

Related problem

Let T be an arbitrary spanning tree of G, the ν cycles obtained by adding $e \in E \backslash T$ form a fundamental cycle basis (FCB) of G

Not all cycle bases are fundamental
Min FCB is NP-hard (Deo et al. 82), in fact APX-hard but approximable within $O\left(\log ^{2} n \log \log n\right)$ (Galbiati, A. and Rizzi 07)

Edge-swapping algorithm (A., Liberti et al. 04/09)

Horton algorithm

Assumption: shortest paths are unique (lexicographic order)

Proposition: the collection of cycles

$$
\mathcal{H}=\left\{P_{u, v_{1}} \cdot e \cdot P_{v_{2}, u} \mid u \in V, e=\left[v_{1}, v_{2}\right] \in E\right\}
$$

contains a minimum cycle basis.
(a)

(b)

$$
|\mathcal{H}| \leq m n
$$

Horton algorithm

Since the set of all cycles forms a matroid, a greedy procedure yields a minimum CB

Need to test linear independence because not all cycles in \mathcal{H} are in a minimum CB

Horton algorithm

1) For each node u, determine shortest path tree

$$
O(n m \log n) \text { Dijkstra with heap }
$$

2) Construct the candidate cycles in \mathcal{H} and order them by non-decreasing weight $(|\mathcal{H}| \leq \nu n \leq m n)$

$$
O\left(m n^{2}\right) \text { construction and } O(m n \log n) \text { ordering }
$$

3) Find a minimum cycle basis by selecting the ν lightest linearly independent candidate cycles
$O\left(m^{3} n\right)$ see below

Overall complexity: $O\left(m^{3} n\right)$

Horton algorithm

Binary Gaussian elimination:

(a)

(b)

(c)

(d)

each row can be processed in $O(m r)$, where r is the number of rows above since $r \leq \nu$ and $|\mathcal{H}| \leq n \nu$, we have $O\left(m \nu^{2} n\right)=O\left(m^{3} n\right)$

Improved de Pina algorithm

Idea: determine cycles of min CB sequentially, considering at each step a basis orthogonal to the lin. subspace generated by cycles computed so far.

Let T be any spanning tree of G, and e_{1}, \ldots, e_{ν} the edges in $E \backslash T$ in some arbitrary order.

Any cycle of G can be viewed as a restricted incidence vector in $\{0,1\}^{\nu}$ (lin. indep. of the restricted and full vectors is equivalent).

(b)

(c)
)

$[1,4$ $[2,3$
 $[2,3]$ $[2,4]$

$[2,4]$
$[5,6]$

Improved de Pina algorithm

Let $\left\{S_{1}, \ldots, S_{\nu}\right\}$ be the canonical basis for $\mathrm{i}=1$ to ν do

Find C_{i} as the shortest cycle in G s.t. $\left\langle C_{i}, S_{i}\right\rangle=1$
for $\mathrm{j}=\mathrm{i}+1$ to ν do
if $\left\langle S_{j}, C_{i}\right\rangle=1$ then $\left.S_{j}:=<S_{j}, S_{i}\right\rangle$

Since S_{i} is orthogonal to C_{1}, \ldots, C_{i-1} and $\left.<C_{i}, S_{i}\right\rangle=1, C_{i}$ is lin. indep.
A shortest C_{i} with $\left.<C_{i}, S_{i}\right\rangle=1$ can be found by shortest path computations in a two level graph

Update S_{j} 's so that $\left\{S_{i+1}, \ldots, S_{\nu}\right\}$ is still a basis of the subspace orthogonal to $\left\{C_{1}, \ldots, C_{i}\right\}$.
$O\left(m^{3}+m n^{2} \log n\right)$ can be reduced to $O\left(m^{2} n+m n^{2} \log n\right)$ with fast matrix multiplication (Kavitha, Mehlhorn et al. 04)

FVS-based algorithm

Mehlhorn and Michail 07
Consider only Horton candidate cycles whose node u belongs to a close-to-minimum feedback vertex set (FVS) - NP-hard but 2-approximable
$O\left(m^{2} n+m n^{2}\right)$ algorithm with a "simple" way to extract a minimum CB from the above set of candidate cycles
$O\left(m^{2} n / \log (n)+m n^{2}\right)$ variant by using a bit-packing trick

New hybrid algorithm

Main ideas:

1) Substantially reduce the number of candidate cycles (trim \mathcal{H})
the candidate cycles in $\mathcal{H}^{\prime} \subseteq H$ are "sparse"
2) Devise an adaptive variant of the linear independence test à la de Pina that iteratively builds the spanning tree T.

Algorithm: order the candidate cycles in \mathcal{H}^{\prime} by non-decreasing weight, and select the lightest ν linear independent ones

Reduced candidate cycle set

Besides discarding duplicates

Only keep in \mathcal{H}^{\prime} the isometric cycles $C \in \mathcal{H}$, i.e., which have for each node u an edge $e=\left[v_{1}, v_{2}\right]$ in C s.t. $C=P_{u, v_{1}} \cdot e \cdot P_{v_{2}, u}$

Reduced candidate cycle set

Isometric cycles can be found in $O(m n \log n)$ by using binary search

Although we still have $\left|\mathcal{H}^{\prime}\right|=O(m n)$, the incidence vectors of these candidate cycles are sparse!

Property (sparsity): $\sum_{C_{i} \in \mathcal{H}^{\prime}}\left|C_{i}\right| \leq m n$, where $\left|C_{i}\right|$ denotes the number of edges in C_{i}.

Obvious because each $C_{i} \in \mathcal{H}^{\prime}$ represents $\left|C_{i}\right|$ cycles in \mathcal{H} and $|\mathcal{H}| \leq m n$.
Example: K_{n}

Reduced candidate cycle set

We can also discard any C that admits a wheel decomposition, that is s.t. $C=C_{1}+\ldots+C_{k}$ w.r.t. some root r and with $\left|C_{j}\right|<|C|$ for all $j=1, \ldots, k$

NB: non-isometric is special case with $k=2$ and $r \in C$
Complexity: $O\left(m n^{2}\right)$

New independence test à la de Pina

Idea: Build the spanning tree T and order the co-tree edges e_{1}, \ldots, e_{ν} (and hence the witnesses S_{i}) adaptively so as to reduce the computational load.

We try to avoid updating the other witnesses...
Complexity: $O\left(m^{2} n\right)$ - the bottleneck

Some computational results

Instances:

* Hypercubes with $n=2^{d}$; random graphs with densities $0.3,0.5,0.9$ or sparse ($m=2 n$) and random weights (Mehlhorn and Michail 06)
* Euclidean graphs with density $0.1-0.9$, weighted hypercubes, toroidal graphs

Intel Xeon(TM) with 2.80 GHz and 2GB RAM

Some computational results

Cpu time for random graphs with density $=0.5$

n	m	ν	Horton avg - stddev	Hybrid Mehlhorn et al. avg - stddev	New-isometric avg - stddev
50	612	563	$0.01-0.00$	$0.04-0.01$	$0.00-0.00$
60	885	826	$0.02-0.01$	$0.08-0.01$	$0.01-0.01$
70	1207	1138	$0.03-0.01$	$0.19-0.03$	$0.01-0.01$
80	1580	1501	$0.07-0.01$	$0.34-0.03$	$0.02-0.01$
90	2002	1913	$0.10-0.01$	$0.51-0.02$	$0.02-0.01$
100	2475	2376	$0.11-0.01$	$0.72-0.03$	$0.03-0.01$
125	3875	3751	$0.33-0.01$	$5.87-0.24$	$0.05-0.01$

Efficient implementation of Horton algorithm performs better than the other algorithms in the literature with better worst-case complexity

Some computational results

Number of candidate cycles and cpu time for Euclidean graphs with $\mathrm{n}=150$

density	m	ν	Horton	New-isometric	New-no-wheels
0.1	1228	1079	$21311-0.03$	$3289-0.02$	$1163-0.09$
0.2	2388	2239	$54626-0.07$	$9963-0.03$	$2342-0.15$
0.3	3452	3303	$106971-0.11$	$21531-0.04$	$3436-0.28$
0.4	4613	4464	$155120-0.17$	$43860-0.07$	$4577-0.34$
0.5	5668	5519	$200715-0.28$	$76318-0.16$	$5625-0.84$
0.6	6725	6576	$262562-0.50$	$122494-0.31$	$6670-1.00$
0.7	7866	7717	$334915-0.59$	$190806-0.36$	$7791-1.70$
0.8	8936	8787	$398996-0.62$	$276504-0.49$	$8872-2.14$
0.9	10108	9959	$472676-0.74$	$397897-0.57$	$10015-3.51$

Some computational results

Cpu time for Euclidean graphs with $\mathrm{n}=1000$

density	Horton	New-isometric
0.1	31.59	9.44
0.2	122.16	21.36
0.3	289.26	37.41
0.4	630.49	64.38
0.5	1321.30	105.48
0.6	-	152.73
0.7	-	221.61
0.8	-	331.72

Concluding remarks

- A version of our new hybrid algorithm has a $O\left(m^{2} n / \log n\right)$ worst-case complexity
- In practice it performs at least as well and in general much better than other algorithms
- Since the adaptive linear independence test à la de Pina is very efficient, the version without wheel decomposition is faster
- Is there still margin for improvement? Can we do without independence test -even though it is unlikely to lead to an overall more efficient algorithm?

