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Preliminaries

Simple connected undirectedgraph G = (V, E), n = |V |, m = |E|, with a
weight we ≥ 0 for each edgee ∈ E

Elementary cycle= connected subset of edges whose nodes have degree2

Cycle= subset of edgesC ⊆ E such that every node ofV is incident with
an even number of edges inC

Cycles can be viewed as the (possibly empty) union of edge-disjoint
elementary cycles
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Cycle composition

Cycles can be represented by edge-incidence vectors in{0, 1}|E|

Compositionof two cycles:

symmetric difference of the edge-sets(C1 ∪ C2) \ (C1 ∩ C2)

modulo 2 addition of the incidence vectors
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Cycle bases

The collection of all cycles forms a vector space overGF (2), called the
cycle spaceC

A cycle basisB = {b1, . . . , bν} of C is of dimensionν = m − n + 1
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The problem

M IN CB:

Given a connected graphG = (V, E) with aweight we ≥ 0 for eache ∈ E,
find aMinimum Cycle BasisB = {b1, . . . , bν}, i.e.,B with minimum
w(B) =

∑ν
i=1

∑
e∈bi

we.
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edge weights =1 CB weight = 27 CB weight = 30
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M IN CB:

Given a connected graphG = (V, E) with aweight we ≥ 0 for eache ∈ E,
find aMinimum Cycle BasisB = {b1, . . . , bν}, i.e.,B with minimum
w(B) =

∑ν
i=1

∑
e∈bi

we.

Applications:

test of electrical circuits

structural engineering

frequency analysis of computer programs

planning complex syntheses in organic chemistry

periodic event scheduling,...
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Previous work

Early methods (Stepanec 64, Zykov 69, Hubicka and Syslo 76) are
not polynomial

First polynomial algorithm by Horton (87) isO(m3n)

ImprovedO(mωn) version, whereω < 2.376 is the exponent of fast
matrix multiplication (Golynski and Horton 02)

DifferentO(m3 + mn2 log n) algorithm (de Pina 95)

ImprovedO(m2n + mn2 log n) variant of de Pina’s algorithm using
fast matrix multiplication (Kavitha, Mehlhorn et al. 04)
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Previous work

O(m2n2) hybrid algorithm (Mehlhorn and Michail 06)

O(m2n) algorithm based on minimum feedback vertex set, can be
improved toO(m2n/ log n + mn2) using a bit packing trick
(Mehlhorn and Michail 07)
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Related problem

Let T be an arbitrary spanning tree ofG, theν cycles obtained by adding
e ∈ E \ T form afundamental cycle basis(FCB) ofG
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Not all cycle bases are fundamental

M IN FCB is NP-hard (Deo et al. 82), in fact APX-hard but approximable
within O(log2 n log log n) (Galbiati, A. and Rizzi 07)

Edge-swapping algorithm (A., Liberti et al. 04/09)
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Horton algorithm

Assumption: shortest paths are unique (lexicographic order)

Proposition: the collection of cycles

H = {Pu,v1
· e · Pv2,u | u ∈ V, e = [v1, v2] ∈ E}

contains a minimum cycle basis.

|H| ≤ mn
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Horton algorithm

Since the set of all cycles forms amatroid , a greedy procedure yields a
minimum CB

Need to test linear independence because not all cycles inH are in a
minimum CB
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Horton algorithm

1) For each nodeu, determineshortest path tree

O(nm log n) Dijkstra with heap

2) Construct thecandidate cyclesin H and order them by
non-decreasing weight (|H| ≤ νn ≤ mn)

O(mn2) construction andO(mn log n) ordering

3) Find a minimum cycle basis by selecting theν lightestlinearly
independentcandidate cycles

O(m3n) see below

Overall complexity:O(m3n)
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Horton algorithm

Binary Gaussian elimination:

each row can be processed inO(mr), wherer is the number of rows above

sincer ≤ ν and|H| ≤ nν, we haveO(mν2n) = O(m3n)
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Improved de Pina algorithm

Idea: determine cycles of min CBsequentially, considering at each step a
basis orthogonal to the lin. subspace generated by cycles computed so far.

Let T be any spanning tree ofG, ande1, . . . , eν the edges inE \ T in some
arbitrary order.

Any cycle ofG can be viewed as a restricted incidence vector in{0, 1}ν

(lin. indep. of the restricted and full vectors is equivalent).
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Improved de Pina algorithm

Let {S1, . . . , Sν} be the canonical basis
for i=1 to ν do

FindCi as the shortest cycle inG s.t.< Ci, Si >= 1
for j = i+1 to ν do

if < Sj , Ci >= 1 then Sj :=< Sj , Si >

SinceSi is orthogonal toC1, . . . , Ci−1 and< Ci, Si >= 1, Ci is lin. indep.

A shortestCi with < Ci, Si >= 1 can be found by shortest path
computations in a two level graph

UpdateSj ’s so that{Si+1, . . . , Sν} is still a basis of the subspace
orthogonal to{C1, . . . , Ci}.

O(m3 + mn2 log n) can be reduced toO(m2n + mn2 log n) with fast
matrix multiplication (Kavitha, Mehlhorn et al. 04)
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FVS-based algorithm

Mehlhorn and Michail 07

Consider only Horton candidate cycles whose nodeu belongs to a
close-to-minimum feedback vertex set (FVS) – NP-hard but
2-approximable

O(m2n + mn2) algorithm with a "simple" way to extract a minimum CB
from the above set of candidate cycles

O(m2n/ log(n) + mn2) variant by using a bit-packing trick
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New hybrid algorithm

Main ideas:

1) Substantiallyreduce the number of candidate cycles(trim H)

the candidate cycles inH′ ⊆ H are "sparse"

2) Devise anadaptivevariant of thelinear independence testà la de Pina
that iteratively builds the spanning treeT .

Algorithm : order the candidate cycles inH′ by non-decreasing weight,
and select the lightestν linear independent ones
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Reduced candidate cycle set

Besides discarding duplicates

Only keep inH′ the isometric cyclesC ∈ H, i.e., which have foreach
nodeu anedgee = [v1, v2] in C s.t.C = Pu,v1

· e · Pv2,u
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Reduced candidate cycle set

Isometric cycles can be found inO(mn log n) by using binary search

Although we still have|H′| = O(mn), the incidence vectors of these
candidate cycles are sparse!

Property (sparsity):
∑

Ci∈H′ |Ci| ≤ mn, where|Ci| denotes the number
of edges inCi.

Obvious because eachCi ∈ H′ represents|Ci| cycles inH and|H| ≤ mn.

Example:Kn
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Reduced candidate cycle set

We can also discard anyC that admits awheel decomposition, that is s.t.
C = C1 + . . . + Ck w.r.t. some rootr and with|Cj | < |C| for all
j = 1, . . . , k

NB: non-isometric is special case withk = 2 andr ∈ C

Complexity:O(mn2)
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New independence test à la de Pina

Idea: Build the spanning treeT and order the co-tree edgese1, . . . , eν (and
hence the witnessesSi) adaptively so as to reduce the computational load.

We try to avoid updating the other witnesses...

Complexity:O(m2n) – the bottleneck
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Some computational results

Instances:

Hypercubes withn = 2d; random graphs with densities0.3, 0.5, 0.9
or sparse (m = 2n) and random weights (Mehlhorn and Michail 06)

Euclidean graphs with density0.1 − 0.9, weighted hypercubes,
toroidal graphs

Intel Xeon(TM) with 2.80 GHz and 2GB RAM
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Some computational results

Cpu time for random graphs with density=0.5

Horton Hybrid Mehlhorn et al. New-isometric

n m ν avg - stddev avg - stddev avg - stddev

50 612 563 0.01 - 0.00 0.04 - 0.01 0.00 - 0.00

60 885 826 0.02 - 0.01 0.08 - 0.01 0.01 - 0.01

70 1207 1138 0.03 - 0.01 0.19 - 0.03 0.01 - 0.01

80 1580 1501 0.07 - 0.01 0.34 - 0.03 0.02 - 0.01

90 2002 1913 0.10 - 0.01 0.51 - 0.02 0.02 - 0.01

100 2475 2376 0.11 - 0.01 0.72 - 0.03 0.03 - 0.01

125 3875 3751 0.33 - 0.01 5.87 - 0.24 0.05 - 0.01

Efficient implementation of Horton algorithm performs better than the
other algorithms in the literature with better worst-case complexity
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Some computational results

Number of candidate cycles and cpu time for Euclidean graphswith n=150

density m ν Horton New-isometric New-no-wheels

0.1 1228 1079 21311 - 0.03 3289 - 0.02 1163 - 0.09

0.2 2388 2239 54626 - 0.07 9963 - 0.03 2342 - 0.15

0.3 3452 3303 106971 - 0.11 21531 - 0.04 3436 - 0.28

0.4 4613 4464 155120 - 0.17 43860 - 0.07 4577 - 0.34

0.5 5668 5519 200715 - 0.28 76318 - 0.16 5625 - 0.84

0.6 6725 6576 262562 - 0.50 122494 - 0.31 6670 - 1.00

0.7 7866 7717 334915 - 0.59 190806 - 0.36 7791 - 1.70

0.8 8936 8787 398996 - 0.62 276504 - 0.49 8872 - 2.14

0.9 10108 9959 472676 - 0.74 397897 - 0.57 10015 - 3.51
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Some computational results

Cpu time for Euclidean graphs with n=1000

density Horton New-isometric

0.1 31.59 9.44

0.2 122.16 21.36

0.3 289.26 37.41

0.4 630.49 64.38

0.5 1321.30 105.48

0.6 – 152.73

0.7 – 221.61

0.8 – 331.72
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Concluding remarks

A version of our new hybrid algorithm has aO(m2n/ log n)
worst-case complexity

In practice it performs at least as well and in general much better
than other algorithms

Since the adaptive linear independence test à la de Pina is very
efficient, the version without wheel decomposition is faster

Is there still margin for improvement? Can we do without
independence test –even though it is unlikely to lead to an overall
more efficient algorithm?
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