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VINES

What on earth is a vine?
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these vines:

wall −→



these vines:

wall −→

←− vine



OVERLAPPING PATHS

xPy: path P from x to y

ear of P : path uQv such that Q ∩ P = {u, v}

u v P

Q

x y



OVERLAPPING PATHS

Ears uQv and u′Q′v′ overlap on P if:

• Q ∩Q′ = ∅
• u ≺ u′ ≺ v ≺ v′ or u′ ≺ u ≺ v′ ≺ v

uu v

Q

v′

Q′



VINES

vine on a path P : sequence of ears Q := (Q1, Q2, . . . , Qr) where:

• Q1 starts at the first vertex of P

• Qr ends at the last vertex of P

• consecutive ears overlap

• nonconsecutive ears do not overlap

P

Q1
Q2 Q3 Q4 Q5



If P is a path in a 2-connected graph, there is a vine on P

Proof. Induction on the length of P :

Px y

Px yz

P ′x z
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P ′x z
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CYCLES IN VINES

Each ear defines a cycle:
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Each ear defines a cycle:
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Each ear defines a cycle:



CYCLES IN VINES

Each pair of ears defines a cycle:



CYCLES IN VINES

Each pair of ears defines a cycle:



CYCLES IN VINES

In particular, the first and last ears define a cycle C:



CYCLES IN VINES

In particular, the first and last ears define a cycle C:



LONG CYCLES

Dirac A 2-connected graph with minimum degree d contains

either a cycle of length at least 2d or a Hamilton cycle.

Proof

P a longest path Q a vine on P such that:

• |Q| is as small as possible

• subject to this condition, |V (C) ∩ V (P )| is as large as possible



LONG CYCLES

Where are the neighbours of x?

x y
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LONG CYCLES

Where are the neighbours of x?

x y

Both x and all its neighbours lie on C.



LONG CYCLES

Where are the neighbours of x?

x y

Both x and all its neighbours lie on C. Likewise for y.



LONG CYCLES

Where are the neighbours of x?

x y

Both x and all its neighbours lie on C. Likewise for y.

This implies that C has length at least 2d or is a Hamilton cycle.



LONG CYCLES

Dirac A 2-connected graph which contains a path of length l

contains a cycle of length at least 2
√

l.

Proof

P a longest path Q a vine on P

Recall that each pair of ears in Q defines a cycle:



LONG CYCLES

Suppose (for simplicity) that |Q| = 2t− 1 is odd.

There are t2 such cycles which include the central ear.

These cycles cover P t times and the ears a total of t3 times.

So their average length is

lt + t3

t2
=

l

t
+ t ≥ 2

√
l



LONG CYCLES

Best possible:

1 122 33 44 5
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DISJOINT VINES

VinesQ := (Q1, Q2, . . . , Qr) andR := (R1, R2, . . . , Rs) on a path
xPy are disjoint if:

• their ears meet only on P

• only Q1 and R1 have a common first vertex (x)

• only Qr and Rs have a common last vertex (y)

yx



DISJOINT VINES

B+Locke If P is a path in a 3-connected graph, there are two

disjoint vines on P .

yx

Proof. Menger’s Theorem



3-CONNECTED CUBIC GRAPHS

If P has length l, how long a cycle must there be?
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3-CONNECTED CUBIC GRAPHS

Split the subgraph into ‘modules’:



3-CONNECTED CUBIC GRAPHS
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3-CONNECTED CUBIC GRAPHS

Three cycles covering each edge of this subgraph exactly twice.



3-CONNECTED CUBIC GRAPHS

B+Locke A 3-connected cubic graph which contains a path of

length l contains a cycle of length at least 2
3l.

Upper bound (based on Petersen graph): 7
8l



3-CONNECTED GRAPHS

Dirac A 2-connected graph which contains a path of length l

contains a cycle of length at least 2
√

l.

B+Locke A 3-connected graph which contains a path of length

l contains a cycle of length at least 2
5l.

Thomassen Upper bound: 1
2l



k-CONNECTED GRAPHS

Locke A k-connected graph which contains a path of length l

contains a cycle of length at least
(

2k−4
3k−4

)

l.

Thomassen Upper bound:
(

k−2
k−1

)

l



CYCLE DOUBLE COVERS

Tarsi A 2-edge-connected graph which contains a Hamilton path

admits a double cover by six even subgraphs.

Proof by Goddyn

• reduce (by standard arguments) to 3-connected cubic graphs

• consider two disjoint vines on the Hamilton path

• the union of the vines and the path is a spanning subgraph H

• there are three cycles C1, C2, C3 which cover each edge of H

exactly twice
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CYCLE DOUBLE COVERS

• the remaining set of edges F admits a partition into three subsets
F1, F2, F3, where the edges in Fi are chords of Ci, i = 1, 2, 3

• Ci ∪ Fi is either a cycle or a subdivision of a cubic graph Ki



CYCLE DOUBLE COVERS

•Ki is hamiltonian, so has a 3-edge-colouring in which the edges
of Fi receive one colour and the edges of the Hamilton cycle are
coloured alternately with the other two colours



CYCLE DOUBLE COVERS

• the union of Fi with each of the other colours is a 2-factor of Ki

• these two 2-factors correspond to two even subgraphs of Ci∪Fi

• the resulting six even subgraphs constitute a double cover



CYCLE DOUBLE COVERS

Conjecture (Preissmann) Every 2-edge-connected graph admits a

double cover by five even subgraphs.


