VINES

for Jack on his 75th birthday

Adrian Bondy
WITH
Stephen Locke

VINES

What on earth is a vine?

VINES

NOT The Vines

VINES

NOT these vines

VINES

NOT these vines

these vines:

these vines:

OVERLAPPING PATHS

$x P y$: path P from x to y
ear of P : path $u Q v$ such that $Q \cap P=\{u, v\}$

OVERLAPPING PATHS

Ears $u Q v$ and $u^{\prime} Q^{\prime} v^{\prime}$ overlap on P if:

- $Q \cap Q^{\prime}=\emptyset$
- $u \prec u^{\prime} \prec v \prec v^{\prime}$ or $u^{\prime} \prec u \prec v^{\prime} \prec v$

VINES

vine on a path P : sequence of ears $\mathcal{Q}:=\left(Q_{1}, Q_{2}, \ldots, Q_{r}\right)$ where:

- Q_{1} starts at the first vertex of P
- Q_{r} ends at the last vertex of P
- consecutive ears overlap
- nonconsecutive ears do not overlap

If P is a path in a 2-connected graph, there is a vine on P
Proof. Induction on the length of P :

VINES

VINES

VINES

VINES

VINES

VINES

VINES

VINES

CYCLES IN VINES

Each ear defines a cycle:

CYCLES IN VINES

Each ear defines a cycle:

CYCLES IN VINES

Each ear defines a cycle:

CYCLES IN VINES

Each ear defines a cycle:

CYCLES IN VINES

Each ear defines a cycle:

CYCLES IN VINES

Each pair of ears defines a cycle:

CYCLES IN VINES

Each pair of ears defines a cycle:

CYCLES IN VINES

In particular, the first and last ears define a cycle C :

CYCLES IN VINES

In particular, the first and last ears define a cycle C :

LONG CYCLES

Dirac A 2-connected graph with minimum degree d contains either a cycle of length at least 2d or a Hamilton cycle.
$\underline{\text { Proof }}$
P a longest path \mathcal{Q} a vine on P such that:

- $|\mathcal{Q}|$ is as small as possible
- subject to this condition, $|V(C) \cap V(P)|$ is as large as possible

LONG CYCLES

Where are the neighbours of x ?

LONG CYCLES

Where are the neighbours of x ?

LONG CYCLES

Where are the neighbours of x ?

LONG CYCLES

Where are the neighbours of x ?

Both x and all its neighbours lie on C.

LONG CYCLES

Where are the neighbours of x ?

Both x and all its neighbours lie on C. Likewise for y.

LONG CYCLES

Where are the neighbours of x ?

Both x and all its neighbours lie on C. Likewise for y.
This implies that C has length at least $2 d$ or is a Hamilton cycle.

LONG CYCLES

Dirac A 2-connected graph which contains a path of length l contains a cycle of length at least $2 \sqrt{l}$.

Proof
P a longest path \mathcal{Q} a vine on P
Recall that each pair of ears in \mathcal{Q} defines a cycle:

LONG CYCLES

Suppose (for simplicity) that $|\mathcal{Q}|=2 t-1$ is odd.
There are t^{2} such cycles which include the central ear.
These cycles cover $P t$ times and the ears a total of t^{3} times.
So their average length is

$$
\frac{l t+t^{3}}{t^{2}}=\frac{l}{t}+t \geq 2 \sqrt{l}
$$

LONG CYCLES

Best possible:

LONG CYCLES

Best possible:

LONG CYCLES

Best possible:

DISJOINT VINES

Vines $\mathcal{Q}:=\left(Q_{1}, Q_{2}, \ldots, Q_{r}\right)$ and $\mathcal{R}:=\left(R_{1}, R_{2}, \ldots, R_{s}\right)$ on a path $x P y$ are disjoint if:

- their ears meet only on P
- only Q_{1} and R_{1} have a common first vertex (x)
- only Q_{r} and R_{s} have a common last vertex (y)

DISJOINT VINES

B+Locke If P is a path in a 3-connected graph, there are two disjoint vines on P.

Proof. Menger's Theorem

3-CONNECTED CUBIC GRAPHS

If P has length l, how long a cycle must there be?

3-CONNECTED CUBIC GRAPHS

3-CONNECTED CUBIC GRAPHS

Split the subgraph into 'modules':

$$
\begin{aligned}
& \epsilon \bar{x}\rangle \\
& \leqslant \bar{x} \bar{x} \geqslant \\
& \epsilon \bar{x} \bar{x}
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon \bar{x}\rangle \\
& \leqslant \bar{x} \bar{x}> \\
& \epsilon \bar{x} \bar{x}
\end{aligned}
$$

3-CONNECTED CUBIC GRAPHS

3-CONNECTED CUBIC GRAPHS

3-CONNECTED CUBIC GRAPHS

3-CONNECTED CUBIC GRAPHS

3-CONNECTED CUBIC GRAPHS

Three cycles covering each edge of this subgraph exactly twice.

3-CONNECTED CUBIC GRAPHS

B+Locke A 3-connected cubic graph which contains a path of length l contains a cycle of length at least $\frac{2}{3} l$.

Upper bound (based on Petersen graph): $\frac{7}{8} l$

3-CONNECTED GRAPHS

Dirac A 2-connected graph which contains a path of length l contains a cycle of length at least $2 \sqrt{l}$.

B+Locke A 3-connected graph which contains a path of length l contains a cycle of length at least $\frac{2}{5}$ l.

Thomassen Upper bound: $\quad \frac{1}{2} l$

k-CONNECTED GRAPHS

Locke $A k$-connected graph which contains a path of length l contains a cycle of length at least $\left(\frac{2 k-4}{3 k-4}\right) l$.

Thomassen Upper bound: $\left(\frac{k-2}{k-1}\right) l$

CYCLE DOUBLE COVERS

Tarsi A 2-edge-connected graph which contains a Hamilton path admits a double cover by six even subgraphs.

Proof by Goddyn

- reduce (by standard arguments) to 3 -connected cubic graphs
- consider two disjoint vines on the Hamilton path
- the union of the vines and the path is a spanning subgraph H
- there are three cycles C_{1}, C_{2}, C_{3} which cover each edge of H exactly twice

CYCLE DOUBLE COVERS

CYCLE DOUBLE COVERS

- the remaining set of edges F admits a partition into three subsets F_{1}, F_{2}, F_{3}, where the edges in F_{i} are chords of $C_{i}, i=1,2,3$
- $C_{i} \cup F_{i}$ is either a cycle or a subdivision of a cubic graph K_{i}

CYCLE DOUBLE COVERS

- K_{i} is hamiltonian, so has a 3-edge-colouring in which the edges of F_{i} receive one colour and the edges of the Hamilton cycle are coloured alternately with the other two colours

CYCLE DOUBLE COVERS

- the union of F_{i} with each of the other colours is a 2-factor of K_{i}
- these two 2-factors correspond to two even subgraphs of $C_{i} \cup F_{i}$
- the resulting six even subgraphs constitute a double cover

CYCLE DOUBLE COVERS

Conjecture (Preissmann) Every 2-edge-connected graph admits a double cover by five even subgraphs.

