On Variants of Induced Matchings

Andreas Brandstädt
University of Rostock, Germany

(joint work with Raffaele Mosca and Ragnar Nevries)

Distance-k Matchings

Let $G=(V, E)$ be a undirected finite simple graph. An edge set $M \subseteq E$ is a matching in G if the edges in M are mutually vertex-disjoint.
An edge set M is an induced matching in G [Kathie Cameron 1989] (also called strong matching [Golumbic, Laskar 1993])
if the mutual distance of edges in M is ≥ 2.

Distance- k Matchings

An edge set M is a distance- k matching in G if the mutual distance of edges in M is $\geq k$ (called δ-separated matching [Stockmeyer, Vazirani 1982]).

Matchings

Matchings

Induced Matchings

Line Graph

For graph $G=(V, E)$, let $L(G)=\left(E, E^{\prime}\right)$ with edges

$$
x y \in E^{\prime} \Leftrightarrow x \cap y \neq \varnothing
$$

denote the line graph of G.

Line Graph

G
$L(G)$

Line Graph

G

$L(G)$

Line Graph

Graph Powers

For graph $G=(V, E)$, let $G^{k}=\left(V, E^{k}\right)$ with

$$
x y \in E^{k} \Leftrightarrow \operatorname{dist}_{G}(x, y) \leq k
$$ denote the k-th power of G.

Induced Matchings

$L(G)^{2}$ is the square of the line graph of G, i.e., the vertex set of $L(G)^{2}$ is E, and two edges of G are adjacent in $L(G)^{2}$ if they share a vertex or are connected by an edge in G.

Induced Matchings

$L(G)^{2}$ is the square of the line graph of G, i.e., the vertex set of $L(G)^{2}$ is E, and two edges of G are adjacent in $L(G)^{2}$ if they share a vertex or are connected by an edge in G.

Fact.

Induced matchings in $G=$ independent vertex sets in $L(G)^{2}$.

Induced Matchings

Induced Matchings

e_{1}

e_{1}
e_{6}
$L(G)$

Induced Matchings

e_{1}

$e_{1} \quad e_{6}$
$L(G)^{2}$

Maximum Induced Matchings

Maximum Matching Problem:
Find a maximum matching of largest size.
Maximum Induced Matching (MIM) Problem:
Find a max. induced matching of largest size.
NP-complete [Stockmeyer, Vazirani 1982,
Kathie Cameron 1989]

Maximum Induced Matchings

The Maximum Induced Matching Problem remains NP-complete for
very restricted bipartite graphs [Ko, Shepherd 2003, Lozin 2002] and for
line graphs (and thus also for claw-free graphs) [Kobler, Rotics 2003].

Maximum Induced Matchings

- G chordal $\Rightarrow L(G)^{2}$ chordal [Cameron 1989].
- G circular-arc graph $\Rightarrow L(G)^{2}$ circular-arc graph [Golumbic, Laskar 1993]
- G cocomparability graph $\Rightarrow L(G)^{2}$ cocomparability graph [Golumbic, Lewenstein 2000]
- G weakly chordal $\Rightarrow L(G)^{2}$ weakly chordal [Cameron, Sritharan, Tang 2003]
- stronger result for AT-free graphs [J.-M. Chang 2004]

Maximum Induced Matchings

Hence: MIM in polynomial time for

- chordal graphs [Cameron 1989]
- circular-arc graphs [Golumbic, Laskar 1993]
- cocomparability and interval dimension k graphs [Golumbic, Lewenstein 2000]
- AT-free graphs [J.-M. Chang 2004]
- weakly chordal graphs [Cameron, Sritharan, Tang 2003]

Distance-k Matchings

$L(G)^{k}$ is the k-th power of the line graph of G, i.e., the vertex set of $L(G)^{k}$ is E, and two edges of G are adjacent in $L(G)^{k}$ if their distance in $L(G)$ is at most k.

Fact.

Distance-k matchings in $G=$ independent vertex sets in $L(G)^{k}$.

Chordal Graphs

Graph G is chordal if it contains no chordless cycles of length at least four.

Chordal Graphs

Graph G is chordal if it contains no chordless cycles of length at least four.
Chordal graphs have many facets:

- clique separators
- clique tree
- simplicial elimination orderings
- intersection graphs of subtrees of a tree ...

Graph Powers

[Duchet, 1984]: Odd powers of chordal graphs are chordal.

But: Even powers of chordal graphs are in general not chordal.

Powers of Chordal Graphs

[K. Cameron, 1989]:
G chordal $\Rightarrow L(G)^{2}$ chordal.

Powers of Chordal Graphs

[K. Cameron, 1989]:
G chordal $\Rightarrow L(G)^{2}$ chordal
\Rightarrow MIM problem in polynomial time on
chordal graphs.

Powers of Chordal Graphs

[K. Cameron, 1989]:
G chordal $\Rightarrow L(G)^{2}$ chordal
\Rightarrow MIM problem in polynomial time on chordal graphs.
even in linear time! [B., Hoang 2005].

Powers of Chordal Graphs

[K. Cameron, 1989]:
G chordal $\Rightarrow L(G)^{2}$ chordal
\Rightarrow MIM problem in polynomial time on
chordal graphs
But: If G is chordal then in general, $L(G)^{3}$ is not chordal.

Maximum Distance-3 Matchings

Theorem.
The Maximum Distance-3 Matching Problem for chordal graphs is NP-complete.

Maximum Distance-3 Matchings

Theorem.

The Maximum Distance-3 Matching Problem for chordal graphs is NP-complete.
(Reduction from Maximum Independent Set for any graph [GT20])

Powers of strongly chordal graphs

A graph is strongly chordal if it is chordal and sun-free.

Theorem. [Lubiw 1982; Dahlhaus, Duchet 1987; Raychaudhuri 1992] For every $k \geq 2$:
G strongly chordal $\Rightarrow G^{k}$ strongly chordal.

Powers of strongly chordal graphs

Recall: G chordal $\Rightarrow L(G)^{2}$ chordal
\Rightarrow MIM problem in polynomial time on strongly chordal graphs.
But: If G is strongly chordal then in general, $L(G)^{3}$ is not strongly chordal.

$L(G)^{3}$ not strongly chordal

Maximum Distance-3 Matchings

Theorem.

If G is strongly chordal then $L(G)^{3}$ is chordal.

Maximum Distance-3 Matchings

Theorem.

If G is strongly chordal then $L(G)^{3}$ is chordal.
Corollary.
The Maximum Distance- k Matching Problem
for strongly chordal graphs is solvable in polynomial time for every $k \geq 1$.

Dominating Induced Matchings

An induced matching M is a dominating induced matching (d.i.m.) in G if M intersects every edge in G. In other words:

- M is dominating in $L(G)$ and
- M is independent in $L(G)^{2}$.

Dominating Induced Matchings

Example:

Dominating Induced Matchings

Note that there are graphs (even trees) without such an edge set:

Dominating Induced Matchings

The Dominating Induced Matching (DIM) Problem is:

Given a graph, does it have a dominating induced matching?
Also called the Efficient Edge Domination (EED) Problem.

Dominating Induced Matchings

Theorem [Grinstead, Slater, Sherwani, Holmes 1993]
The EED problem is NP-complete in general and efficiently solvable for series-parallel graphs.

Dominating Induced Matchings

Theorem [Lu, Tang 1998]
The EED problem is NP-complete for bipartite graphs, and is efficiently solvable for bipartite permutation graphs.
Theorem [Cardozo, Lozin 2008]
The EED problem is NP-complete for (very special) bipartite graphs, and is efficiently solvable for clawfree graphs.

Dominating Induced Matchings

Theorem [B., Nevries 2009]
The EED problem is solvable in

- linear time for chordal bipartite graphs;
- polynomial time for hole-free graphs.

Dominating Induced Matchings

Proposition.
Let M be a d.i.m. Then:
(i) M contains exactly one edge of every triangle.

Dominating Induced Matchings

Proposition.

Let M be a d.i.m. Then:
(i) M contains exactly one edge of every triangle.
(ii) M contains no edge of any C_{4}.

Dominating Induced Matchings

Proposition.

Let M be a d.i.m. Then:
(i) M contains exactly one edge of every triangle.
(ii) M contains no edge of any C_{4}.
(iii) Every mid-edge of a diamond is in M .
(iv) The peripheral edges of any butterfly are in M.

Dominating Induced Matchings

Proposition.
Let M be a dim. Then:
(i) M contains exactly one edge of every triangle.
(ii) M contains no edge of any C_{4}.
(iii) Every mid-edge of a diamond is in M .
(iv) The peripheral edges of any butterfly are in M .
(v) Graphs with dim are (K_{4}, gem,long-antihole)-free.
α.$\%$
$\alpha \nabla$

Dominating Induced Matchings

Lemma.

Let M be a d.i.m. in a chordal bipartite graph G, and let $Q=X \cup Y$ be a 2 -connected component in G. Then either M dominates all vertices in X and none in Y or vice versa.
\Rightarrow reduction to the EED problem in a (K_{4}-free) block graph G^{\prime} via the following gadget:

Dominating Induced Matchings

Lemma.

A chordal bipartite graph G has a d.i.m. $M \Leftrightarrow$ the (K_{4}-free) block graph G^{\prime} has a d.i.m. M^{\prime}, and the weights of M and M^{\prime} coincide.

Dominating Induced Matchings

Note that hole-free graphs with d.i.m. are weakly chordal (no long antiholes).
Theorem.
For hole-free graphs, the minimum weight dominating induced matching problem can be solved in polynomial time.

Thank you for your attention!

Thank you for your attention!

