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Happy Birthday

75 years + 3 days

JACK EDMONDS



Ineffable Cacophony

Some Forty Years

You can’t teach an old dog . . .

Being perhaps the oldest friend of Jack here present,
I happily accept a certain responsibility,

being the repository of a number of old tales,
and having a privileged perspective

on certain sensitive topics.
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Some Forty Years

You can’t teach an old dog . . .

They say “you can’t teach an old dog new tricks”,
and I think we can all agree, from experience,

any given mathematician
only knows a handful of things.

I’m sure Jack will agree.
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You can’t teach an old dog . . .

The upside is:
An old dog doesn’t tend to forget his old tricks.
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introductory expositions.
Jack says he likes easy talks on stuff

he has forgotten or never got to.

So I have elected to talk only about old tricks.
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You can’t teach an old dog . . .

Since the organizers specifically requested:
We are hoping that the talks will be

introductory expositions.
Jack says he likes easy talks on stuff

he has forgotten or never got to.

So I have elected to talk only about old tricks.

I’d better assume that you know what a matroid is.
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P a set of points in a projective space

V a set of vectors in a vector space

G the set of edges in a graph



Ineffable Cacophony

Some Forty Years

You can’t teach an old dog . . .

In case you don’t, just think of a matroid as:

P a set of points in a projective space

V a set of vectors in a vector space

G the set of edges in a graph

With closure operator, respectively

P projective flat spanned by

V linear subspace spanned by

G completion of broken circuits
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Some Forty Years

You can’t teach an old dog . . .

Many thanks to the organizers at JPOC, the IHP who let us use
cette venerable salle du Général Bourbaki,

with special thanks to Kathie Cameron, who has done wonders,
and also to Pierre Fouilleux and Sylvie Bruno,

who have made sure all the machines are compatible,
and that the lectures can begin in relative calm and serenity,

and finally to all involved, for the interesting lectures
and fine company.
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Some Forty Years

You can’t teach an old dog . . .

And second, an apology:
Kathie pointed out to me that

cacaphony, in the title, is misspelled,
and asked whether I wanted to correct it.

She is right.
We wrote it that way in 1970.
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Some Forty Years

! Ineffable Cacaphony

On the Foundations of Combinatorial Theory:
Combinatorial Geometries

“ For simplicity, we also assume that every point
in a geometry is a closed set.

Without this additional assumption,
the resulting structure is often described by the

ineffably cacaphonic term matroid,
which we prefer to avoid in favor of

the term ’pregeometry’.”



Ineffable Cacophony

Some Forty Years

! Ineffable Cacophony

On the Foundations of Combinatorial Theory:
Combinatorial Geometries

κακω, in Greek, means “bad”.
So cacophony, “has a bad ring to it”.

ineffable cacophony, “unspeakably bad sounding”.
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! Ineffable Cacophony

On the Foundations of Combinatorial Theory:
Combinatorial Geometries

cacaphony,
a misspelling, and unintentional exaggeration.
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! Ineffable Cacophony

On the Foundations of Combinatorial Theory:
Combinatorial Geometries

Lord of the Rings:,
Like the sound a toddler produces with his elder sisters violin.

Just such an ineffable cacophony afflicted Imladris.
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! Ineffable Cacophony

On the Foundations of Combinatorial Theory:
Combinatorial Geometries

Figure: From a group called Pure Volume.
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at the National Bureau of Standards, near Washington, D.C.
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Jack organized the first-ever meeting on matroid theory in 1964
at the National Bureau of Standards, near Washington, D.C.

Jack asked me to lecture then on two topics from my thesis,

single-element extensions

the Tutte polynomial

Today I’ll tuck in:

Dilworth completion.

A question about rigidity.



Ineffable Cacophony

Some Forty Years

NBS

Jack organized the first-ever meeting on matroid theory in 1964
at the National Bureau of Standards, near Washington, D.C.

Jack asked me to lecture then on two topics from my thesis,

single-element extensions

the Tutte polynomial

Today I’ll tuck in:

Dilworth completion.

A question about rigidity.



Ineffable Cacophony

Some Forty Years

NBS

Jack organized the first-ever meeting on matroid theory in 1964
at the National Bureau of Standards, near Washington, D.C.

Jack asked me to lecture then on two topics from my thesis,

single-element extensions

the Tutte polynomial

Today I’ll tuck in:

Dilworth completion.

A question about rigidity.



Ineffable Cacophony

Some Forty Years

NBS

Jack organized the first-ever meeting on matroid theory in 1964
at the National Bureau of Standards, near Washington, D.C.

Jack asked me to lecture then on two topics from my thesis,

single-element extensions

the Tutte polynomial

Today I’ll tuck in:

Dilworth completion.

A question about rigidity.



Ineffable Cacophony

Some Forty Years

NBS

Jack organized the first-ever meeting on matroid theory in 1964
at the National Bureau of Standards, near Washington, D.C.

Jack asked me to lecture then on two topics from my thesis,

single-element extensions

the Tutte polynomial

Today I’ll tuck in:

Dilworth completion.

A question about rigidity.



Ineffable Cacophony

Some Forty Years

NBS

It’s fine, when you’re just starting out,
and someone is willing to read your thesis!
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Some Forty Years

NBS

It’s fine, when you’re just starting out,
and someone is willing to read your thesis!
Thanks, Jack.
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Edge-colored Boolean Algebras

I had basically one trick in my bag:
the idea that matroids were naturally describable
in terms of the set of Yes–No answers
to the questions (for all subsets B and all points a !∈ B):
Is the point a in the closure of the set B?
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Edge-colored Boolean Algebras

I had basically one trick in my bag:
the idea that matroids were naturally describable
in terms of the set of Yes–No answers
to the questions (for all subsets B and all points a !∈ B):
Is the point a in the closure of the set B?

This relation is easily displayed by coloring
the edges between covering pairs of subsets
in the Hasse diagram of the Boolean algebra:
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Edge-colored Boolean Algebras

edcba

Figure: The Boolean algebra for 5-element set.
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Edge-colored Boolean Algebras

Edge-colored Boolean Algebras

Figure: Every diamond is one of these four types.

This is yet another cryptomorphic axiomatization of matroids.
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Figure: The (semimodular) rank function of the L-matroid.
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Figure: The edge-colored derived from that rank function.
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Edge-colored Boolean Algebras
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Figure: The edge-colored BA for the L-matroid.
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Edge-colored Boolean Algebras
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Figure: The circuits of the L-matroid.
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Figure: The flats of the L-matroid.
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Edge-colored Boolean Algebras
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Figure: And its associated geometric lattice.
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Edge-colored Boolean Algebras
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Figure: The minor (L\c)− e, simply an interval.
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Figure: The bases for the L-matroid.
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Figure: The Tutte polynomial: int and ext activities.
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Edge-colored Boolean Algebras

The Tutte Polynomial

ρ

1
5 2
8 10 5 1

1
1 2
• 1 2 1 τ

Rank generating function ↔ Tutte Polynomial
ρ(x, y) = τ(x + 1, y + 1)
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Edge-colored Boolean Algebras

Duality
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Figure: Back to the edge-colored BA for the L-matroid.
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Duality
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Figure: Duality, via the opposite Boolean algebra.
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Figure: The dual L∗ of the matroid L.
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Edge-colored Boolean Algebras

Duality
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Figure: The flats of the matroid L∗.
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Edge-colored Boolean Algebras

Edge-colored Lattices, Then and Now

In my thesis I extended these lattice-coloring methods
from Boolean algebras
to distributive lattices,

then to
complemented modular lattices.

Possible Q-analogues of matroids.
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Edge-colored Boolean Algebras

! Edge-colored Lattices, Then and Now

Lattice colorings and edge-labelings also give rise to
combinatorial coalgebras (Rota, Joni, Schmitt),

via the minor coproduct:
∂M =

∑
A⊆S M |A ⊗M \A

The dual Hopf product produced what Bill Schmitt and I called the
free product M(S) " N(T ) of matroids

the freest matroid F (S + T ) (in the weak order) having
F[∅,S] &M and F[S,S+T ] & N .
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Edge-colored Boolean Algebras

! Edge-colored Lattices, Then and Now

Bill and I also completed work on a Hopf algebra project
initiated with Gian Carlo Rota,

the Whitney algebra of a matroid M .

This algebra is formed from the free exterior algebra of
points of M , taking tensor powers,

then dividing out by the ideal generated by
coproducts of dependent sets.

The Whitney algebra is a universal coordinatizing algebra
for matroids.
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Edge-colored Boolean Algebras

! Edge-colored Lattices, Then and Now

Here’s the sort of thing you can do with the Whitney algebra.

ed

c

b

a ed

c

b

a

Figure: ab⊗ cde = ac⊗ bde.
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Edge-colored Boolean Algebras

An Example of the Free Product
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Figure: A point, times a line of two double points.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: A 2-dimensional section of the Boolean algebra.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: The two free factors. Start with action on 2nd factor.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: Copy descending across green.
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Construction of the Free Product

Figure: Lift descending across red.
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Figure: Lift descending across red.
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Construction of the Free Product

Figure: Copy descending across green.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: Lift descending across red (already at max).



Ineffable Cacophony

Edge-colored Boolean Algebras

Construction of the Free Product

Figure: Acting on the first factor.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: Copy passing upward under red.
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Construction of the Free Product

Figure: Truncate passing upward under green.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: The free product on this section of the Boolean algebra.
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Edge-colored Boolean Algebras

Construction of the Free Product

Figure: And here’s where the exchanges occur !
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Single-Element Extension

Extensions of a matroid M by a single point p can be achieved
in a variety of ways, each such extension M ′ being determined
by a substructure of M , either

a modular filter in the lattice of flats of M , or

a linear class of copoints of M

Systematic use of this concept provides inductive proofs of many
theorems of matroid theory.
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Figure: The flats of the matroid L∗.
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Figure: A modular filter.
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Figure: Elements to be duplicated, in yellow.
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Figure: The new elements in pink.
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Figure: Connecting the new elements.
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Figure: The single-element extension L+f .
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Another Single-Element Extension
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Figure: The flats of the matroid L∗.
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Figure: A modular filter.
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Figure: The single-element extension L+f .
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1969, an interesting year, Jack arrives in Waterloo

The University of Waterloo was energetic
in developing strategies for the privatization
of state-funded public universities,

a process showing signs of making headway in France.
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1969, an interesting year, Jack arrives in Waterloo

The University of Waterloo was energetic
in developing strategies for the privatization
of state-funded public universities,

(Canada was about to begin to dismantle
its national railway system,
and was privatizing the Post Office.
The telephone system was already private.)
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1969, an interesting year, Jack arrives in Waterloo

University chancellor = Mr. Pollock, president of Electrohome,
a local electonics manufacturing firm.

Statistics Department linked to Mutual Life Assurance Co,
headquarters in Waterloo.

The Faculty of Mathematics rakes in funds from profitable
alliances with computer manufacturers (IBM, Honeywell).

Deans of the Mathematics chosen for loyalty to this system.

Students were pushed toward cooperative education,
half of their university career at jobs in these businesses.

Combinatorics and Optimization department permits students
to concentrate on these newly developing fields,
avoiding all those nasty prerequisites.
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! 1969, an interesting year, Jack arrives in Waterloo

The C&O department could justify its existence simply
by providing an office for the remarkable Bill Tutte. Since then:

Denis Higgs, Ramchandra Murty,
Jack Edmonds, Adrian Bondy.

The MapleSoft spin-off.

The Digital Oxford dictionary.

Jim Geelen

so at long last the matroid minors project,
Geoff Whittle, Jim Geelen, Bert Gerards,
sequel to Robertson/Seymour/Thomas on graphs.
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! 1969, an interesting year, Jack arrives in Waterloo

4/4/9
Greetings from Jim Geelen and the matroid minors project:

Unfortunately, I will not be attending Jack’s meeting.

The project is going well.
Binary matroids are well-quasi-ordered

and minor-testing is poly-time, as expected.
All of the interesting ideas are in the structure theorem;

the applications follow as for graphs.
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1969, an interesting year, Jack arrives in Waterloo

Figure: The Waterloo campus, with its Math Bldg.
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1969, an interesting year, Jack arrives in Waterloo

Figure: Affectionately called Fort Stanton.
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1969, an interesting year, Jack arrives in Waterloo

Figure: Paraphrasing Claudio Lucchesi:

A structure is Edmonds ⇔ one of its bricks is Edmonds.
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1969, an interesting year, Jack arrives in Waterloo

Combinatorial mathematics was less competitive in those days.
Mathematics research groups had not yet taken to calling

themselves institutes of operations research.

I always wondered at the time why the term optimization, not
pessimization,

is employed, since the main task is more often than not that of
minimization (time, space, cost), not maximization.

LP IP NP
were all being born.
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1969, an interesting year

1967-1973, Balls and Boxes

Combinatorial theory was emerging as a discipline of its own,
and a number of crucial international meetings were held:
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1969, an interesting year

1967-1973, Balls and Boxes

Oberwolfach, 1967.

M.I.T. Summer Seminar in Combinatorial Theory, 1967.

Symposium in Combinatorics, A.M.S., Los Angeles, 1968.

Symposium on honor of Oystein Ore, Yale, 1968.

Calgary Int’l Conference on Combinatorial Structures, 1969.

Combinatorial Theory and its Appl’s, Balatonfured, 1970.

Combinatorial Theory, Chapel Hill, 1970.

Geometry Week, Lakehead University, 1970.

International Congress of Mathematiciens, Nice, 1970.

Geometria Combinatorie, Perugia, 1970.

Geometria Combinatorie, Accademia dei Lincei, Rome, 1973.

Lattice Theory, Houston, 1973.
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1969, an interesting year

! 1969, in Calgary

Jack attended an important meeting in Calgary, Alberta,
Combinatorial Structures and their Applications,

and gave a wonderful 19-page paper
with 138 numbered statements,

mostly statements of theorems, without proofs,
and without examples, entitled

Submodular functions, matroids, and certain polyhedra,
which introduced the concept of polymatroid.

I talked about Dilworth completion of lower-truncated
Boolean algebras, also leaving out the essential proof,

which was subsequently revealed in Jack’s talk.
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1969, an interesting year

! 1969, in Calgary

I should give a simple example of a polymatroid,
and its lattice of flats:

Underlying set E = {a}
Polymatroid P = {(x) | 0 ≤ x ≤ 5} (values at a)

5

4

3

2

1

0

Figure: The lattice of flats of the polymatroid P .
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1969, an interesting year

! 1969, in Calgary

This example convinces me that it would help if
there were a systematic review of connections
to the work on matroids on posets:

Christian Hermann

Ulrich Faigle

Marilena Barnabei, Giorgio Nicoletti, Luigi Pezzoli

Anders Björner, Laszlo Lovasz (greedoids)
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Dilworth Completion

If you truncate a geometric lattice of a matroid M of rank n
at the top, the result is still a geometric lattice.

But if you truncate it at the bottom, removing the points,
semimodularity is destroyed,

This can be corrected by introducing new flats wherever necessary,
a process called Dilworth completion.

Actually, this process was described early on by Juris Hartmanis,
once a Ph.D. student of Bob Dilworth,
in a paper it took me a very long time to understand.
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Dilworth Completion, an example.

Start with the Boolean algebra B4,

Figure: The Boolean algebra B4.
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Dilworth Completion

and lower truncate, removing the points.

Figure: Its lower truncation.
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Dilworth Completion

Figure: It’s not geometric.
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Dilworth Completion

Dilworth Completion

Figure: It’s not geometric.

The atoms ab and cd cover 0 but have join at rank 3.
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Dilworth Completion

Dilworth Completion

Figure: Make some room for the needed copoints.
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Dilworth Completion

Dilworth Completion

Figure: Insert the new copoints.
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Dilworth Completion

Dilworth Completion

Figure: The Dilworth completion, H1,4.
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Dilworth Completion

! Dilworth Completion

The Dilworth completion Hk,n

of the k-fold lower truncation of Bn

has three principal avatars:

The lattice of Hartmanis k-partitions of an n-element set.

The intersection figure of n general hyperplanes (copoints)
in a space of rank n− k.

The matroid of circuits of the uniform matroid Uk,n.

Since 1-partitions are simply partitions,
H1,n is also the lattice of closed subgraphs
of the complete graph Kn.

And the geometry of mirrors in the Coxeter group An−1 = Sn.
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Dilworth Completion

cd

bdbc

ad

ac

ab

*a

*b

*c *d

Figure: The Dilworth completion, H1,4 of the graphic K4.
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Dilworth Completion

abc

abd

acd

bcd

cde

bdebce

ade
ace

abe

*a

*b

*c

*d *e

Figure: The Dilworth completion, H2,5.
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Dilworth Completion

The points of Hk,n, with S a set of cardinality n
are the subsets of S of size k + 1.

Every j-subset T ⊆ S, for k + 1 ≤ j ≤ n,
produces a flat

( T
k+1

)
,

If a point p (as k + 1-set) is a subset of T , we write p 'T .

A set Q ⊆
( n
k+1

)
of points is closed if and only if

Q contains, along with any j distinct points p 'T
in any (k + j)-set T , also all points p 'T .

Statements like this are always hard to read,
painful to check,

but that’s combinatorics.
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Dilworth Completion

! Geometries of Circuits

Any matroid has in principle a number of distinct possibilities for a
geometry of circuits, of which these Dilworth completions are the
most general.

This phenomenon is intrinsic to the concept
of representation of matroids.

Any representation produces an infinite sequence of
derived matroids,
matroids of circuits of circuits of . . . ,
matroids of higher order syzygies.

Circuit geometries were considered by
Edouardo Amaldi this morning.
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Dilworth Completion

Geometries of Circuits

f

e

dc

b

a

f

e

dc

b

a

f

e

dc

b

a

Figure: Possible representations of U3,6.



Ineffable Cacophony

Dilworth Completion

Geometries of Circuits

abcd

abce

abcf

abde

abdf

abef

acde

acdf

acef

adef

bcde

bcdf

bcef

bdef

cdef
abcd

abce

abcf

abde

abdf

abef

acde

acdf

acef

adef

bcde

bcdf

bcef

bdef

cdef

Figure: The Dilworth completion, H3,6 = U ′
3,6 .



Ineffable Cacophony

Dilworth Completion

Dilworth Completion, the series with k = 1

Figure: The complete quadrilateral, H1,4.
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Dilworth Completion

Dilworth Completion, the series with k = 1

Figure: Desargues, rank 4, H1,5.
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Dilworth Completion

Dilworth Completion, the series with k = 1

Figure: super Desargues, rank 5, H1,6.
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Dilworth Completion

! Sublattice embeddings of Hartmanis Lattices Hk,n

Write L =⇒M if every lattice in class L can be represented
as a sublattice of a lattice in class M.

L = finite lattices

G = finite geometric lattices

Hk = lattices Hk,n for all n ≥ k.

Philip Whitman (1941) asked whether L =⇒ H1.

Bob Dilworth (1950s) proved L =⇒ G.

Juris Hartmanis proved Hj =⇒ Hk for all j ≥ 2, k ≥ 2.

P. Pudlàk & Tůma (1977) proved (L) =⇒ H1.

but a reasonable proof with better bounds
would be a fine gift to mankind (l’Humanité).

Especially, H2 =⇒ H1 !!!
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P. Pudlàk & Tůma (1977) proved (L) =⇒ H1.

but a reasonable proof with better bounds
would be a fine gift to mankind (l’Humanité).
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Geometric Homology

2009

From 1974 to 1995 I worked mainly on the matroids
arising in structural mechanics, and scene analysis.

This becoming geometric homology in 1987.
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Geometric Homology

2009

From 1974 to 1995 I worked mainly on the matroids
arising in structural mechanics, and scene analysis.

This becoming geometric homology in 1987.

There are lots of vital applications!
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Geometric Homology

2001

Figure: 911 was an inside job

This was a rigid structure, brought down by controlled demolition.
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Geometric Homology

Structural Rigidity

The matroid Rd,n of generic d-rigidity
is the matroid on the set of edges of a graph on n vertices
having as bases those subgraphs that are
isostatic (just rigid) in general position in d-dimensional space:

d = 1 Spanning trees (ie: graphic matroids)

d = 2 2v − 3 edges on v vertices, no 2v′ − 2 on any v′ < v.
(typical construction from a submodular function.)

d = 3 No known combinatorial characterization!
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Geometric Homology

Structural Rigidity

Prove exchange:

bases, generically isostatic, B, C

Removal of an edge e of B permits a motion,
with one infinitesimal degree of freedom,
which changes the distance between certain pairs of vertices.

Some one of those pairs {a, b} must be an edge f in C.

B − e + f is a rigid,
because the motion had just one degree of freedom.
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Geometric Homology

Structural Rigidity

n=2

n=3

n=4 n=5

n=6

Figure: 3-isostatic graphs, bases of R3,n.
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Geometric Homology

Structural Rigidity

Rank is crudely determined by extending to all edge sets
the function having values

0 1 2 3 4 5 . . . n
0 0 1 3 6 9 . . . 3n− 6

on edge sets of complete graphs Kn.
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Geometric Homology

Structural Rigidity

Figure: Two bananas: satisfies “3v − 6”.
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Geometric Homology

Structural Rigidity

Rigid components (as vertex sets)
don’t have to have any edges!
(replace them by bananas.)
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Geometric Homology

Structural Rigidity

The improved count, including hinges, is even wrong:
Jackson & Jordán, biplanes example.
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Geometric Homology

Structural Rigidity

What are the circuits, or bases?

There’s a problem for all you fans of semimodularity!
Tamás Király, Stephan Thomassé, Jack Edmonds
This is a job for Batman!
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Geometric Homology

2009

And if my friends and colleagues will please stop having
sesqui-decimal birthdays, or worse, memorial services,
maybe I’ll get my book going on Geometric Homology.

Thank you for your attention.
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Abstraction misses Concreteness
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Geometric Homology

from Vincent Duquenne

Concreteness
and

Abstraction
— nothing less !—
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