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Quasi-semi-metrics

Given a set X , a function q : X × X → R≥0 with q(x , x)=0 is a
quasi-distance (or, in Topology, prametric) on X .

A quasi-distance q is a quasi-semi-metric if for x , y , z ∈ X it
holds (oriented triangle inequality)

q(x , y) ≤ q(x , z) + q(z , y)

.

q′ given by q′(x , y)=q(y , x) is dual quasi-semi-metric to q.

(X , q) can be partially ordered by the specialization order:

x � y if and only if q(x , y)=0.

Discrete quasi-metric on poset (X ,≤) is q≤(x , y)=0 if
x � y and =1 else; for (X , q≤), order � coincides with ≤.

A weak quasi-metric is a quasi-semi-metric q with
weak symmetry: q(x , y) = q(y , x) whenever q(y , x) = 0.

An Albert quasi-metric is a quasi-semi-metric q with
weak definiteness: x = y whenever q(x , y) = q(y , x) = 0.
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Quasi-metrics

A quasi-metric (or asymmetric, directed, oriented metric) is a
quasi-semi-metric q with definiteness: x = y iff q(x , y) = 0.
A quasi-metric space (X , q) is a set X with a quasi-metric q.
Asymmetric distances were introduced by Hausdorff in 1914.
Real world examples: one-way streets milage, travel time,
transportation costs (up/downhill or up/downstream).

A quasi-metric q is non-Archimedean (or quasi-ultrametric) if it
satisfy strengthened oriented triangle inequality

q(x , y) ≤ max{q(x , z), q(z , y)} for all x , y , z ∈ X .

Cf. symmetric: distance, semi-metric, metric, ultrametric.

For a quasi-metric q, the functions (qp(x ,y)+qp(y ,x))
1
p

2 , p≥1,

(usually, p = 1 and q(x ,y)+q(y ,x)
2 is called symmetrization of q),

max{q(x , y), q(y , x)}, min{q(x , y), q(y , x)} are metrics.
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Example: gauge quasi-metric

Given a compact convex region B ⊂ Rn containing origin, the
convex distance function (or Minkowski distance function,
gauge) is the quasi-metric on Rn defined, for x 6= y , by

qB(x , y) = inf{α > 0 : y − x ∈ αB}.

Equivalently, it is ||y−x ||2
||z−x ||2 , where z is unique point of the boundary

∂(x + B) hit by the ray from x via y .

It holds B={x ∈ Rn : qB(0, x) ≤ 1} with equality only for x ∈ ∂B.

If B is centrally-symmetric with respect to the origin, then
qB is a Minkowskian metric whose unit ball is B.
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Examples: quasi-metrics on R, R>0, S1

Sorgenfrey quasi-metric is a quasi-metric q(x , y) on R,
equal to y − x if y ≥ x and equal to 1, otherwise.

Some similar quasi-metrics on R are:
q1(x , y) = max{y − x , 0} (l1 quasi-metric),
q2(x , y) = min{y − x , 1} if y ≥ x and equal to 1, else,
Given a > 0, q3(x , y) = y − x if y ≥ x and =a(x − y), else.
q4(x , y) = ey − ex if y ≥ x and equal to e−y − e−x , else.

The real half-line quasi-semi-metric on R>0 is max{0, ln y
x }.

The circular-railroad quasi-metric is a quasi-metric on the
unit circle S1 ⊂ R2, defined, for any x , y ∈ S1, as the length
of counter-clockwise circular arc from x to y in S1.
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Digression: quasi-metrizable spaces

A topological space (X , τ) is called quasi-metrizable space if X
admits a quasi-metric q such that the set of open q-balls
{B(x , r) : r > 0} form a neighborhood base at each x ∈ X .

More general γ-space is a topological space admitting a γ-metric
q ( a function q : X × X → R≥0 with q(x , zn) → 0 if q(x , yn) → 0
and q(yn, zn) → 0) such that the set of open forward q-balls
{B(x , r) : r > 0} form a base at each x ∈ X .

The Sorgenfrey line is the topological space (R, τ) defined by the
base {[a, b) : a, b ∈ R, a < b}. It is not metrizable, 1st (not 2nd)
countable paracompact (not locally compact) T5-space.

But it is quasi-metrizable by Sorgenfrey quasi-metric:
q(x , y) = y − x if y ≥ x , and q(x , y) = 1, otherwise.
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Digraph quasi-metric and metrics

A directed graph (or digraph) is a pair G = (V ,A), where
V is a set of vertices and A is a set of arcs.

The path quasi-metric qdpath in digraph G=(V ,A) is, for
any u, v ∈ V , the length of a shortest (u − v) path in G .
Example: Web hyperlink quasi-metric (or click count) is
qdpath between two web pages (vertices of Web digraph).

The circular metric (in digraph) is qdpath(u, v) + qdpath(v , u).

Chartrand-Erwin-Raines-Zhang, 1999: the strong metric
between u, v ∈ V is the minimum number of edges of strongly
connected subdigraph of G containing u and v .

Chartrand-Erwin-Raines-Zhang, 2001: the orientation metric
between 2 orientations D and D ′ of a graph is the minimum
number of arcs of D whose directions must be reversed to
produce an orientation isomorphic to D ′.
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Examples at large

In Psychophysics, the probability-distance hypothesis:
the probability with which one stimulus is discriminated from
another is a (continuously increasing) function of some
subjective quasi-metric between these stimuli.

Østvang, 2001, proposed a quasi-metric framework for
relativistic gravity.

The Thurston quasi-metric on the Teichmüller space Tg is
1
2 infh ln ||h||Lip for any R∗1 ,R∗2 ∈ Tg , where h : R1 →2 is
a quasi-conformal homeomorphism, homotopic to the identity,
and ||.||Lip is the Lipschitz norm on the set of all injective
functions f : X → Y defined by
||f ||Lip = supx ,y∈X ,x 6=y

dY (f (x),f (y))
dX (x ,y) .
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Point-set distance and its applications

In a (quasi)-metric space (X , d), the point-set distance
between x ∈ X and A ⊂ X is d(x ,A) = infy∈A d(x , y),
The function fA(x) = d(x ,A) is distance map.
Distance maps are used in MRI (A is gray/white matter
interface) as cortical maps, in Image Processing (A is image
boundary), in Robot Motion (A is obstacle points set).

A ⊂ X is Chebyshev set if for each x ∈ X , there is unique
element of best approximation:

y ∈ A with d(x , y) = d(x ,A).

If A ⊂ X (usually, A is the boundary of a solid X ⊂ R3),
skeleton of X is {x ∈ X : |{y ∈ A : d(x , y)=d(x ,A)}| > 1},
i,e. all boundary points of Voronoi regions of points of A.

The directed Hausdorff distance (on compact subspaces of
(X , d)) is qdHaus(B,A) = supx∈B d(x ,A). The Hausdorff
metric is dHaus(A,B) = max{qdHaus(A,B), qdHaus(B,A)}.
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Hausdorff distance

http://en.wikipedia.org/wiki/User:Rocchini

http://en.wikipedia.org/wiki/User:Rocchini
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A generalization: approach space

An approach space (Lowe, 1989) is a pair (X ,D), where X is a
set, and D is a point-set function, i.e., a function
D : X × P(X ) → [0,∞] (where P(X ) is the set of subsets of X )
satisfying, for all x ∈ X and all A,B ⊂ X , to:

1 D(x , {x}) = 0;

2 D(x , {∅}) = ∞;

3 D(x ,A ∪ B) = min{D(x ,A),D(x ,B)};
4 D(x ,A) ≤ D(x ,Aε) + ε, for any ε ≥ 0

(here Aε = {x : D(x ,A) ≤ ε} is “ε-ball” with the center x).

Any quasi-semi-metric space (X , q) is an approach space with
D(x ,A) = miny∈A q(x , y) (usual point-set distance).
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Weightable quasi-semi-metrics

A weightable quasi-semi-metric is a q-s-metric q on X
admitting a weight function w(x) ∈ R on X with
q(x , y)− q(y , x) = w(y)− w(x) for all x , y ∈ X ,
i.e., q(x , y) + 1

2(w(x)− w(y)) is its

symmetrization semi-metric q(x ,y)+q(y ,x)
2 .

w(x) + C is also such weight function for any constant C .
If the set {q(x , y0)− q(y0, x)} is bounded, then weight can be
non-negative; then call w ′(x) = w(x)−miny∈X w(y) ≥ 0
normalized weight function.

q is weightable iff q(x , y)+w(x) is partial semi-metric.

Example. Let q be quasi-metric on X = V3 = {1, 2, 3} with
q21 = q23 = 2 and qij = 1 for other 1 ≤ i 6= j ≤ 3.
Then q is weightable with weight w(i)=1, 0, 1 for i=1, 2, 3.
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Partial semi-metrics

A function p : X × X → R≥0 with p(x , y) = p(y , x) is
a partial semi-metric (Matthews, 1992) if for x , y , z ∈ X , it holds
1) p(x , x) ≤ p(x , y) and
2) sharp triangle inequality:

p(x , y) ≤ p(x , z) + p(z , y)− p(z , z).

Dropping 1): weak partial semi-metric. Example: (R≥0, x+y).
If, moreover, 2) is weakened to p(x , y) ≤ p(x , z)+p(z , y), then
p is a dislocated metric (or Matthews metric domain).

Function p is a partial semi-metric iff q= p(x , y)-p(x , x) is a
weightable q-s-metric with w(x)=p(x , x) and p is partial metric
(i.e. T0-separation holds: x=y if p(x , x)=p(x , y)=p(y , y)=0)
if and only if, moreover, q is an Albert quasi-metric.

Güldürek and Richmond, 2005: every topology on a finite set X is
defined, for x ∈ X , by cl{x}={y ∈ X : y � x}, where x � y
means p(x , y)=p(x , x) for a partial semi-metric p.
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Weak partial semi-metrics

A function p : X × X → R≥0 with p(x , y) = p(y , x) is a weak
partial semi-metric (Heckmann, 1997) if for all x , y , z ∈ X ,
it holds p(x , y) ≤ p(x , z)+p(z , y)-p(z , z). For x=y , it gives

the weakening p(x , z) ≥ p(x ,x)+p(z,z)
2 of p(x , z) ≥ p(x , x).

On any set X , d(x , y)=p(x , y)-p(x ,x)+p(y ,y)
2 , w(x)=p(x ,x)

2 and
p(x , y)=d(x , y)+w(x)+w(y) is a bijection between weak partial
semi-metrics p and weighted semi-metrics (d ,w) (w : X → R≥0).
Moreover, p is partial metric iff d is metric.

In weak partial semi-metric space (X , p), define open ball
B(x , r)={y ∈ X : p(x , y) < r}. Call U ⊂ X open if for all x ∈ U
there is ε > 0 with B(x , ε) ⊂ U. The open sets form topology with
basis the balls B(x , r); in general, not T2 (Hausdorff).
Its specialization preorder induced by p is x � y if and only if
p(x , y) ≤ p(a, a). It is partial order iff p is weak partial metric.
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Digression on Semantics of Computation

A poset (X , x � y) is dcpo if it has a smallest element and each
directed subset A ⊂ X (i.e. A 6= ∅ and for any x , y ∈ A, exists
z ∈ A with x , y � z) has a supremum supA in X .
Let XC be the set of compact x ∈ X , i.e. for each directed subset
A with x � supA, there is a ∈ A with x � a.
A Scott domain is a dcpo where all sets {a ∈ XC : a � x} are
directed with sup=x and each consistent A ⊂ X (i.e. there exists
x ∈ X with a � x for all a ∈ A) has supremum in X .
Main examples: all words over finite alphabet with prefix order, all
vague real numbers (nonempty segments of R) with reverse
inclusion order, all subsets of N under inclusion

Quantitative Domain Theory: a ”distance” between programs
(points of a semantic domain) is used to quantify speed (of
processing or convergence) or complexity of programs.
x � y (program y contains all info from x) is specialization
preorder (x � y iff p(x , y)=p(x , x)) for a partial metric p on X .
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Quantale-valued partial metrics

Scott’s domain theory gave partial order and non-Hausdorff
topology on partial objects in computation.
In computation over a metric space of totally defined objects,
partial metric models partially defined information: p(x , x) > 0
(=0) mean that object x is partially (totally) defined.

A quantale is a complete lattice M with an associative binary
operation ∗ with x ∗ ∨i∈I yi=∨i∈I (x ∗ yi ), ∨i∈I yi ∗ x=∨i∈I (yi ∗ x).
Kooperman-Mattews-Rajoonesh, 2004: any topology can arise
from a quantale-valued partial metric.

Another way to see: fuzzy non-reflexive equalities. Hohle, 1992:
for a commutative quantale M=(M,≤, 1, 0,∨,∧, ∗), multivalued
(M-valued) set is a set X equipped with a fuzzy equality, i.e., a
map E : X × X → M subject to E (x , x) = 1, E (x , y)=E (y , x) and
E (x , y) ∗ E (y , z) ≤ E (x , z) for x , y , z ∈ X .
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WQSMETn and PSMETn, wPSMETn

Clearly, all weightable quasi-semi-metrics on n-set
X = [n] = {1, 2, . . . , n} form a polyhedral convex cone of
dimension

(n
2

)
+ n =

(n+1
2

)
. Denote it by WQSMETn.

WQSMETn is the section of QSMETn by
(n
3

)
hyperplanes

xyzx = xzyx of relaxed symmetry defined next.

Denote by PSMETn and wPSMETn the cones of partial and weak
partial semi-metrics on n-points.
They have 3

(n
3

)
+n2 and 3

(n
3

)
+

(n+1
2

)
facets, respectively. They are

relaxations of
(n
2

)
-dim. cone SMETn of all n-points semi-metrics.
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Relaxed and cyclic symmetry

Quasi-semi-metric q on X has relaxed symmetry
(xyzx = xzyx) if for different x , y , z ∈ X it holds

q(x , y) + q(y , z) + q(z , x) = q(x , z) + q(z , y) + q(y , x), i.e.

q(x , y)− q(y , x) = (q(z , y)− q(y , z))− (q(z , x)− q(x , z)),
Equivalently, q is weightable: fix point z0 and define
w(x) = q(z0, x)− q(x , z0).

Given k ≥ 3, quasi-semi-metric q is k-cyclically symmetric if
x1x2x3 . . . xkx1 = x1xkxk−1 . . . x2x1, for x1x2 . . . xk ∈ X .
The case k = 3 (relaxed symmetry) is equivalent to the
general case of any k ≥ 3. For example, for k = 4,
(x1x2x3x1-x1x3x2x1)+(x1x3x4x1-x1x4x3x1)=
x1x2x3x4x1-x1x4x3x2x1 and, in other direction,
(x1x2x3x4x1-x1x4x3x2x1)+(x1x2x4x3x1-x1x3x4x2x1)+
(x1x4x2x3x1-x1x3x2x4x1)=2 (x1x2x3x1-x1x3x2x1).
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x1x2x3 . . . xkx1 = x1xkxk−1 . . . x2x1, for x1x2 . . . xk ∈ X .
The case k = 3 (relaxed symmetry) is equivalent to the
general case of any k ≥ 3. For example, for k = 4,
(x1x2x3x1-x1x3x2x1)+(x1x3x4x1-x1x4x3x1)=
x1x2x3x4x1-x1x4x3x2x1 and, in other direction,
(x1x2x3x4x1-x1x4x3x2x1)+(x1x2x4x3x1-x1x3x4x2x1)+
(x1x4x2x3x1-x1x3x2x4x1)=2 (x1x2x3x1-x1x3x2x1).
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Realizations by weighted (di)graphs

Any finite semi-metric d is the shortest path semi-metric of a
R≥0-weighted graph G .
G can be a tree if and only if d satisfy to 4-points inequality:
d(x , y) + d(z , u) ≤ max{d(x , z) + d(y , u), d(x , u) + d(y , z)}.

Any finite quasi-semi-metric q is the shortest path q-s-metric
of a R≥0-weighted digraph G .
Patrinos-Hakimi, 1972: G can be a bidirectional tree (a
tree with all edges replaced by 2 oppositely directed arcs) if
and only if q is weightable and q(x , y) + q(y , x) is
tree-realizable.
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Weightable hitting time quasi-metric

Given connected graph G = (V ,E ) with |E | = m, consider random
walks on G , where at each step walk moves with uniform
probability from current vertex a neighboring one.

The hitting time quasi-metric H(u, v) from u ∈ V to v ∈ V is
the expected number of steps (edges) for a random walk on G
beginning at u to reach v for the first time; put H(u, u) = 0.
This quasi-metric is weightable.

The commuting time metric is C (u, v) = H(u, v) + H(v , u).
It holds C ((u, v) = 2mΩ(u, v), where Ω(u, v) is the effective
resistance metric: 0 if u = v and, else, 1

Ω(u,v) is the current

flowing into grounded v when potential 1 volt is applied to u (each
edge is seen as a resistor of 1 ohm). Ω(u, v) is

supf :V→R, D(f )>0
(f (u)−f (v))2

D(f ) with D(f ) =
∑

st∈E (f (s)− f (t))2.
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z0-derivations of semi-metrics

Given semi-metric space (X , d) and z0 ∈ X , its z0-derivation is
q-s-metric q(x , y)=1

2(d(x , y)+d(y , z0)-d(x , z0)). So, d=q + q′, q
is weightable with w(x)=d(x , z0)=q(z0, x) and q(x , z0)=0.
Weightable q-s-metric q is z0-derivation of q+q′ iff q(x , z0)=0.

Quasi-metric q is z0-derivation of a metric d iff partial metric
p(x , y)=q(x , y) + w(x)) is 1

2(d(x , y)+d(y , z0)+d(x , z0)).

Clearly, z0-derivations of semi-metrics d ∈ SMETn for fixed
z0 = i ∈ X = [n] form a cone DiWQSMETn ⊂ WQSMETn.

Any inequality
∑

1≤i ,j≤n aijdij ≥ 0, valid for d ∈ SMETn, implies,
valid for q ∈ Dz0WQSMETn, inequality∑

1≤i ,j≤n aijqij +
∑

1≤i ,j≤n aijd(j , z0)−
∑

1≤i ,j≤n aijd(i , z0) ≥ 0.
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lp-quasi-metrics

On a normed vector space (V , ||.||), its norm metric is

||x − y ||
.
The lp-metric is ||x − y ||p norm metric on Rm (or on Cm):

||x ||p=(
∑m

i=1 |xi |p)
1
p for p ≥ 1 and ||x ||∞= max1≤i≤m |xi |.

The Euclidean metric (or Pythagorean distance,
as-crow-flies distance, beeline distance) is l2-metric on Rm.

lp-quasi-metric on Rm is z0-derivation of lp-metric with
z0=(0, . . . , 0), i.e. it is oriented lp-norm ||x − y ||p, or=

(
∑m

i=1 |xi − yi |p)
1
p + (

∑m
i=1 |yi |p)

1
p − (

∑m
i=1 |xi |p)

1
p and

lmp, or is the quasi-metric space (Rm, ||x − y ||p, or ),

lp-QSMETn is the set of all lp q-s-metrics on n points;
it is (as for semi-metrics) a cone exactly for p = 1,∞.

(l2-QSMETn)
2={q2 : q ∈ l2-QSMETn} is a cone also.
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l1 and l∞ quasi-metrics

In particular, l1-quasi-metric on Rm
≥0 is∑m

i=1(|xi − yi |+ |yi | − |xi |) = 2
∑m

i=1 max{yi − xi , 0}
and l∞-quasi-metric is 2max1≤i≤m max{yi − xi , 0}.
Any q-s-metric q on n points embeds in lm1, or for some m iff
q ∈ OCUTn (the cone generated by all oriented cuts on [n]).

Any q-s-metric q on n points embeds into ln∞, or .
In fact, let v1, . . . , vn ∈ Rn be
vi = (q(i , 1), q(i , 2), . . . , q(i , n)).
Then ||vi − vj ||∞, or = maxk(q(j , k)− q(i , k), 0) ≤ q(j , i),
while q(j , i)− q(i , i) = q(j , i); so, ||vi − vj ||∞, or = q(j , i).

Example: on R≥0, to the partial metric p(x , y) = max{x , y}
corresponds l1 quasi-metric q(x , y) = max{x , y}-x = max{y -x , 0}
with weight w(x) = x and

d(x , y)=q(x ,y)+q(y ,x)
2 = |x−y |

2 =p(x , y)- x+y
2 (twice l1 metric).
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Embedding between lp quasi-metrics

Clearly, any isometric embedding f of semi-metric spaces (X , dX )
into (Y , dY ) is isometric embedding of z0-derivations of (X , dX )
into f (z0)-derivation of (Y , dY ).
So (as well as for semi-metrics), it holds:

Any lp-quasi-metric with 1 ≤ p ≤ 2 is a l1-quasi-metric.

Any l1-quasi-metric is the square of a l2-quasi-metric.

Any quasi-metric is a l∞-quasi-metric.

So, l2-QSMETn⊂l1-QSMETn⊂(l2-QSMETn)
2 holds; it generalizes

l2-SMETn⊂l1-SMETn⊂(l2-SMETn)
2, where, for semi-metrics,

(l2-SMETn)
2 is the negative type cone NEGn and l1-SMETn is

the cut cone CUTn.



General Weightable l1 Cones Hypercube Hamiltonian Sink References

Measure quasi-semi-metric versus l1

Given a measure space (Ω,A, µ), the symmetric difference
(or measure) semi-metric on the set
Aµ = {A ∈ A : µ(A) < ∞} is µ(A4B) (where A4B=
(A ∪ B)\(A ∩ B) = (A\B) ∪ (B\A) is the symmetric
difference of sets A,B) and 0 if µ(A4B) = 0. Identifying
A,B ∈ Aµ if µ(A4B) = 0, gives the measure metric.
If µ(A) = |A|, then µ(A4B) = |A4B| is a metric.

Measure quasi-semi-metric on the set Aµ is z0-derivation of
the measure semi-metric for z0 = ∅, i.e. it is
q(A,B) = µ(A4B) + µ(B)− µ(A) = µ(B\A).

In fact (as well as in the metric case), a q-s-metric is
l1-quasi-metric if and only if it is a measure quasi-metric.
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n-cube: inclusion (Boolean) orientation

Label vertices of n-cube by numbers 0, . . . , 2n − 1; their binary
expansions label all subsets A of [n] = {1, . . . , n}.
Hasse diagram of the Boolean lattice 2[n] is inclusion-oriented
n-cube: do arc from A to B if A ⊂ B and |B\A|=1.
Its path quasi-semi-metric is |B\A| if A ⊂ B and =∞, else,
while Hamming semi-distance is l1 quasi-metric |B\A|, i.e.
|B\(B ∩ A)|=

∑n
i=1 max{1i∈B − 1i∈A, 0}=

∑n
i=1 1i∈B(1− 1i∈A).

0
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54

6

2 3

1

7

15

98

10 11
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The cones under consideration

l1SMETn=CUTn=MCUTn=BSMETn⊂ SMETn=l∞SMETn;

l1QSMETn=OCUTn⊂WQSMETn⊂QSMETn=l∞QSMETn,

and OCUTn⊂OMCUTn⊂BQSMETn⊂QSMETn, where

MCUTn,OMCUTn are generated by multicuts, o-multicuts, and
BSMETn,BQSMETn are generated by {0, 1}-valued semi-metrics,
{0, 1}-valued quasi-semi-metrics.

Also, l1-PSMETn=BPSMETn⊂PSMETn, where
PSMETn={p = ((pij = qij + wi ))} : q = ((qij)) ∈ WQSMETn,
l1-PSMETn={p = ((pij = qij + wi ))} : q = ((qij)) ∈ OCUTn, and
BPSMETn is generated by {0, 1}-valued p ∈ PSMETn.
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Oriented cut quasi-semi-metrics

Given a subset S of [n] = {1, . . . , n}, the oriented cut
quasi-semi-metric (or o-cut) δ(S)

′
is a quasi-semi-metric on [n]:

δ
′
ij(S) = |(S ∩ {i})\(S ∩ {j})| =

{
1, if i ∈ S , j 6∈ S ,
0, otherwise.

δ
′
(S) is, for any z0 ∈ S , z0-derivation of the cut semi-metric

δ(S)=δ
′
(S) + δ

′
([n]\S) (twice of symmetrization of δ

′
(S)).

Quasi-semi-metric δ
′
(S) is weightable with w(i) = 1i /∈S .

Oriented cut cone OCUTn is
(n+1

2

)
-dimensional subcone of

WQSMETn generated by 2n-2 non-zero o-cuts δ
′
(S) of [n].

OCUTn=l1-QSMETn, the cone of n points l1 q-s-metrics.
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Oriented multicut quasi-semi-metrics

Given an ordered partition {S1, . . . ,St}, t ≥ 2, of [n], oriented
multicut quasi-semi-metric (or o-multicut) δ

′
(S1, . . . ,St) is:

δ
′
ij(S1, . . . ,St) =

{
1, if i ∈ Sh, j ∈ Sm,m > h,
0, otherwise.

The multicut semi-metric δ(S1, . . . ,St) is symmetrization
δ
′
(S1, . . . ,St)+δ

′
(St , . . . ,S1) of q-s-metric 2δ

′
(S1, . . . ,St).

An o-multicut δ
′
(S1,S2) is exactly o-cut δ

′
(S1).

Lemma: o-cuts are exactly weightable o-multicut q-s-metrics
In fact, let i∈S1, j∈S2, k∈S3 in q-s-metric q=δ

′
ij(S1, . . . ,Sq).

If q is weightable, then q(i , j) = w(j)− w(i) = 1. Impossible,
since q(i , k) = w(k)− w(i) = 1, q(j , k) = w(k)− w(j) = 1.
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Oriented cuts with n = 3

There are 7 oriented cut q-s-metrics on 3 points, given by binary(3
2

)
-vectors indexed as (12, 13; 21, 23; 31, 32):

δ
′
({∅}) = δ

′
({1, 2, 3}) = (0, 0; 0, 0; 0, 0),

δ
′
({1}) = (1, 1; 0, 0; 0, 0),

δ
′
({2}) = (0, 0; 1, 1; 0, 0),

δ
′
({3}) = (0, 0; 0, 0; 1, 1),

δ
′
({1, 2}) = (0, 1; 0, 1; 0, 0),

δ
′
({1, 3}) = (1, 0; 0, 0; 0, 1),

δ
′
({2, 3}) = (0, 0, 1, 0, 1, 0).

Example. Let again q be quasi-metric on X = V3 = {1, 2, 3} with
q21 = q23 = 2 and qij = 1 for other 1 ≤ i 6= j ≤ 3.
Then q = δ

′
({1}) + 2δ

′
({2}) + δ

′
({3}), i.e. q ∈ OCUT3.
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Oriented multicuts versus oriented cuts

There are 6 oriented multicuts on 3 points, in addition to 7
oriented cuts, listed above:

δ
′
({1}, {2}, {3}) = (1, 1; 0, 1; 0, 0),

δ
′
({2}, {1}, {3}) = (0, 1; 1, 0; 0, 0),

δ
′
({1}, {3}, {2}) = (1, 1; 0, 0; 0, 1),

δ
′
({2}, {3}, {1}) = (0, 0; 1, 1; 1, 0),

δ
′
({3}, {1}, {2}) = (1, 0; 0, 1; 1, 1),

δ
′
({3}, {2}, {1}) = (0, 0; 1, 0; 1, 1).

Every multicut is R≥0-linear combination of cuts, while any
oriented multicut with t > 2 is a R-linear but not R≥0-linear
combination of o-cuts, since it is non-weightable q-s-metric.

The number of oriented multicuts on [n] is ordered Bell number
Bo(n) (the sequence A00670 in Sloan’s OEIS).



General Weightable l1 Cones Hypercube Hamiltonian Sink References

Oriented multicuts versus oriented cuts

There are 6 oriented multicuts on 3 points, in addition to 7
oriented cuts, listed above:

δ
′
({1}, {2}, {3}) = (1, 1; 0, 1; 0, 0),

δ
′
({2}, {1}, {3}) = (0, 1; 1, 0; 0, 0),

δ
′
({1}, {3}, {2}) = (1, 1; 0, 0; 0, 1),

δ
′
({2}, {3}, {1}) = (0, 0; 1, 1; 1, 0),

δ
′
({3}, {1}, {2}) = (1, 0; 0, 1; 1, 1),

δ
′
({3}, {2}, {1}) = (0, 0; 1, 0; 1, 1).

Every multicut is R≥0-linear combination of cuts, while any
oriented multicut with t > 2 is a R-linear but not R≥0-linear
combination of o-cuts, since it is non-weightable q-s-metric.

The number of oriented multicuts on [n] is ordered Bell number
Bo(n) (the sequence A00670 in Sloan’s OEIS).



General Weightable l1 Cones Hypercube Hamiltonian Sink References

Linear description of QSMETn

cone dim. Nr. of ext. rays (orbits) Nr. of facets (orbits) diam.
OMCUT3
=QSMET3 6 12(2) 12(2) 2; 2
OMCUT4 12 74(5) 72(4) 2; 2
QSMET4 12 164(10) 36(2) 3; 2
OMCUT5 20 540(9) 35320(194) 2; 3
QSMET5 20 43590(229) 80(2) 3; 2

OMCUT6 30 4682(19) > 2.1 · 109(> 1.6 · 106) 2; ?

QSMET6 30 > 1.8 · 109(> 1.2 · 106) 150(2) ?; 2

The orbits are under the symmetry group Z2 × Sym(n): n!
permutations of [n] = {1, . . . , n} and the reversal (ij) → (ji).

QSMETn has n(n − 1)2 facets in 2 orbits: 6
(n
3

)
oriented triangle

inequalities and n(n − 1) inequalities q(x , y) ≥ 0.
Moreover, they are also facets of OCUTn and so, of cones
WQSMETn, OMCUTn and BQSMETn containing OCUTn.
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permutations of [n] = {1, . . . , n} and the reversal (ij) → (ji).

QSMETn has n(n − 1)2 facets in 2 orbits: 6
(n
3

)
oriented triangle

inequalities and n(n − 1) inequalities q(x , y) ≥ 0.
Moreover, they are also facets of OCUTn and so, of cones
WQSMETn, OMCUTn and BQSMETn containing OCUTn.
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Cones on 3 points (all 6-dimensional)

The cone OCUT3 of l1 q-s-metrics on 3 points coincides with the
cone of weightable quasi-semi-metrics WQSMET3.
It has 6 extreme rays in 2 orbits of sizes 3, 3 represented by o-cuts
δ
′
({1})=(1, 1; 0, 0; 0, 0) and δ

′
({1})=(0, 0; 1, 0; 1, 0),

and 9 = 6 + 3 facets represented by qij ≥ 0 and Trij ,k ≥ 0.

Larger cone OMCUT3 = BQSMET3 = QSMET3 has 12 extreme
rays in 3 orbits represented by two above o-cuts and the
o-multicut δ

′
({1}, {2}, {3}) = (1, 1; 0, 1; 0, 0),

and 12 = 6 + 6 facets represented by qij ≥ 0 and Trij ,k ≥ 0.

Cone l1-PSMET3=PSMET3 has 13=1+3+3+3+3 extreme rays
represented by (1, 1; 1, 1; 1, 1), P(δ

′
({1})), P(δ′({1})),

P(δ({1})) = δ({1}) = δ′({1}) + δ′({1}, P(δ′({1}) + δ′({2}),
and 12=6+3+3 facets repr. by pij ≥ pii , Trij ,k ≥ pkk , pii ≥ 0.



General Weightable l1 Cones Hypercube Hamiltonian Sink References

Anti-o-multicut quasi-semi-metrics

Given proper partition {S1, . . . ,St}, 2 ≤ t ≤ n, of {1, . . . , n},
anti-o-multicut q-s-metric (or anti-o-multicut) α

′
(S1, . . . ,St) is

1− δ
′
ij(S1, . . . ,St) if 1 ≤ i 6= j ≤ n and = 0, else.

It is a {0, 1}-valued q-s-metric, which is weightable iff t=2 (i.e. for
anti-o-cut α

′
(S ,S)) with weight function w(x) = 1x∈S .

Anticut semi-metric
α(St , . . . ,S1)=α

′
(S1, . . . ,St)+α

′
(St , . . . ,S1) (twice

symmetrization) is graph path-metric d(K|S1|,...,|St |).

For semi-metrics, SMETn = CUTn if n ≤ 4, and all extreme rays
of SMET5 are all 24 − 1 non-zero cuts and all

(5
2

)
anticuts

α({a1, a2}, {a3, a4, a5}) (permutations of d(K2,3)).

Are α
′
, except α

′
({1}, [n]\{1})=

∑n
s=2 δ

′
({s}, [n]\{s}) and

α
′
({1}, . . . , {n})=δ

′
({n}, . . . , {1}) , extreme in QSMETn?
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Extreme rays of QSMET4, QSMET5

QSMET4 has 164 extreme rays in 10 orbits. Among 8
{0, 1}-valued ones (116 ext. rays of BQSMET4), 5 are of 6=0
o-multicuts (74 ext. rays of OMCUT4), including o-cuts δ

′
({1}),

δ
′
({1, 2}) (14 ext. rays of OCUT4), and 3 of anti-o-multicuts

α
′
({1, 2}, {3, 4}), α

′
({1}, {2}, {3, 4}), α

′
({1}, {2, 3}, {4}).

QSMET5 has 229 orbits of extreme rays. Among 29 {0, 1}-valued
ones, 9 are of all o-multicuts δ

′
(S1, . . . ,St)6=0 (including δ

′
({1}),

δ
′
({1, 2})) and 7 are of anti-o-multicuts.

Only 3 {0, 1}-valued ones consist of weightable q-s-metrics:
2 above orbits of o-cuts and one of anti-o-cuts α

′
({1, 2}).
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Cones PSMETn and l1-PSMETn

cone dim. Nr. of ext. rays (orbits) Nr. of facets (orbits) diam.
CUT3=SMET3 3 3(1) 3(1) 1; 1
CUT4=SMET4 6 7(2) 12(1) 1; 2

CUT5 10 15(2) 40(2) 1; 2
SMET5 10 25(3) 30(1) 2; 2
CUT6 15 31(3) 210(4) 1; 3

SMET6 15 296(7) 60(1) 2; 2

l1-PSMET3=PSMET3 6 13(5) 12(3)
l1-PSMET4 10 44(9) 46(5)
PSMET4 10 62(11) 28(3)

l1-PSMET5 15 166(14) 585(15)
PSMET5 15 1696(44) 55(3)

l1-PSMET6 21 705(23)
PSMET6 21 337092(734) 96(3)
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{0, 1}-valued partial semi-metrics

All such elements of PSMETn are
∑

0≤i≤n

(n
i

)
B(n − i) elements

(
∑

0≤i≤n Q(i) orbits under Sym(n)) of the form
J(S0) + δ(S0,S1, . . . ,St) = P(

∑
1≤i≤t δ′(Si )), where S0 is any

subset of [n] = {1, . . . , n} and S1, . . . ,St is any partition of S0.

2n−1 +
∑

1≤i≤n−1

(n
i

)
B(n − i) among them (1 + bn

2c+∑
1≤i≤n−1 Q(i) orbits) represent extreme rays: ones with t = 2 if

S0 = ∅ (w.l.o.g. suppose Si 6= ∅ for 1 ≤ i ≤ t).

Here partition number Q(i) is the number of ways to write i as a
sum of positive integers;
Bell number B(i) is the number of partitions (multicuts) of [i ],
while the numbers of cuts =2i−1, of o-cuts =2i , of o-multicuts is
ordered Bell number Bo(i) of ordered partitions of [i ].
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{0, 1}-valued partial semi-metrics

See below p=((pij))=J({67})+δ({1}, {23}, {45}, {67})=P(q)
(0, 1-valued extreme ray of PSMET7) and its quasi-semi-metric
q=((qij=pij -pii ))=δ({1})+ δ({23})+δ({45})+δ({67})
({0, 1}-valued non-extreme ray of WQSMET7).

0 1 1 1 1 1 1 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0

Unique orbit of simplicial (belong to
(n+1

2

)
-1 facets) {0, 1}-valued

extreme rays of PSMETn consists of n rays
∑n

1,i 6=j δ′({i}),
1 ≤ j ≤ n, i.e. J({j})+δ({j},S1, . . . ,Sn−1) with all |Si |=1.
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Facets of l1-PSMETn

Let b = (b1, . . . , bn) ∈ Zn and
∑

(b) =
∑n

i=1 bi ∈ {0, 1}. Then
hypermetric inequality Hypp(b) :

∑
1≤i ,j≤n bibjpij ≤

∑n
i=1 bipii

and, for max1≤i≤n |bi | ≤ 2, modular inequality

Ap(b) :
∑

1≤i ,j≤n bibjpij ≤
∑n

i=1,bi 6=0(2− |bi |)pii

are valid, for any p = ((pij)) ∈ l1-PSMETn.

PSMETn has 3 orbits of facets, represented by pii ≥ 0,
Hypp(1,−1, 0, . . . , 0) and Hypp(1, 1,−1, 0, . . . , 0).

l1-PSMET3=PSMET3.
l1-PSMET4, besides 3 orbits of PSMET4 has 2 orbits of facets,
represented by Hypp(1, 1,−1,−1), Ap(2, 1,−1,−1).
l1-PSMET5, besides 3 orbits of PSMET5, has 12 orbits of facets
including represented by Hypp(b) with b = (1, 1, 1,-1,-1),
(1, 1,-1,-1, 0), (1, 1, 1,-1,-2), (2, 1,-1,-1,-1) and Ap(b) with
b = (2, 1,-1,-1, 0), (2, 2,-1,-1,-1), (2, 1, 1,-1,-2), (3, 1,-1,-1,-1).
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Generalities on oriented n-cubes

We consider only oriented (or unidirectional) n-cubes, since
there is no bidirectional electrical/optical converter and full-duplex
transmission in optical fiber networks is costly.
The number of all orientations of n-cube H(n) is 2n2n−1

.

Robbins, 1939: connected graph has strong orientation (i.e.
strongly connected) if and only if it is bridgeless.
The number of strong orientations of n-cube is unknown.

In n-cube (as in any oriented bipartite graph), any 2 directed paths
joining two fixed points have lengths equal modulo 2.
So, symmetrization q(x ,y)+q(y ,x)

2 of quasi-metric q=q(Q(n)) of
any its strong orientation Q(n) is integer-valued.

A vertex i in a n-cube is called even if its binary expansion has
even number of ones and odd, otherwise.
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O-diameter of oriented n-cube

Given a graph of diameter d and its strong orientation O, oriented
diameter (or o-diameter) DO is maximal length of shortest
directed (u, v)-path.

Clearly, DO ≥ d ; orientation O called tight if DO = d .

Chvatal-Thomassen, 1978: 2d2 + 2d ≤ maxO DO ≤ 5d2 + d .

Among strong orientations O of n-cube, minO DO = ∞, 3, 5 and n
for n = 1, 2, 3 and (McCanna, 1988) n ≥ 4, respectively.

For strong orientation O, d(u, v)=n implies qO(u, v)=n. It suffice
to show qO(0, 2n − 1)≤n. For 1≤i<n, exists ≥1 arc (u, v) with
i , i+1 ones in label {0, 1}-expansions of u, v .

Everett-Gupta, 1989: there exists an acyclic (not strong)
orientation of n-cube with finite length of shortest directed
(u, v)-path ≥ Fn+1 (Fibonacci number), i.e. > (3

2)n−1.
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Connectivity

Given a digraph D = (V ,A), its vertex-connectivity κ (resp.
arc-connectivity λ) is the minimum number of vertices (resp.
arcs) needed to disconnect it. By Menger’s theorem
(max-flow-min-cut), κ (resp. λ) is minimum over u, v ∈ V of the
number of vertex- (resp. arc-) disjoint (u, v)-paths.

High connectivity of network D improve its fault-tolerance and
communication performance (routing, broadcasting).

An Hamilton (u, v)-path in a graph is (u, v)-path visiting any
vertex exactly once. In n-cube, it exists iff d(u, v) is odd.
A graph is k-vertex (resp. k-edge Hamiltonian) if it remains
Hamiltonian after deleting any k vertices (resp. edges).

A (di)graph is Eulerian if exists a (directed) circuit visiting any
(arc) edge exactly once; eqv., it is (strongly) connected and any
vertex v has (indegree(v)=outdegree(v)) even degree.
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Mini-cubes Q(n)

1-cube Q(1) has two orientations.

0 1

2-cube Q(2) has two strongly connected orientations.

0

2 3

1

The symmetrization D(Q(2)) = ((Dij))=((1
2(qij + qji ))) of

its quasi-metric q = ((qij)) is 2d(K4), while H(2) = C4.
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3-cube: Chou-Du orientation QCD(3)

0

2 3

1

76

4 5

Chou-Du orientation QCD(n) come from 2 factors QCD(n − 1)
with mutually reversed orientations (above inside, outside squares
QCD(2)) and, on remaining matching, arcs from each even vertex
to its odd match. The symmetrization of its quasi-metric qCD(3) is
2d(K8 − C0527 − C6341).
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3-cube: Chou-Du orientation QCD ′(3)

0

2 3

1

76

4 5

For odd n ≥ 3, 2nd Chou-Du orientation QCD′(n) come from
two factors QCD(n − 1) with the same orientation (above inside
and outside squares QCD(2)) and, on remaining matching, again
arcs from each even vertex to its odd match.
For even n, QCD′(n) = QCD(n).
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Chou-Du orientations CD, CD ′

Chou-Du, 1990: both Q(n), as communication network (for
high-speed computing using optical fibers as links), have
efficient routing and short delay since are small:

oriented diameter: n+1 for even n and n+2 for odd n > 1
(for CD), 5 for n=3 and n+1 for other n > 1 (for CD ′) and

mean distance
n2n−1+2n( n−1

bn/2c)
2n−1 ,

n2n−1+(n−1)( n−1
bn/2c)+2

2n−1 (n odd).

Let C (x , y) be a largest set of vertex-disjoint (x , y)-paths
(max-container), L(C (x , y)): longest path length in C (x , y).
Wide-diameter: max(x ,y) minC(x ,y) L(C (x , y)); ≥ o-diameter

Jwo-Tuan, 1998: CD, CD ′ are maximally fault-tolerant, since
|C (x , y)| ≤ min(out(x), in(y)) become equality.

Lu-Zhang, 2002: wide-diameters of CD, CD ′ are n + 2.
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Chou-Du orientation QCD(4)=QCD ′(4)
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4-cube: McCanna orientation QMC (4)

McCanna, 1988, gave this tight (i.e. with oriented diameter
n = 4) orientation of 4-cube.
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Generalized McCanna orientation

For n ≥ 4, generalized McCanna orientation QMC (n) come
from 2 factors QMC (n-1) with same orientation and, on remaining
matching, arcs from each even vertex to its odd match.
A vertex i in a n-cube is called even if its binary expansion has
even number of ones and odd, otherwise.

Its oriented diameter is minimal: n, i.e. QMC (n) is tight.

Its vertex- and arc-connectivity are maximal: κ=λ=bn
2c.

Fraigniaud-König-Lazard, 1992: it is Hamiltonian iff n ≥ 5.
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n-cube: signature-defined orientations

Given an orientation O of n-cube, its signature is ±1-valued
n-vector aO = (a1, a2, . . . , an) with ai = +1 if the edge (0, 2i ) is
oriented in O by arc (0, 2i ) and ai = −1 if this edge is oriented by
(incoming to 0) arc (2i , 0).
Excess of signature is the difference e between number of 1’s and
−1’s in it. 0 is source if e = n and sink if e = −n.

An orientation is signature-defined if any its arc is uniquely
defined by arcs involving 0.

It is ‖-defined if any its arc has the same orientation (from even
to odd vertex) as the parallel edge involving 0.
Cariolaro: ‖-defined orientation is strongly connected iff |e| < n.

Chou-Du orientation CD is ‖-defined, while CD ′, McCanna and
Hamiltonian orientations are only signature-defined.
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Hamiltonian decomposition of H(n)

Alspach-Bermond-Sotteau, 1990: edge-set of H(n) can be
decomposed into n

2 disjoint Hamilton cycles, if n is even, and into
n−1
2 Hamilton cycles and a perfect matching, else.

For even n, H(n)=C4×. . .×C4 (n
2 times) ∼ 4-ary n

2 -cube.
Stong, 2006: for odd n, bidirected Qn decomposes into n
directed Hamilton cycles.

  2
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Hamiltonian decomposition of H(4)
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All Hamilton cycles of H(4)

Parkhomenko, 2001: 4-cube has 1344 Hamilton cycles.

See Hamilton cycle V={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi . Then
(up to Sym(4), reversals and cyclic shifts) all cycles are:
A {8, 4, 2, 2}: 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 4;
B1 {6, 6, 2, 2}: 1 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4,
B2 {6, 6, 2, 2}: 1 2 1 3 1 2 1 4 2 1 2 3 2 1 2 4;
C1 {6, 4, 4, 2}: 1 2 1 3 2 1 2 4 3 1 3 2 1 3 1 4,
C2 {6, 4, 4, 2}: 1 2 1 3 1 2 4 3 1 2 1 3 1 2 4 3,
C3 {6, 4, 4, 2}: 1 2 1 3 2 1 2 4 1 3 1 2 3 1 3 4,
C4 {6, 4, 4, 2}: 1 2 1 3 1 2 1 4 2 3 1 3 2 3 1 4,
C5 {6, 4, 4, 2}: 1 2 1 3 1 2 4 2 1 3 1 2 1 3 4 3;
D {4, 4, 4, 4}: 1 2 1 3 1 4 3 2 3 4 1 4 2 3 2 4.
Above class {a1, . . . , an} lists numbers ai of i in a cycle.
The edges not belonging to Hamilton cycle form C8+C4+C4,
C6+C6+C4, C10+C6 and C8+C4+C4 for A, B2, C1 and C5.
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Exp.: complementary Hamilton cycles

The sequence t(V ) = {1 + lg2 |ti − ti+1|}, 1≤i ≤ 24, of red
Hamilton cycle is given by: 4 3 2 4 3 4 1 3 4 3 2 4 3 4 1 3;
its permutation (4, 3, 1, 2) is: 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4 1,
a cyclic shift of which is B1: 1 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4.
Remaining edges form ∼B1: 1 3 2 1 2 4 1 2 1 3 2 1 2 4 1 2.
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Hamilton orientations of n=2m-cube

For any n = 2m and a decomposition of the edge-set of 2m-cube
into m disjoint Hamilton cycles, call Hamilton orientation any of
2m−1 orientations obtained by cyclically orienting those m cycles.
Without loss of generality, orient 1st cycle arbitrary.

Any Hamilton orientation is signature-defined: number ai uniquely
identifies outcoming (if ai=1) or incoming (if ai=-1) to 0 Hamilton
cycle and orientation on it. The number of 1’s in its signature is
n
2 = m, i.e. its excess e(aO) is 0.
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Orient arbitrarily 1st Hamilton cycle

Fix orientation of 1st (red) cycle and define orientation of 4-cube
via orientation of 2nd (blue) Hamilton cycle.
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Hamilton orientation QB1(4)

The edge-set of H(4) decomposed into two complementary
Hamilton cycles with one (so, both) of type B1.
Orientation QB1(4) is defined by signature (−1, 1− 1, 1).
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Hamilton orientation QB1(4)
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Hamilton orientation QB1′(4)

The edge-set of H(4) decomposed into two complementary
Hamilton cycles with one (so, both) of type B1.
Orientation QB1′(4) is defined by signature (1,−1− 1, 1).
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Hamilton orientation QB1′(4)
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Ten Hamilton orientations of H(4)

Edge-complement of Hamilton cycle h of 4-cube is another
Hamilton cycle h∗ if and only if h = B1,C2,C3,C4,D;
moreover, h∗ ∼ h under Sym(4), shifting and reversals.

Orient h so to get arc (0, 1) on it. Let Oh be orientation of H(4)=
h+h∗ with arc (2, 0) on h∗ and by O ′

h one with (0, 2).
So, signature is (1, 1,−1,−1) for all Oh, (1,−1,−1, 1) for O ′

h with
h = B1,C1 and (1,−1, 1,−1) for O ′

h with h = C3,C4,D.

O-diameter is 6 for QB1 and 5 for other 9. QC3 has minimal, 4,
|{(u, v) : q(u, v) = 5}| and mean q(u, v) (≈ 2.5); cf. 2 of H(4).

Conjecture: for any m, there exists a Hamilton orientation of
H(2m) with 2md(K4 × K4 × · · · × K4) (m times) being the
symmetrization of its quasi-metric. It holds for 2-cube (unique
strong orientation) and 4-cube (orientation QB1).
Remind that H(2m) = C4 × C4 × · · · × C4) (m times).
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Hamilton orientations OB(4), OB ′(4)

Each Hamilton cycle V={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi , is
B1 {6, 6, 2, 2}: 1 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4.
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Hamilton orientations OC2(4), OC2′(4)

Each cycle is C2 {6, 4, 4, 2}: 1 2 1 3 1 2 4 3 1 2 1 3 1 2 4 3.
Wrapped grid G comes from K4 × K4 on ((xij)) by adding edges
of C11,22,33,44,C12,21,43,34,C13,24,42,31,C14,23,41,32.

2d(G ) is symmetrization of quasi-metric of OC2(4).
This quasi-metric differs from one of Chou-Du QCD(4) only by
permutation (4, 8)(5, 9)(6, 10)(7, 11) of vertices.
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Hamilton orientations OC3(4), OC3′(4)

Each Hamilton cycle V={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi , is
C3 {6, 4, 4, 2}: 1 2 1 3 2 1 2 4 1 3 1 2 3 1 3 4.

In OC3(4), q(x , y)<5 except (x , y)=(2, 10),(5, 4),(11, 3),(12, 13).
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Hamilton orientations OC4(4), OC4′(4)

Each Hamilton cycle V={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi , is
C4 {6, 4, 4, 2}: 1 2 1 3 1 2 1 4 2 3 1 3 2 3 1 4.
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Hamilton orientations OD(4), OD ′(4)

Each Hamilton cycle V={vi}, 1≤i≤2n, as sequence t(V ), is D
{4, 4, 4, 4}: 1 2 1 3 1 4 3 2 3 4 1 4 2 3 2 4.

In OD(4), q(x , y)<5 except (x , y)=(0, 14),(6, 8),(10, 4),(12, 2)
and (3, 13),(5, 11),(9, 7),(15, 1). In OD′(4), q(x , y)=5 10 times.
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Inclusion (or Boolean) orientation QI (n)

Label vertices 0 ≤ x ≤ 2n − 1 of n-cube by subsets
Ax = {1 ≤ i ≤ n : xi = 1} of [n] = {1, . . . , n}.
Inclusion orientation QI (n): do arc AB if A ⊂ B and |B\A|=1.
Its path quasi-semi-metric is |B\A| if A ⊂ B and =∞, else,
while measure q-s-metric on (Ω = [n],A = 2[n], µ) is µ(B\A).
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Unique-sink orientations

An orientation of n-cube is called unique-sink orientation if every
face has unique sink.

Examples:

1) the inclusion orientation QI (n) and the arc-reversal of it on any
fixed matching (set of disjoint edges) M of n-cube;

2) every acyclic orientation with unique-sink on each 2-face;

3) the Klee-Minty orientation QKM(n): if the binary expansions
of vertices x , x ′ ∈ H(n) differ only in i-th position, then do arc
(xx ′) if

∑
i≤j≤n xj is odd and arc (x ′x), otherwise.
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3-cube: some unique-sink orientations
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Digression: Klee-Minty orientation

Klee-Minty orientation: if the binary expansions of vertices
x , x ′ ∈ H(n) differ only in i-th position, then do arc (xx ′) if∑

i≤j≤n xj is odd and arc (x ′x), otherwise.

It is acyclic unique-sink orientation; moreover, each face has
unique source.

It comes from combinatorial model (Avis-Chvatal, 1978) of
Klee-Minty cubes, 1972, i.e., linear programs whose polytopes
are deformed n-cubes (with skeleton of H(n)) but for which some
pivot rules follow path through all 2n vertices and hence, need
exponential number of steps.
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