```
Plan for the next 30 minutes
```


Crossing Minimization and Fun with Geometric Duality

Michael Jünger

Institut für Informatik, Universität zu Köln
Pretty Structure
Existential Polytime
Polyhedral Combinatorics
Latin Quarter, Paris
9 April 2009

A very early J. R. Edmonds publication

A combinatorial representation for polyhedral surfaces, Notices

Crossing Minimization

- 15 minutes on crossing minimization

■ 05 minutes of fun with reminiscences

- 10 minutes of fun with geometric duality

American Mathematical Society 7 (1960), 643.

THE OCTOBER MEETING IN WORCESTER, MASSACHUSETTS

572-1. J. R. Edmonds: A combinatorial representation for polyhedral surfaces.

For any connected linear graph with an arbitrarily specified cyclic
ordering of the edges to each vertex, there exists a topologically unique im-
bedding in an oriented closed surface so that the clockwise edge orderings
around each vertex are as:specified and so that the complement of the graph in
the surface is a set of discs. (Received August 16, 1960.)

A very early J. R. Edmonds publication

A combinatorial representation for polyhedral surfaces, Notices American Mathematical Society 7 (1960), 643.

THE OCTOBER MEETING IN WORCESTER, MASSACHUSETTS October 22, 1960

572-1. J. R. Edmonds: A combinatorial representation for polyhedral surfaces.

For any connected linear graph with an arbitrarily specified cyclic ordering of the edges to each vertex, there exists a topologically unique imbedding in an oriented closed surface so that the clockwise edge orderings around each vertex are as specified and so that the complement of the graph in the surface is a set of discs. (Received August 16, 1960.)

A very early J. R. Edmonds publication

A combinatorial representation for polyhedral surfaces, Notices American Mathematical Society 7 (1960), 646.

THE OCTOBER MEETING IN WORCESTER, MASSACHUSETTS October 22, 1960

572-1. J. R. Edmonds: A combinatorial representation for polyhedral surfaces.

For any connected linear graph with an arbitrarily specified cyclic ordering of the edges to each vertex, there exists a topologically unique imbedding in an oriented closed surface so that the clockwise edge orderings around each vertex are as specified and so that the complement of the graph in the surface is a set of discs. (Received August 16, 1960.)

I'll tell you a little bit about

Available online at www.sciencedirect.com
Discrete Optimization 5 (2008) ${ }^{373-388}$

A branch-and-cut approach to the crossing number problem
Christoph Buchheim ${ }^{\text {a }}$, Markus Chimani ${ }^{\text {b }}$, Dietmar Ebner ${ }^{\mathrm{c}}$, Carsten Gutwenger ${ }^{\text {b }}$, Michael Jünger ${ }^{\text {a, },}$, Gunnar W. Klau ${ }^{\text {dee }}$, Petra Mutzel ${ }^{\mathrm{b}}$, René Weiskircher ${ }^{\mathrm{f}}$

$$
\begin{aligned}
& { }^{\text {a }} \text { D Department of Computer Science, University of Cologne, Germany } \\
& \begin{array}{l}
\text { D Department of Computer Science, University of Doortumand, Germany } \\
\text { c Institute of Computer Languages, Vienr a U Inversity of Technolog. }
\end{array} \\
& \begin{array}{l}
\text { © Institut of Computer Languages. Vienna University of Technology, Aussria } \\
{ }^{\text {D }} \text { Deparment of Mathematics and Computer Science, Free University Berlin, German }
\end{array} \\
& \text { I CSIRO Matematic seseanch Computer Serer Mience, Free Univent Germany } \\
& { }^{\mathrm{f}} \text { CSIRO Mathematical and Information Sciences, Melourme, Australia } \\
& \text { Received } 31 \text { January } 2007 \text {; accepted } 9 \text { May } 2007 \\
& \text { Available online } 5 \text { November } 2007
\end{aligned}
$$

Paul Turán 1910-1976

A Note of Welcome

paul Turan*
Budapest, Hungary
A note of welcome to the new Journal of Graph Theory might contain all sorts of good wishes and superficial praises of the beauty and usefulness of graph theory in general terms. My views on the latter, supported by facts, were given in [2]. As to the former, I can illustrate it better by giving some indications of the enchantment and help it gave me in the most difficult times of my life during the war.
It conemede a hit imerodihla hut it ic trine Tha ctarev anoc hant in 1010

Problem Definition and Motivation

Given a graph $G=(V, E)$, draw it in two dimensions such that the number of crossings between its edges is minimum.

51 crossings

12 crossings

4 crossings

The crossing number $\operatorname{cr}(G)$ is the minimum number of such crossings for all two-dimensional drawings.

My next encounter with graph theory in these years was of a quite different nature. In July 1944 the danger of deportation was real in Budapest, and a reality outside Budapest. We worked near Budapest, in a brick factory. There were some kilns where the bricks were made and some open storage yards where the bricks were stored. All the kilns were connected by rail with all the storage yards. The bricks were carried on small wheeled trucks to the storage yeards. All we had to do was to put the bricks on the trucks at the kilns, push the trucks to the storage yards, and unload them there. We had a reasonable piece rate for the trucks, and the work itself was not difficult; the trouble was only at the crossings. The trucks generally jumped the rails there, and the bricks fell out of them; in short this caused a lot of trouble and loss of time which was rather precious to all of us (for reasons not to be discussed here). We were all sweating and cursing at such occasions, I too; but nolens-volens the idea occurred to me that this loss of time could have been minimized if the number of crossings of the rails had been minimized. But what is the minimum number of crossings? I realized after several days that the actual situation could have been improved, but the exact solution of the general problem with m kilns and n storage yards seemed to be very difficult and again I postponed my study of it to times when my fears for my family would end. (But the problem occurred to me again not earlier than 1952, at my first visit to Poland where I met Zarankiewicz. I mentioned to him my "brick-factory"-problem; he mentioned to me

Problem Definition and Motivation

The crossing number problem

- was introduced by Turán in 1944 (for $K_{n, m}$)
- was shown to be NP-hard by Garey \& Johnson [1983]

■ is addressed heuristically in practice (planarization) or restricted to special drawings (bilayer, linear, circular)
■ is unsolved even for very regular graph classes ...

Crossing Number of Complete Graphs

- the crossing number of K_{n} is unknown in general
- the drawing rule of Zarankiewicz [1953] yields

$$
Z(n)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

crossings, hence $\operatorname{cr}\left(K_{n}\right) \leq Z(n)$

- it is conjectured that $\operatorname{cr}\left(K_{n}\right)=Z(n)$
- verified up to $n=12$ by Pan \& Richter [2007]
- recently, de Klerk et al. showed

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{cr}\left(K_{n}\right)}{Z(n)} \geq 0.83
$$

- similar situation for $K_{n, m}$

ILP Approach (First Attempt)

Our aim is to model the crossing number problem as an ILP.
Straightforward approach:

- introduce binary variable $x_{e f}$ for each $\{e, f\}$ with $e, f \in E$
- interpret $x_{e f}=1$ as "edge e crosses edge f "
- minimize $\sum x_{e f}$

Problem: checking feasibility is NP-complete!

Applications

Applications for crossing minimization:

- design of a brick transport system on rails [crossings increase risk of accidents]
- VLSI design [crossings are expensive to realize]
- automatic graph drawing [crossings make the drawing less readable]

51 crossings

12 crossings

4 crossings

Realizability

Problem:

Given $D \subseteq E \times E$, decide whether D is realizable, i.e., whether a drawing of G exists with e crossing f iff $(e, f) \in D$.

NP-complete by Kratochvíl [1991]
No hope for a useful ILP model with this choice of variables!

Realizability depends on the order of crossings on an edge:

Number of potential orders is exponential... It's not enough to determine the crossing edge pairs.

Crossing Restricted Drawings

Crossing Restricted Drawings

To avoid this problem, consider crossing restricted drawings (CR-drawings):
allow at most one crossing per edge

However...

- optimum CR-drawings can have more than $\operatorname{cr}(G)$ crossings

Crossing Restricted Drawings

To avoid this problem, consider crossing restricted drawings (CR-drawings):
allow at most one crossing per edge
However...

- optimum CR-drawings can have more than $\operatorname{cr}(G)$ crossings
- for dense graphs, CR-drawings don't even exist

Solution: replace every edge of G by a path of length $|E|$
Then a crossing-minimum CR-drawing of the resulting graph

- exists and has $\operatorname{cr}(G)$ crossings
- can be easily transformed into a drawing of G with the same number of edge crossings

ILP Approach (Second Attempt)

Realizability

Call a set $D \subseteq E \times E$ crossing restricted if for all $e \in E$ there is at most one $f \in E$ with $(e, f) \in D$.

Problem:

Given a crossing restricted set $D \subseteq E \times E$, decide whether D is realizable.

Can be done in linear time...

Realizability

Define G_{D} as the result of adding dummy nodes to G on every edge pair $(e, f) \in D$:

$$
G=(V, E), D=\{(e, f)\}
$$

G_{D}

Construction is well-defined as D is crossing restricted! I.e., D is realizable iff G_{D} is planar.

IP formulation ... Branch\&Cut

This leads to

- an IP formulation in the $x_{e f}$-variable space,
- a separation heuristic that essentially amounts to Kuratowski-subgraph identification (linear time $O(|V|+|D|)$) by de Fraysseix \& Ossona de Mendez [2003]).

Add some bells and whistles and get a branch\&cut algorithm.
Experiments show that this approach

+ works
+ can solve benchmark instances up to $|V|=40$
- can't solve dense instances
- produces a huge number of variables
- produces a lot of symmetry

Replacing edges by paths...

- yields up to $\Theta\left(|E|^{4}\right)$ variables in total [only $\operatorname{cr}(G)$ of them are 1 in an optimal solution]
- leads to many equivalent solutions:

Drawbacks of the Model

Replacing edges by paths...

- yields up to $\Theta\left(|E|^{4}\right)$ variables in total [only $\operatorname{cr}(G)$ of them are 1 in an optimal solution]
- leads to many equivalent solutions:

Drawbacks of the Model

Replacing edges by paths...

- yields up to $\Theta\left(|E|^{4}\right)$ variables in total [only $\operatorname{cr}(G)$ of them are 1 in an optimal solution]
- leads to many equivalent solutions:

Drawbacks of the Model

Replacing edges by paths...

- yields up to $\Theta\left(|E|^{4}\right)$ variables in total [only $\operatorname{cr}(G)$ of them are 1 in an optimal solution]
- leads to many equivalent solutions:

Replacing edges by paths...

- yields up to $\Theta\left(|E|^{4}\right)$ variables in total [only $\operatorname{cr}(G)$ of them are 1 in an optimal solution]
- leads to many equivalent solutions:

Drawbacks of the Model

Replacing edges by paths...

- yields up to $\Theta\left(|E|^{4}\right)$ variables in total [only $\operatorname{cr}(G)$ of them are 1 in an optimal solution]
- leads to many equivalent solutions:

Solution to both problems is column generation!

Percentage of Solved Instances

Runtimes by Crossing Number

Complete Graphs

Using our general approach, we can solve K_{8} (though its crossing number is 18)

Special approach for complete graphs:
use knowledge of $\operatorname{cr}\left(K_{n}\right)$ when computing $\operatorname{cr}\left(K_{n+1}\right)$
Using this specialized approach, we can solve $K_{12} \ldots$

Bonn 1978

Gerd Reinelt and me students of CS and OR in Bonn. . .

```
OURNAL OF RESGRCH of the National Eureau of Standards -B. M
```

Vol. 718, No. 4 , October-Deecember 1967

Systems of Distinct Representatives and Linear Algebra*
 onal Bureau of Stan

repeseminationics, in indet

1. Introduction

The well-known concept of term rank [5, 6], ${ }^{\text {i }}$ shown here to be a special case of linear-algebra rank
This observation is used to provide a simple line algebra proof of the well-known SDR theorem. Exce or familiar linear algebra, the paper is self-contained
Incidentally to SDR's, an algorithm is presented for

However, here the word "transversal" will be used differenty.)
3. Matrices of Zeros and Ones The subject of SDR's is frequently treated in the matrix of the family of Q of subsets of E she the matrix

Bonn 1978

Southern Ontario Blues Association 1985
Reserved
PROF: JaCK GUESTS

Southern Ontario Blues Association 1985

To Mika Junses
You len \& how tho mates it all
The beed to out

Augsburg 1989

Aussois 2001: Jack preaching

Luminy, Summer 1990: Kathie, Jack \& Alex

Aussois 2002: Jack enjoying

Cologne 2004: Jack \& Kathie with Pauline \& Paul

Cologne 2004: Me and the Major

The Major

Movie

Fun with Geometric Duality

PATHS, TREES, AND FLOWERS

JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements called vertices and a finite set of elements called edges such that each edge meets exactly two vertices, called the end-points of the edge. An edge is said to join its end-points.
A matching in G is a subset of its edges such that no two meet the same vertex. We describe an efficient algorithm for finding in a given graph a matching of maximum cardinality. This problem was posed and partly solved by C. Berge; see Sections 3.7 and 3.8.

Maximum matching is an aspect of a topic, treated in books on graph theory, which has developed during the last 75 years through the work of about a dozen authors. In particular, W. T. Tutte (8) characterized graphs which do not contain a perfect matching, or 1 -factor as he calls it-that is a set of edges with exactly one member meeting each vertex. His theorem prompted attempts at finding an efficient construction for perfect matchings.

JOURNAL OF RESEARCH of the National Bureau of Standards-B. Mathematics and Mathematical Physics
Maximum Matching and a Polyhedron With 0,1-Vertices ${ }^{1}$
Jack Edmonds
(December 1, 1964)
 in . Where each edge of G carries a real numericing
finding matching in G with maximum weightsum.

```
Section 1
\(\square\) An algorithm is described for optimally pairing a finite set of objects. That is, given a real numerical
weight for each unordered pair of objects in a set weigh select a family of mutually disjoint pairs the sum
\(Y\), to
of whose weights is maximum. The well-known whose weights is maximum. The well-known
ptimum assignment problem \([55]\) is the special case opumum assignment problem \([5]^{2}\) is the special case
```

Written at the same time?
Prove that this perfect matching is not shortest .

Movie

Show a shorter perfect matching!

Show that this is a shortest perfect matching ...

Grow a disk packing . . .
Maximize sum of radii.

Doesn’t work here . . .

Jack's results \Longrightarrow This always works!

Introduce moats ...

Jack's results \Longrightarrow This always works!
Primal LP

$$
\begin{aligned}
\text { maximize } & \sum_{p \in P} r_{p}+\sum_{S \subset P,|S| \text { odd and } 3 \leq|S| \leq \frac{n}{2}} w_{S} \\
r_{p}+r_{q}+\sum_{|S \cap\{p, q\}|=1} w_{S} & \leq d_{p q} \quad \text { for all } p, q \in P, q \neq p \\
r_{p} & \geq 0 \quad \text { for all } p \in P \\
w_{S} & \geq 0 \quad \text { for all } S \subset P,|S| \text { odd and } 3 \leq|S| \leq \frac{n}{2}
\end{aligned}
$$

Dual LP

$$
\begin{aligned}
& \text { minimize } \sum_{p, q \in P, q \neq p} d_{p q} x_{p q} \\
& \sum_{q \in P, q \neq p} x_{p q} \geq 1 \quad \text { for all } p \in P, \\
& \sum_{|S \cap\{p, q\}|=1} x_{p q} \geq 1 \quad \text { for all } S \subset P,|S| \text { odd and } 3 \leq|S| \leq \frac{n}{2}, \\
& x_{p q} \geq 0 \quad \text { for all } p, q \in P, q \neq p .
\end{aligned}
$$

We (and others) had software in the early nineties.

This is brand new:

Fun with Geometric Duality
Michael Jünger Michael Schulz Wojciech Zychowicz
Dedicated to Jack Edmonds on the occasion of his $75^{\text {th }}$ birthday on April 5, 2009

Abstract

We present GEODUAL, a software for creating and solving geometric instances of the Minimum Spanning Tree problem, the Perfect Matching problem, and the Traveling Salesman problem, along with visual proofs of optimality.

