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Two Classical Results

(1) The number of acyclic orientations of a graph G is equal
to |χ(G ;−1)|, where χ(G ; q) is the chromatic polynomial of
G , i.e. the number of proper colorings of G in q colors.

This result has been proved for graphs by R. Stanley in 1973.
It is also a corollary of a more general result for hyperplane
arrangements due to R.O. Winder (1966).

Example
χ(G ; q) = q(q − 1)(q − 2)2 2.32 = 18 acyclic orientations



Two Classical Results

Let p = a1a2 . . . an be a permutation of the integers 1, 2, . . . , n.
We define a graph on n + 1 vertices vi 0 ≤ i ≤ n as follows. For
i = 1, 2, . . . , n, if a` < ai for some integer 1 ≤ ` < i , then we
introduce the edge vjvi , where j is the greatest such integer,
otherwise we introduce the edge v0vi .

The graph t(p) defined by the above edges is an increasing tree.1

(2) The mapping p 7→ t(p) is a bijection between
n-permutations and increasing trees on n + 1 vertices labeled
by 0, 1, . . . , n.

This bijection has been introduced independently by W.H. Burge
(1972), J. Françon (1976), X. Viennot (1976). It is now
well-known and basic in enumerative combinatorics. See for
instance, R.Stanley, Enumerative combinatorics I (1986), p. 25.

1 A tree on vertices 0, 1, . . . , n is increasing if labels increase along any path
starting from 0.
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Purpose of the Talk

At first sight, (1) and (2) seem unrelated. Our purpose in the talk
is to present a bijection introduced by the authors in recent papers
- called the active bijection - containing both (1) and (2) as
corollaries, and thus unifying them.

The active bijection is closely related to linear programming.
Unexpected links follow between (1) (2) and LP, and more
generally, between the Tutte polynomial and LP.

A natural context for the active bijection is provided by oriented
matroids. This generalization requires the theory of linear
programming in oriented matroids, also called pseudolinear
programming. For the convenience of the audience, in the first
part of the talk, we will briefly recall the main features of
pseudolinear programming.



Oriented Matroids

In this talk, oriented matroids are basically combinatorial
abstractions of (signed) affine hyperplane arrangements.

Let A be a hyperplane arrangement in Rd . The oriented matroid
M(A) is defined by the collection of all sign-vectors with
components +,−, 0 giving the positions of the points of Rd with
respect to the hyperplanes in A. These sign-vectors are the
covectors of M(A).

In general, an oriented matroid on a set E defined by its covectors
is given by a collection of sign-vectors in (+,−, 0)E satisfying
certains axioms. It turns out that these axioms amount to
generalizing arrangements of (signed) real hyperplanes to
arrangements of (signed) pseudohyperplanes (intuitively, waved
hyperplanes, intersecting like real projective hyperplanes).



Oriented Matroids

We will use here the hemispherical representation of affine
oriented matroids. The space is the completion of Rd

homeomorphic to Bd .

The boundary p ≈ Sd−1 of Bd is the hyperplane at infinity.
Note that opposite points of p are not identified.

In a d-dimensional arrangement of pseudohyperplanes, two distinct
pseudohyperplanes have a (d − 1)-dimensional intersection. They
are parallel if their intersection is contained in p.

A region is bounded if it has no vertex in p.

Our actual examples, all in dimension 2 (matroid rank 3), are
arrangements of pseudolines.



Oriented Matroids
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A real (signed) affine arrangement of hyperplanes in dimension 2,
and its oriented matroid as an arrangement of (signed) pseudolines.

• Most oriented matroids cannot be represented by real
hyperplane arrangements.



Linear Programming

A dimension-d linear program P is defined by an affine
hyperplane arrangement A in Rd and a linear form called the
objective function.

For simplicity, we will always suppose here that the feasible region
of P is the fundamental region of A, intersection of the closed non
negative halfspaces defined by the hyperplanes.

A solution to P is a point of the feasible region R maximizing f
over R.

• If the feasible region R is non empty and bounded, then
the linear program P has at least one solution.



Pseudolinear Programming

A pseudolinear program P = (A; p, f ) is defined by an afffine
oriented matroid on A ∪ {f }, with hyperplane at infinity p ∈ A.
The objective function f 6= p may be in A, or not.

The feasible region of P will always be the fundamental region of
A, i.e. the intersections of all closed non negative halfspaces
defined by hyperplanes in A.

The definition of maximizing the objective function over the
feasible region is more elaborate than in the real case, as we
cannot simply evaluate a linear form.

Consider an edge of the feasible region R not parallel to f . Its
supporting pseudoline - a 1-dimensional intersection of hyperplanes
of A - cuts f in one point, where it crosses f . We direct this
pseudoline in the direction from the negative to the positive side of
f . This direction induces an increasing direction on the edge.



Pseudolinear Programming

A solution to a pseudolinear program P = (A; p, f ) is a vertex v
of the feasible region R, not in p, such that no edge of R incident
to v is outgoing.

• If the feasible region is non empty and bounded, then a
pseudolinear program has at least one solution.

The statement asserting the existence of a solution of a
pseudolinear program is the same as in the real case. However, its
proof is less simple.

• In pseudolinear programming, the graph of increasing
directions may contain directed cycles.

Basics of linear programming in oriented matroids are mainly due
to R. Bland, J. Edmonds, K. Fukuda, J. Lawrence, A. Mandel
(1977-80’)



Pseudolinear Programming
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A linear program in dimension 2, and its oriented matroid version
as a pseudolinear program.



Tableau of a Basis

Let B be a matroid basis of a dimension-d pseudohyperplane
arrangement, with set of hyperplanes E . We have |B| = d + 1.

The (fundamental) tableau of B is the E × E matrix with
coefficients in {+,−, 0} defined as follows.

A column e ∈ B of the fundamental tableau of a basis B is the
sign-vector of the positions +,−, 0 of the vertex e+ ∩

⋂
b∈B\e b

with respect to the hyperplanes in E .

A column e 6∈ B is a − at (e, e) and 0 elsewhere.2

2 In terms of oriented matroid theory, a column e ∈ B is the sign-vector of
the fundamental cocircuit C∗(B; e) such that the sign at (e, e) is +. By
oriented matroid orthogonality, a row e 6∈ B is the opposite of the sign-vector
of the fundamental circuit C(B; e) such that the sign at (e, e) is a −.



Optimal Bases

An optimal basis of a d-dimensional pseudolinear program
P = (A; p, f ) is a matroid basis B of A ∪ {f } such that in the
tableau of B

• p ∈ B, f 6∈ B,
• the non zero signs of the column of p in the rows in A are
plus.3

• the non zero signs of the row of f in the columns 6= p are
minus.4

• (The Simplex Criterion) A vertex v of the feasible region R
is a solution to P if and only if there is an optimal basis
B = {b1 = p, b2, . . . , br}< such that v = b2 ∩ b3 ∩ . . . ∩ br .

3 this condition says that v =
T

b∈B\p b is a vertex of the feasible region R.
4 in the real case, this condition is equivalent to saying that the coneT

b∈B\p b+ (which contains R) is on the negative side of the hyperplane parallel
to f through v .



Optimal Bases
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• Optimal bases are not unique in general.



Main Definition: Fully Optimal Bases

Let A = {e1, e2, . . . , en}< (e2 6= e1) be a linearly ordered
arrangement of pseudohyperplanes in dimension d .

We define a fully optimal basis of A as an ordered basis
B = {b1, b2, . . . , br}< r = d + 1 of the oriented matroid M(A)
such that

• the first sign 6= 0 in every row of the tableau of B is a plus,
• the first sign 6= 0 in every column 6= e1 is a minus.

These two conditions immediately imply that

• e1 ∈ B and e2 6∈ B

It follows from this remark that

? A fully optimal basis of an ordered hyperplane arrangement
A = {e1, e2, . . . , } is an optimal basis of the linear program
(A; e1, e2) on the fundamental region of A.



A Fully Optimal Basis
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?? An ordered peudohyperplane arrangement with a bounded
non-empty fundamental region has exactly one fully optimal
basis.



LP Construction of the Fully Optimal Basis

(1) We first determine the active vertex v1 = b2 ∩ b3 ∩ . . . ∩ br of the
fundamental region R, where {b1 = e1, b2, . . . , br}< is the fully optimal
basis to be constructed.

The vertex v1 is a solution to the linear program defined on R1, with plane
at infinity b1 = e2 and objective function f = e2 (supposing e1 6= e1).
However, this property does not suffice to determine v1 in general.

?? v1 is the unique solution of a lexicographic multiobjective
program (lexicographic multiprogram, for short) P1 on R defined by
the minimal basis Bmin = {p = e1, f1 = e2, . . . , fr−1}< of A.

The multiprogram P1 is the problem of determining the set of vertices of
R1 maximizing f1 over R, then the set of vertices R2 maximizing f2

among R2, etc., until a unique vertex v1 is obtained.

?? b2 is the smallest hyperplane of A containing v1.



LP Construction of the Fully Optimal Basis
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LP Construction of the Fully Optimal Basis

(2) The 2nd step is similar to the 1st, but concerns the edges of R
containing v1. By linearity, we may consider the projection from v1 on
the plane at infinity.

We define a 2nd lexicographic multiprogram P2 in the space

s2 = p1 ∩ b+
2 ≈ Bd−1 with plane at infinity p2 = p1 ∩ b2 ≈ Sd−2. The

hyperplanes of A2 are the traces on s2 of the hyperplanes of A
containing v1. The objective functions of P2 are the traces on s2 of the
objective functions of P1. The feasible region R2 is the projection of R1

(and also the fundamental region of A2).

?? P2 has as a vertex v2 as unique solution
?? b3 is the smallest hyperplane of A containing v1 and v2,
?? < v1, v2 >= b3 ∩ b4 ∩ . . . ∩ br .

(3,4,. . . ) Iterate the construction of (2).



LP Construction of the Fully Optimal Basis
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The objective functions not belonging to the hyperplane arrangement are indicated
in the figures by putting their name between parentheses (like 2 in the right diagram).



Main Theorem: The Active Bijection

Let A be an arrangement of (pseudo)hyperplanes, and B be a
basis of M(A). We recall that for e ∈ B the fundamental cocircuit
C ∗(B; e) is the set of hyperplanes of A not containing the vertex⋂

b∈B\e b (geometrically, the vertex opposite to e in the simplex
B).

Suppose A is linearly ordered, A = {e1, . . .}<.
• A basis B of M(A) is internal if for every e ∈ A \ B there exists
b ∈ B with b < e and e ∈ C ∗(B; b).
• An internal basis B is uniactive if e1 is the unique e ∈ B which
is the smallest element of its fundamental cocircuit C ∗(B; e).

? A fully optimal basis is internal and uniactive .

? ? ? Fully optimal bases establish a bijection between the
bounded non-empty regions of an ordered arrangement of
pseudohyperplanes, and its uniactive internal bases.
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The Tutte Polynomial

The active bijection defined for bounded regions in the previous
pages is not sufficient to unify properties (1) and (2) of the
introduction. We need to extend it to all regions.

For that purpose, we will use a classical tool of matroid theory,
namely the Tutte polynomial. We recall that the Tutte polynomial
of a matroid M on a set E can be defined by the formula

t(M; x , y) =
∑
A⊆E

(x − 1)r(M)−rM(A)(y − 1)|A|−rM(A)

The rank of an hyperplane arrangement A is the codimension of its intersection.
In dimension d , we have r(A) = d − dim

T
e∈A e.

The Tutte polynomial of the affine hyperplane arrangement A7 (running example) is

t(A7; x , y) = y4 + x3 + 3y3 + 4x2 + 2xy + 6y2 + 8x + 8y



The Tutte Polynomial in Terms of B-Activities

Let B be a basis of a matroid M on a linearly ordered set E .

Theorem A [W.T. Tutte 1954 for graphs, extended to matroids by
H. Crapo 1969]

t(M; x , y) =
∑

B basis of M

x ιM(B)y εM(B)

ιM(B) = # internally active elements of M, i.e. # b ∈ B such
that b ≤ e for all e ∈ C ∗(B; b).

εM(B) = # externally active elements of M, i.e. # e ∈ E \ B
such that e < b for all b ∈ B with e ∈ C ∗(B; b)



The Tutte Polynomial in Terms of O-Activities

Let M be an oriented matroid on a linearly ordered set E .

Theorem B [M. Las Vergnas 1982]

t(M; x , y) =
∑
A⊆E

(
x

2
)o∗(−AM)(

y

2
)o(−AM)

where −AM denotes the reorientation on A of the oriented
matroid M.

o∗(M) = # dual-orientation active, or O∗-active, elements of
M, i.e. # smallest elements in some positive cocircuit of M.

o(M) = # orientation active, or O-active, elements of M, i.e. #
smallest elements in some positive circuit of M.



? Geometrically, the dual-orientation activity of a region can
be interpreted as the number of different infinity types of its
vertices with respect to an ordering.5

5 In red, vertices at finite distance (not in 1). In green, vertices at simple
infinity (in 1, but not in 2). In blue, vertices at double infinity (in both 1 and 2).



The Activity Relations

Comparing Theorems A and B we get the orientation/basis
activity relations

• oij = 2i+jbij for all i , j = 0, 1, . . .

where
oij = # of reorientations with o∗ = i and o = j
bij = # of bases with ι = i and ε = j .

• The active bijection for bounded regions is a bijective version of
the relation o10 = 2b10

6, proved by T. Zaslavsky (1975) in the
real case, and by M. Las Vergnas (1977) for oriented matroids.

6 b10 = b01 is the β invariant of a matroid, a parameter first considered by
H. Crapo in 1967.

In the case of A7 we have β = 8: there are 8 bounded regions.



The Active Mapping

The active orientation-to-basis mapping is defined for all
regions, and more generally for all reorientations of an oriented
matroid. It can be considered as a ’bijective’ version of the general
activity relations.

? ? ? The active mapping is activity preserving, with
multiplicities given by activities.

It would be too time-consuming to describe here into details the
construction of the general active mapping. Roughly speaking, we
reduce to the bounded case by means of decomposing
activities. We first use duality to separate primal- and
dual-orientation activities (by means of the oriented matroid Farkás
Lemma). Then, we decompose into (1, 0) and (0,1) activities.
Finally, we glue together the various active bijections obtained.

Note that the factor 2 in o10 = 2b10 accounts for the factor 2i+j in
the general activity relation.



The Active Mapping

1

1

2

2

3

3

4

4 5

5

6

6

7

7

134

135

136

145

146

147156

167

137

137

125

125

124 124

126

126

123

123

123

123



The Active Mapping and Acyclic Orientations

The expression of the Tutte polynomial in terms of O-activities
generalizes counting theorems of acyclic orientations in graphs (R.
Stanley 1973), regions in hyperplane arrangements7 (R.O. Winder
1966, T. Zaslavsky 1975), acyclic reorientations in oriented
matroids (M. Las Vergnas 1975) [in order of increasing generality].

We have

# of acyclic reorientations =
∑

i≥0 oi ,0 =
∑

i ,j≥0 oij1
i0j = t(2, 0)

The active mapping provides a ’bijective’ version of these counting
theorems.

7 The number of regions of a non central hyperplane arrangement is equal
to half the number of acyclic reorientations of the oriented matroid of its affine
dependencies.

For instance, A7 has t(M(A7); 2, 0)/2 = (23 + 4.22 + 8.2)/2 = 20 regions.



1

1

22

3

3

44

5

5

145 134134

125 123123

125 123123
1

2 3

4 5



The Active Mapping

and the Permutation-to-Increasing-Tree Bijection

To relate the result (2) of the introduction to the active mapping,
we consider the braid arrangement Bn, defined by the

(n
2

)
hyperplanes hij in Rn with equations −xi + xj = 0 for
1 ≤ i < j ≤ n.

It is folklore that the regions of Bn corresponds bijectively to
the permutations of the integers 1, 2, . . . , n.

?? The active mapping restricted to the regions of Bn with
respect to the colexicographic ordering, is equivalent to the
classical bijection between (n − 1)-permutations and
increasing trees on n vertices.



The Active Mapping for B4
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Some Further Properties

(not presented in the talk)

• A direct algorithm to compute the region admitting a given
uniactive internal basis as fully optimal basis

• Decomposition of activities and the active mapping

• Relationship between regions resp. reorientations mapped to a
same basis by the active mapping, and properties of active
partitions

• Properties of the active mapping with respect to duality -
oriented matroid duality and linear programming duality

• The big active bijection, a refinement of the active mapping

• Inductive properties

• Universality properties



The Big Active Bijection
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The big active bijection - between reorientations and subsets -
provides in particular a bijection between regions and NBC subsets,
answering a question of the literature.



A Table of Bijections

structure active bijection

oriented matroid active classes of reorientations bases

a.c. acyclic reorientations internal bases

a.c.. totally cyclic reorientations external bases

(opp. pairs) bounded acyclic reor. uniactive internal bases

reorientations subsets

acyclic reorientations NBC subsets

uniform o.m bounded regions LP optimal vertices

hyperplane arr. reorientations = signatures bases = simplices

acyclic reorientations = regions

braid arrangement permutations increasing trees

hyperoctahedral arr. pos. act. signed permutations. increasing signed trees

(connected) graph reorientations = orientations bases = spanning trees

unique sink acyclic orientations internal spanning trees

bipolar orientations uniactive internal spanning trees
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