# On the connectivity of the $k$-clique polyhedra 

J. F. Maurras and R. Nedev<br>LIF, Univ. de la Méditerranée

## 因

## Introduction

- Let $P_{n k}$ be the polyhedron of the edges incidence vectors $X_{k}$ of the cliques with $k$ vertices ( $k$-cliques) of $K_{n}$, the complete graph with $n$ vertices.

$$
P_{n k}=\operatorname{conv}\left(X_{k}\right)
$$

- A polyhedron $P$ is $h$-neighbourly if every subset $W$ of $h$ vertices is the set of vertices of a face of $P$.


## Neighbourlicity


$\sum \alpha_{\mathrm{e}}=\beta$
$\mathrm{e} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{b}}\right)$

$\sum \alpha_{\mathrm{e}}<\beta$
$\mathrm{e} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{g}}\right)$
$\mathrm{e} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{g}}\right)$

Contradiction: $\beta<\beta$

## Neighbourlicity


$\sum_{\alpha_{e}+2} \alpha_{\alpha_{n}=\beta}$
$\mathrm{e} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{b}}\right), \mathrm{n} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{n}}\right)$
$\mathrm{e} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{g}}\right), \mathrm{n} \in \mathrm{E}\left(\mathrm{K}_{\mathrm{n}}\right)$

The same contradiction: $\beta<\beta$

## Neighbourlicity



## 5-Cliques



$$
\begin{aligned}
& \gamma_{1}: \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}=1 \\
& \gamma_{2}: \alpha_{6}+\alpha_{7}+\alpha_{8}+\alpha_{9}+\alpha_{10}=1 \\
& \quad i \neq 1,2: \gamma_{i}: \Sigma e \in \gamma_{i} \alpha_{e}<1
\end{aligned}
$$

Multipliers - 1 for the two equations and $1 / 5$ for the ten inequations yields $0<0$. Thus the 5-cycle polyhedron is not 2-neighbourly!

## Neighbourlicity

Suppose that $P_{n k}$ is not 3-neighbourly, then there exists $3 k$ cliques $C_{1}, C_{2}, C_{3}$, s.t. the system :

$$
\begin{aligned}
& \forall i \in\{1,2,3\}, \sum_{e \in E} \alpha_{e^{i} i_{e}} \geq 1, \\
& \forall C \neq \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \sum_{\text {eE }} \mathrm{a}_{\mathrm{e}} \mathrm{x}_{\mathrm{c}}{ }^{i_{c}}<1,
\end{aligned}
$$

is impossible.
Thus there exists $\lambda_{1}, \lambda_{2}, \lambda_{3} \leq 0$, not all zero, and $\lambda_{C} \geq 0$ st :

$$
\begin{gathered}
\forall e \in E, \lambda_{1} x_{e}^{c_{1}}+\lambda_{2} x_{e}^{c_{2}}+\lambda_{3} x_{e}{ }_{e}{ }_{3}+\sum_{c \not c\left\{c_{1}, C_{2}, C_{3}\right\}} \lambda_{e} x_{e}^{c}=0, \\
\lambda_{1}+\lambda_{2}+\lambda_{3}+\sum_{c \notin\left\{\mathcal{C}_{1}, c_{2}, C_{3}\right\}} \lambda_{e} \leq 0 .
\end{gathered}
$$

## Support condition

The last inequality implies that the support (i.e. the graph the edges of which have a non-zero coefficient) of the second set of cliques has to be included in the one of the first.
Obviously, in order that the left hand side of :

$$
\forall e \in E, \lambda_{1} x_{e}^{C_{1}}+\lambda_{2} x_{e}^{c_{2}}+\lambda_{3} x_{e}^{c_{3}}+\sum_{c \notin\left\{C_{1}, C_{2}, C_{3}\right\}} \lambda_{e} x_{e}^{c}=0
$$

can be $\geq 0$, both supports have to be equal.

## Neighbourlicity

1. Suppose w.l.o.g. that $C_{1}$ has a vertex $x \notin V\left(C_{2}\right) \cup V\left(C_{3}\right)$, its star can only be covered by $C_{1}$. Thus $P_{n k}$ is 'obviously' 2-neighbourly. To make zero the left part we need $C_{1}$ and analogously $C_{2}$ and $C_{3}\left(C_{2} \neq C_{3}\right)$.
2. Thus w.l.o.g. $V\left(C_{1}\right) \subset V\left(C_{2}\right) \cup V\left(C_{3}\right)$.
3. We denote $V\left(C_{1,2,3}\right)$, (resp. $E\left(C_{1,2,3}\right)$ ) the common vertices (resp. edges) of $C_{1}, C_{2}, C_{3}$. For $i, j \in\{1,2,3\}, V\left(C_{i, j}\right)$, (resp. $E\left(C_{i, j}\right)$ ) the common vertices (resp. edges) of $C_{i}, C_{j}$ and $V\left(C_{i}\right)$, (resp. $E\left(C_{i}\right)$ ) the vertices (resp. edges) belonging only to $C_{i}$.

## Neighbourlicity

2-1. $E\left(C_{i}\right), E\left(C_{l}\right)$ for example, is the edge-set of the complete bipartite graph with vertex sets:

$$
V\left(C_{1,3}\right) \mid V\left(C_{1,2,3}\right) \text { and } V\left(C_{1,2}\right) \mid V\left(C_{1,2,3}\right)
$$

- Consider the graph with values $\lambda_{1} \mathrm{x}^{\mathrm{C}_{1}}+\lambda_{2} \mathrm{x}^{\mathrm{C}_{2}}+\lambda_{3} \mathrm{x}^{\mathrm{C}_{3}}$ assigned to the edges. Suppose that the same value can be obtain with other cliques. The edges of $C_{1}$ with value $\lambda_{1}+\lambda_{2}+\lambda_{3}$ are contained in all cliques. The edges with value $\lambda_{1}$ are contained only in the clique with $E\left(C_{1}\right)$.
- Thus the union of the these edges has a vertex set $V\left(C_{\nu}\right)$ and it forms the unique clique $C_{l}$.


## Neighbourlicity

2-2. Suppose that a clique of $C \backslash\left\{C_{1}, C_{2}, C_{3}\right\}$, say $K$ has some vertices in $V\left(C_{1,2}\right) \backslash V\left(C_{1,2,3}\right)$, in $V\left(C_{2,3}\right) \backslash V\left(C_{1,2,3}\right)$ and in $V\left(C_{1,3}\right) \backslash V\left(C_{1,2,3}\right)$.
If $\lambda_{k}>0$, we can never have :
$\forall e \in E, \lambda_{1} x_{e}^{c_{1}}+\lambda_{2} x_{e}^{c_{2}}+\lambda_{3} x_{e}^{c_{3}}+\sum_{c \notin\left\{c_{1}, C_{2}, c_{3}\right.} \lambda_{\mathrm{e}} x_{e}{ }_{e}^{c}=0$.
Consequently a clique of $\left.\left.C\right|_{\{ } C_{1}, C_{2}, C_{3}\right\}$ has vertices in, for instance, $V\left(C_{1,2}\right) \backslash V\left(C_{1,2,3}\right)$ and in $V\left(C_{2,3}\right) \backslash V\left(C_{1,2,3}\right)$, and thus is, in this case, is $C_{2} \ldots$

## Neighbourlicity



With the selected clique $\mathrm{C} \notin\left\{\mathrm{C}_{\mathrm{b}}, \mathrm{C}_{\mathrm{g}}, \mathrm{C}_{\mathrm{r}}\right\}$, we will have definitely a deficiency of weight on the black edges.

## Neighbourlicity

2-2. The previous proof supposed that either: $E\left(C_{1,2,3}\right) \neq \varnothing$ or $C_{1,2,3}$ $\neq \varnothing$. Thus suppose $C_{1,2,3}=\{\mathrm{v}\}$, and suppose that one clique that contains $E\left(C_{1}\right)$ does not contain $v$ but $u \in\left(V\left(C_{2}\right) \cap V\left(C_{3}\right)\right) \backslash\{v\}$.

It follows that there is an edge from $E\left(C_{2,3}\right)$ that contains $u$ with value greater than $\lambda_{2}$ and $\lambda_{3}$, a contradiction.

## Hypergraphs. Neighbourlicity.

- Let $K_{n}{ }^{r}=(X, E)$ be the complete $r$-uniforme hypergraph with $|X|=n$ and $E=\{e \subset X,|e|=r\}$. As before, we will study the neighbourlicity of the convex hull $P_{n k}{ }^{r}$ of the $k$ cliques.
- We will search for the least number of cliques which share the same edges.


## Hypergraphs. Neighbourlicity.

Consider a set of $k$-cliques indexed by $J \subset I$ (the set of all cliques) which do not form a face of $P_{n k}{ }^{r}$, i.e.the system:

$$
\begin{aligned}
& \forall j \in J, \quad \sum_{e \in E} \alpha_{e} x_{e}^{j}=\beta, \\
& \forall i \in \Lambda J, \sum_{e \in E} \alpha_{e} x_{e}^{i}<\beta,
\end{aligned}
$$

has no solution $\left(\alpha_{E}, \beta\right)$.

## Hypergraphs. Neighbourlicity.

The previous system doesn't have a solution iff there are $\mu_{i} \leq 0$, not all zero and $\lambda_{j} \geq 0$, s.t. the system:

$$
\begin{gathered}
\forall e \in E, \quad \sum_{i \neq} \mu_{i} X_{e}^{i}+\sum_{j \in J} \lambda_{j} X_{j}=0 \\
\sum_{i \neq} \mu_{i} \beta+\sum_{j \in J} \lambda_{j} \beta \leq 0
\end{gathered}
$$

has a solution.

This leads us to the following model which gives us the neighbourliclity of the polyhedron.

## Hypergraphs. Neighbourlicity

Mixed boolean program:

The value of the solution of this program is the neighbourlicity of the polyhedron +1 .

## Hypergraphs. Neighbourlicity

Exact values of neighbourlicity

| $n \geq 2(r+1)$ | $k$ | $r$ | neighbourlicity |
| :---: | :---: | :---: | :---: |
| $\geq k+3$ | $\geq 3$ | 2 | 3 |
| 8 | 4 | 3 | 7 |
| 9 | 4 | 3 | 7 |
| 9 | 5 | 3 | 7 |
| 10 | 5 | 3 | 7 |
| 10 | 6 | 3 | 7 |
| 10 | 5 | 4 | 15 |
| 11 | 6 | 4 | 15 |
| 12 | 6 | 5 | 31 |

## Neighbourlicity. An upper bound

- Consider the subgraph $C_{n}(r)$ of $K_{n}{ }^{r}$, s.t. $C_{n}(r)$ is the edge graph of the cross polytope with $(r+1)$ dimensions.
- There is a bijection between the maximum cliques of $C_{n}(r)$ and the vertices of the unit-hupercube with $(r+1)$ dimensions.
- An upper bound of neighbourlicity can be obtained from the maximum stable set of the unit hypercube with $(r+1)$ dimensions.


## The octahedron and its dual



## Hypercube of dimension 4


$\mathrm{a}: \mathrm{x} \geq 0, \mathrm{a}^{\prime}: \mathrm{x} \leq 1, \mathrm{~b}: \mathrm{y} \geq 0, \mathrm{~b}^{\prime}: \mathrm{y} \leq 1$,
$\mathrm{c}: \mathrm{z} \geq 0, \mathrm{c}^{\prime}: \mathrm{z} \leq 1, \mathrm{~d}: \mathrm{t} \geq 0, \mathrm{~d}^{\prime}: \mathrm{t} \leq 1$.

## Hypergraphs. Unit-hypercube

- As before, we can generalize the upper bound of neighbourlicity by induction. The following argument can be used: If we assume that the $d$-dimensional hyper-cube contains a stable set with cardinality $M$, the $(d+1)$ dimensional hyper-cube contains a stable set of cardinality $2 M$, as its edge-graph do not contain a cycle of odd lenght.
- Thus an upper bound of neighbourlicity for $P_{n k}^{r}$ is $2^{\mathrm{r}}-1$.

