Lovász and Lehman Theorems on Clutters a common generalization

Grigor GASPARYAN, Myriam PREISSMANN, András SEBŐ

Some definitions

$V=\{1,2, \ldots, n\}$
A set \mathcal{A} of subsets of V is a clutter if

$$
\nexists A_{i}, A_{j} \text { in } \mathcal{A} \text { such that } A_{i} \subset A_{j}
$$

We associate to \mathcal{A}
a matrix A of size $m \times n$: the rows are the characteristic vectors of the elements of \mathcal{A}
the antiblocking polyhedron $P_{s}(\mathcal{A})=\left\{x \in R^{n} ; A x \leq 1\right.$ and $\left.x \geq 0\right\}$
the antiblocker $\mathbf{b}_{S}(\mathcal{A})=\{B ; B \subseteq V$ maximal such that $|B \cap A| \leq 1 \forall A \in$ $\mathcal{A}\}$: a clutter on V

A particular case

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Clutter $\mathcal{A}(\mathrm{G})=\{$ maximal cliques of G$\}$
$\mathbf{b}_{s}(\mathcal{A}(G))=\{B ; B \subseteq V$ maximal such that $|B \cap K| \leq 1 \forall K \in \mathcal{A}\}$ $=\{$ maximal stable set of G$\}$

Theorem (Lovász 1972) :
$P_{\leq}(\mathcal{A}(G))=\left\{x \in R^{n} ; A x \leq 1\right.$ and $\left.x \geq 0\right\}=b_{s}(\mathcal{A})$ iff G is perfect.

So if G is minimal imperfect then $P_{s}(\mathcal{A}(G))$ has some non integer vertex, but $P_{s}\left(\mathcal{A}\left(G^{\prime}\right)\right)$ any proper induced subgraph G^{\prime} of G.

G.S'SCDP

Lovász Theorem and Padberg Corollaries

Theorem : Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a minimal imperfect graph,
$\omega=$ maximum size of clique
$\alpha=$ maximum size of a stable set
then G

- has $n=\alpha \omega+1$ vertices,
- contains exactly $n \omega$-cliques K_{1}, \ldots, K_{n} and $n \alpha$-stable sets S_{1}, \ldots, S_{n} and $\mathrm{K}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=1$ if $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{K}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{i}}=0$,
- every vertex v of G belongs to exactly $\omega \omega$-cliques $K_{i 1}, K_{i 2}, \ldots, K_{i \omega}$, $\alpha \alpha$-stable sets $\mathrm{S}_{\mathrm{j} 1}, \mathrm{~S}_{\mathrm{j} 2}, \ldots, \mathrm{~S}_{\mathrm{j} \alpha}$
and $S_{i 1}, S_{i 2}, \ldots, S_{i \omega}$ is a partition of V / v
$\mathrm{K}_{\mathrm{j} 1}, \mathrm{~K}_{\mathrm{j} 2}, \ldots, \mathrm{~K}_{\mathrm{j} \alpha}$ is a partition of V / v

Lovász Theorem and Padberg Corollaries

another formulation

Theorem : Let
$\mathcal{A}_{\mathrm{G}}=\{$ maximal cliques of a minimal imperfect graph G$\}$
then

- $P_{\leq}\left(\mathcal{A}_{G}\right)$ is non integer, $(1 / \omega, \ldots, 1 / \omega)$ is its unique fractional vertex, and $P_{\leq}\left(\mathcal{A}_{G^{\prime}}\right)$ is integer for every proper induced subgraph G^{\prime} of G, and there exists
- X nxn matrix, rows =char. vectors of elements of \mathcal{A}_{G}
- Y nxn matrix columns=char. vectors of elements of $b_{\leq}\left(\mathcal{A}_{G}\right)$ such that X and Y are uniform and $X Y=Y X=J-I$
$J=n x n$ all one matrix, $I=n x n$ identity matrix, uniform = same number of 1 in each row and column, $\omega=$ max size of a clique, $\alpha=$ max size of a stable set.

Some other definitions

Given a clutter \mathcal{A} on V
the matrix A of size $\mathrm{m} \times \mathrm{n}$: rows $=$ the characteristic vectors of the elements of \mathcal{A}

The blocking polyhedron $P_{\geq}(\mathcal{A})=\left\{x \in R^{n} ; A x \geq 1\right.$ and $\left.x \geq 0\right\}$
the blocker
$\mathbf{b}_{\mathbf{2}}(\mathcal{A})=\{B ; B \subseteq V$ maximal such that $|B \cap A| \geq 1 \forall A \in \mathcal{A}\}$: a clutter
Theorem (Edmonds-Fulkerson1970) : $\mathrm{b}_{乙}\left(\mathrm{~b}_{乙}(\mathcal{A})\right.$).
\mathcal{A} is said to be ideal if $P_{\geq}(\mathcal{A})=b_{\geq}(\mathcal{A})$

More definitions

Let x in R^{n}, i in V, P a polyhedron in R^{n}
The projection of x parallel to the ith coordinate is
$x^{i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$
Deletion : $\mathrm{P} \backslash \mathrm{i}=\left\{\mathrm{x}^{i} ; \mathrm{x} \in \mathrm{P}\right\}$
Contraction : $\mathrm{P} / \mathrm{i}=\left\{\mathrm{x}^{\mathrm{i}} ; \mathrm{x} \in \mathrm{P}\right.$ and $\left.\mathrm{x}_{\mathrm{i}}=0\right\}$
\mathcal{A} is minimally non ideal if
$P_{\geq}(\mathcal{A})=\left\{x \in R^{n} ; A x \geq 1\right\}$ has at least one non-integer vertex but $\forall i \in \mathrm{~V}$ all vertices of Pli and P / i are integer

Some minimally non-ideal clutters

The degenerative projective plane clutter $\mathcal{F}_{\mathrm{n}}(\mathrm{n} \geq 3)$:
$\left.\mathcal{F}_{\mathrm{n}}=\{1,2, \ldots, \mathrm{n}-1\},\{1, \mathrm{n}\},\{2, \mathrm{n}\}, \ldots\{\mathrm{n}-1, \mathrm{n}\}\right\}$
$\mathrm{P}_{\geq}\left(\mathcal{F}_{\mathrm{n}}\right)$ has the fractional vertex
($1 / n-1,1 / n-1, \ldots, n-2 / n-1$)

Lehman Theorem

Theorem (Lehman 1990)
Let \mathcal{A} be a minimally non ideal clutter, either $\mathcal{A}=\mathcal{F}_{\mathrm{n}}$
or there exists

- nxn matrix X, rows $=$ char. vectors of elements of \mathcal{A}
- nxn matrix Y columns=char. vectors of elements of $\mathcal{B}_{\geq}(\mathcal{A})$
such that X and Y are uniform and

$$
X Y=Y X=J+(\mu-1) \text { I for some } \mu \geq 2
$$

Our theorem

Let \mathcal{A}_{\leq}and \mathcal{A}_{\geq}two clutters
and $P:=P_{\leq}\left(\mathcal{A}_{\leq}\right) \cap P_{\geq}\left(\mathcal{A}_{\geq}\right)$be minimally non integer, then
either $\mathcal{A}_{\leq}=\varnothing, \mathcal{A}=\mathcal{F}_{\mathrm{n}}$ and $w=(1 / n-1,1 / n-1, \ldots, n-2 / n-1)$ isa
unique fractionnal vertex of P
Or one or both of the following hold :
\mathcal{A}_{\leq}is as in the case of Lovasz theorem and $\left(1 / r_{\leq}, 1 / r_{\leq}, \ldots, 1 / r_{\leq}\right)$ is a vertex of P
\mathcal{A}_{\geq}is as in the case of Lehman theorem and $\left(1 / r_{\geq}, 1 / r_{\geq}, \ldots, 1 / r_{\geq}\right)$

One key element of the proofs

The commutativity Lemma :
If X and Y are two nxn $(0,1)$ matrices
and XY are such that all non diagonal elements are
equal to 1 and the diagonal elements are either all equal to 0 or all >1 then
X uniform $\Rightarrow Y$ is uniform too, all diagonal elements are equal and $\mathrm{XY}=\mathrm{YX}$

Happy 6irthday Jack

