Is this matrix singular?

András Recski

Paris, 2009
Budapest University of
Technology and Economics

Is this matrix singular?

András Recski

Paris, 2009
Budapest University of
Technology and Economics

Sponsored links during my next session:

- Air-Hyd-Mechanical Jacks
- See us for high pressure cylinders, mechanical \& inflatable jacks!
- www.movingriggingsupplies.com
- Jack \& Jones
- Make space in your wardrobe! Delivery only $2 €$, for all orders jackjones.com
- Gaither's Equipment
- Tire-changing, inflation \& lifting products for the trucking industry.
- www.gaithertool.com
- Chain Jacks
- Mooring of SPARS, TLP's and FPSO's Quality engineering since 1965
- www.venturahydraulics.com
- Qual-Craft Pump Jack
- www.MagnumTools.com

Sponsored links during my next session:

- Air-Hyd-Mechanical Jacks
- See us for high pressure cylinders, mechanical \& inflatable jacks!
- www.movingriggingsupplies.com
- Jack \& Jones
- Make space in your wardrobe! Delivery only $2 €$, for all orders jackjones.com
- Gaither's Equipment
- Tire-changing, inflation \& lifting products for the trucking industry.
- www.gaithertool.com
- Chain Jacks
- Mooring of SPARS, TLP's and FPSO's Quality engineering since 1965
- www.venturahydraulics.com
- Qual-Craft Pump Jack
- www.MagnumTools.com

Jack in Budapest in 1994

The Anonymus group - the students of Dénes Kőnig, including Pál Erdős, Pál Turán, György Szekeres, Tibor Gallai and many others

When is a matrix singular?

Let A be an $n X n$ matrix.
det A can be determined effectively if the entries are from a field.

When is a matrix singular?

Let A be an $n \times n$ matrix.
det A can be determined effectively if the entries are from a field.

But what if they are from a commutative ring?

A classical case

D. Kőnig, 1915

If the nonzero entries are distinct variables
(or real numbers, algebraically independent over the field of the rationals) then we can describe the zero-nonzero pattern of the matrix by a bipartite graph and check whether the graph has a perfect matching.

$$
A_{1}=\left(\begin{array}{ccccc}
x_{1} & x_{2} & 0 & 0 & 0 \\
0 & 0 & x_{3} & x_{4} & x_{5} \\
0 & 0 & x_{6} & x_{7} & x_{8} \\
x_{9} & x_{10} & 0 & 0 & 0 \\
0 & x_{11} & x_{12} & 0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccccc}
x_{1} & x_{2} & 0 & 0 & 0 \\
0 & 0 & x_{3} & x_{4} & x_{5} \\
0 & 0 & x_{6} & x_{7} & x_{8} \\
x_{9} & x_{10} & 0 & 0 & 0 \\
0 & x_{11} & 0 & 0 & 0
\end{array}\right)
$$

If the nonzero entries are different variables (or real numbers, algebraically independent over the field of the rationals)
then rank equals term rank.

Systems of Distinct Representatives and Linear Algebra*

Jack Edmonds
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(November 16, 1966)
Some purposes of this paper are: (1) To take seriously the term, "rorm rank." (2) To make an issue of not "rearranging rows and columms" by mot "arranging" them in the first place. (31 Topromote the numerical use of Sramer's rule. (4) Tor illustrate that the relevance of "number of steps" to "amount of work" depends on the amount of work in a step. (5) To call attention to the computational aspect of SDR's. an aspect where the subject differs from beine an instance of familiar linear aleebrat. (6) To describe an SDR instance of a theory on extremal combinatorics that meses linear algebra in very dif. ferent ways than does lotally unimodular theory. (The preceding paprer. Optimum Branchings, describes another instance of that theory.)

Key Words: Algorithms, combinatorics. indeterminates, linear algehra, matroids, systems of distinct representatives. term rank.

1. Introduction

he well-known concept of term rank $[5,6] .1$ is wn here to be a special case of linear-algebra rank. s observation is used to provide a simple linearebra proof of the well-known SDR theorem. Exeept familiar linear alyebra, the paper is self-contained. ncidentally to SDR's, an algorithm is presented for nputing the determinant or the rank of any matrix r any integral domain. It is a variation of Gaussian . linear) elimination which has certain advantages. s observed to be an interestingly bad algorithm for aputing term rank.
The final part of the paper discusses some simple troidal aspects of SDR's.

However, here the word "transversal" will be used differently.)

3. Matrices of Zeros and Ones

The subject of SDR`s is frequently treated in the context of matrices of 0 's and l's. The incidence matrix of the family Q of subsets of E is the matrix $A=\left[a_{i j}\right], i \in E, j \in Q$, such that $a_{i j}=1$ if $i \in j$, and $a_{i j}=0$ otherwise.
A matching in a matrix is a subset of its positions (i, j) such that first indices (rows) of members are all different and second indices (columns) of members are all different. A transversal (column transversal) of a matrix is a matching in the matrix which has a member

Edmonds, 1967

Theorem 1. The term rank of a 0,1 matrix \mathbf{A} is the same as the linear algebra rank of the matrix obtained by replacing the 1's in \mathbf{A} by distinct indeterminates over any integral domain.

Another classical case

If the matrix was obtained during the analysis of an electric network consisting of resistors, voltage and current sources,
then...

Kirchhoff, 1847

Fig. 1

2-terminal devices (like resistors, voltage sources) are represented as edges of a graph

Fig. 1

2-terminal devices (like resistors, voltage sources) are represented as edges of a graph, relations among voltages (or among currents) are described with the help of the circuits (cut sets, respectively) of the graph.

Fig. 1
$i_{3}=\left(R_{4} u_{1}+R_{2} u_{5}\right) /\left(R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}\right)$

Fig. 1

$$
\begin{aligned}
i_{3} & =\left(R_{4} u_{1}+R_{2} u_{5}\right) /\left(R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}\right) \\
& =\left(Y_{2} Y_{3} u_{1}+Y_{3} Y_{4} u_{5}\right) /\left(Y_{2}+Y_{3}+Y_{4}\right)
\end{aligned}
$$

Fig. 1

$$
\begin{aligned}
i_{3} & =\left(R_{4} u_{1}+R_{2} u_{5}\right) /\left(R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}\right) \\
& =\left(Y_{2} Y_{3} u_{1}+Y_{3} Y_{4} u_{5}\right) /\left(Y_{2}+Y_{3}+Y_{4}\right)
\end{aligned}
$$

$W_{Y}(G)=\sum_{T} \Pi_{j \varepsilon T} Y_{j}$
(Kirchhoff, 1847; Maxwell, 1892)

If the matrix \mathbf{A} was obtained during the analysis of an electric network consisting of resistors, voltage and current sources, then the nonzero expansion members of $\operatorname{det} \mathbf{A}$ are in one-one correspondence with those trees of the network graph which contain every voltage source and none of the current sources.
...the nonzero expansion members of det A are in one-one correspondence with those trees of the network graph which contain every voltage source and none of the current sources. Hence if the physical parameters are distinct indeterminants then nonsingularity \longrightarrow the existence of such a tree.

Maxwell

Maxwell

Generalization of this classical case

If the matrix was obtained during the analysis of an electric network consisting of resistors, voltage and current sources and more complex devices like ideal transformers, gyrators, operational amplifiers etc. then what?

Example 1 - Ideal transformers

$$
u_{2}=k \cdot u_{1}, \quad i_{1}=-k \cdot i_{2}
$$

Example 1 - Ideal transformers

$$
u_{2}=k \cdot u_{1}, \quad i_{1}=-k \cdot i_{2}
$$

Both the tree and the tree complement must contain exactly one of the two port edges.

Example 1 - Ideal transformers

$$
u_{2}=k \cdot u_{1}, \quad i_{1}=-k \cdot i_{2}
$$

Both the tree and the tree complement must contain exactly one of the two port edges.

If the number of the ideal transformers is part of the input, one needs the matroid partition algorithm (Edmonds, 1968).

Example 2 - Gyrators

$$
u_{2}=-R \cdot i_{1}, \quad u_{1}=R \cdot i_{2}
$$

Example 2 - Gyrators

$$
u_{2}=-R \cdot i_{1}, \quad u_{1}=R \cdot i_{2}
$$

Either the tree or the tree complement must contain both of the two port edges.

Example 2 - Gyrators

$$
u_{2}=-R \cdot i_{1}, u_{1}=R \cdot i_{2}
$$

Either the tree or the tree complement must contain both of the two port edges.

If the number of the ideal transformers is part of the input, one needs the matroid matching algorithm (Lovász, 1980).

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u_{1}}{u_{2}}+\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right)\binom{i_{1}}{i_{2}}=\binom{0}{0}, \quad r\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h
\end{array}\right)=2
$$

How can we generalize the above observations to arbitrary 2-ports?

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u_{1}}{u_{2}}+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\binom{i_{1}}{i_{2}}=\binom{0}{0}, \quad r\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h
\end{array}\right)=2
$$

- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \leq 1$ if $a d=b c$ holds;
- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \geq 1$ if $e h=f g$ holds;

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u_{1}}{u_{2}}+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\binom{i_{1}}{i_{2}}=\binom{0}{0}, \quad r\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h
\end{array}\right)=2
$$

- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \leq 1$ if $a d=b c$ holds;
- $\left\{p_{1}, p_{2}\right\} \cap T \neq\left\{p_{1}\right\}$ if $a h=f c$ holds;
- $\left\{p_{1}, p_{2}\right\} \cap T \neq\left\{p_{2}\right\}$ if $b g=d e$ holds;
- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \geq 1$ if $e h=f g$ holds;

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u_{1}}{u_{2}}+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\binom{i_{1}}{i_{2}}=\binom{0}{0}, \quad r\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h
\end{array}\right)=2
$$

- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \leq 1$ if $a d=b c$ holds;
- $\left\{p_{1}, p_{2}\right\} \cap T \neq\left\{p_{1}\right\}$ if $a h=f c$ holds;
- $\left\{p_{1}, p_{2}\right\} \cap T \neq\left\{p_{2}\right\}$ if $b g=d e$ holds;
- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \geq 1$ if $e h=f g$ holds;
- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \neq 1$ if $(a+b)(g-h)=(c+d)(e-f)$ holds.

Theoretically there are infinitely many possible algebraic relations among these 8 numbers but only these five can lead to singularities (R., 1980).

- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \leq 1$ if $a d=b c$ holds;
- $\left\{p_{1}, p_{2}\right\} \cap T \neq\left\{p_{1}\right\}$ if $a h=f c$ holds;
- $\left\{p_{1}, p_{2}\right\} \cap T \neq\left\{p_{2}\right\}$ if $b g=d e$ holds;
- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \geq 1$ if $e h=f g$ holds;
- $\left|\left\{p_{1}, p_{2}\right\} \cap T\right| \neq 1$ if $(a+b)(g-h)=(c+d)(e-f)$ holds.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u_{1}}{u_{2}}+\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right)\binom{i_{1}}{i_{2}}=\binom{0}{0}, \quad r\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h
\end{array}\right)=2
$$

Does the column space matroid of this 2×4 matrix contain every important qualitative information about the 2-ports?

Obviously not. Compare

$$
\begin{gathered}
u_{1}=R i_{2}, \quad u_{2}=-R i_{1} \\
\text { and } \\
u_{1}=R i_{2}, \quad u_{2}=-2 R i_{1}
\end{gathered}
$$

Finally, a conjecture:

The sum of two graphic matroids is either graphic or nonbinary

Algebraic representation

Representable

Binary
Regular
Graphic

Finally, a conjecture:

The sum of two graphic matroids is either graphic or nonbinary

Known to be true if the two matroids are equal
(Lovász-R., 1973)

Happy birthday, Jack!

