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Integer problems and Matrices

Optimizing over x ∈ {0, 1}n can be transformed into
optimizing over

X := xxT

Since diag(X) = x, main diag of X takes the role of x.
Therefore any constraints on x translate to constraints on
main diagonal of X.
Moreover, quadratic constraints in x translate into linear
constraints in X.
But: Number of variables is squared.

Semidefinite optimization: Require X to be semidefinite.
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Cliques and Lovasz theta function

G = (V,E) . . . Graph on n vertices.

ω(G) = max
∑

i

xi such that xixj = 0 ij /∈ E, xi ∈ {0, 1}

because feasible x must be characteristic vector of some
clique.
Linearization trick: Consider X = 1

xT x
xxT .

X satisfies:

X � 0, tr(X) = 1, xij = 0∀ij /∈ E, rank(X) = 1

Note also: eT x = xT x, so eT x = 〈J,X〉. Here J = eeT .
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Cliques and theta function (2)

Exercise: Show that

ω = max{〈J,X〉 : X � 0, tr(X) = 1, xij = 0 (ij) /∈ E, rk(X) = 1}

The difficulty is hidden in the rank constraint.
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Cliques and theta function (2)

Exercise: Show that

ω = max{〈J,X〉 : X � 0, tr(X) = 1, xij = 0 (ij) /∈ E, rk(X) = 1}

The difficulty is hidden in the rank constraint.
Lovasz (1979): relax the (diffcult) rank constraint
This gives semidefinite relaxation ( = theta function).

ϑ(G) := max{〈J,X〉 : X � 0, tr(X) = 1, xij = 0 (ij) /∈ E}

This is a semidefinite program in the matrix variable X (of
size n).

Happy Birthday, Jack – p.5/19



Copositive Connection

Schrijver (1979) improvement: include X ≥ 0
In this case we can add up the constraints xij = 0 and get

ϑ′(G) = max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X ≥ 0, X � 0}.

(A . . . adjacency of complement graph). We have
ϑ(G) ≥ ϑ′(G) ≥ ω(G).
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Copositive Connection

Schrijver (1979) improvement: include X ≥ 0
In this case we can add up the constraints xij = 0 and get

ϑ′(G) = max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X ≥ 0, X � 0}.

(A . . . adjacency of complement graph). We have
ϑ(G) ≥ ϑ′(G) ≥ ω(G).
Replacing the cone X ≥ 0, X � 0 by X ∈ COP gives
copositive relaxation.

COP := {X = V V T : V ≥ 0}, completely positive matrices

CP := {Y : aT Y a ≥ 0 ∀a ≥ 0} copositive matrices

These cones are dual to each other.
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Copositive Connection

Let A be adjacency matrix of graph, J be all ones matrix.
Theorem (DeKlerk and Pasechnik (SIOPT 2002))

α(G) = max{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ COP}

= min{y : y(A + I) − J ∈ CP}.

This is a copositive program with only one equation (in the
primal problem).
This is a simple consequence of the Motzkin-Strauss
Theorem.
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Proof (1)

1

α(G)
= min{xT (A+ I)x : x ∈ ∆} (Motzkin-Strauss Theorem)

∆ = {x :
∑

i xi = 1, x ≥ 0} is standard simplex. We get

0 = min{xT (A + I −
eeT

α
)x : x ∈ ∆}

= min{xT (α(A + I) − J)x : x ≥ 0}.

This shows that α(A + I) − J is copositive. Therefore

inf{y : y(A + I) − J ∈ CP} ≤ α.
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Proof (2)

Weak duality of copositive program gives:

sup{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ COP} ≤

≤ inf{y : y(A + I) − J ∈ CP} ≤ α.
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Proof (2)

Weak duality of copositive program gives:

sup{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ COP} ≤

≤ inf{y : y(A + I) − J ∈ CP} ≤ α.

Now let ξ be incidence vector of a stable set of size α. The
matrix 1

α
ξξT is feasible for the first problem. Therefore

α ≤ sup{. . .} ≤ inf{. . .} ≤ α.

This shows that equality holds throughout and sup and inf
are attained.
The recent proof of this result by DeKlerk and Pasechnik
does not make explicit use of the Motzkin Strauss Theorem.
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Graph Coloring

Let S be the collection of stable sets in G. If S ∈ S, we
denote by xS the characteristic vector of S.
A k−coloring of G is partition of V (G) into k stable sets
(=color classes).
Chromatic number χ(G):

χ(G) = min
∑

λS such that
∑

S∈S

λSxS = e, λS ∈ {0, 1}

Fractional chromatic number χf (G):

χ(G) = min
∑

λS such that
∑

S∈S

λSxS = e, λS ≥ 0.

(Integer) LP with exponential number of variables λS.
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Coloring Matrices

Suppose
∑

S λSxS = e and λS ≥ 0.
Consider X =

∑

S∈S λSxSxT
S .

Properties of X:
• xij ∈ {0, 1} if λS ∈ {0, 1},
• xij = 0 if ij ∈ E(G),
• diag(X) = e (because xS is 0-1 vector)

• M =

(

∑

S λS eT

e X

)

� 0,

because M =
∑

S λS

(

1

xS

)(

1

xS

)T

� 0.
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Coloring Matrices

Adjacency matrix A of a graph (left), associated Coloring
Matrix (right). The graph can be colored with 5 colors.
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Coloring as integer SDP

Exercise: Show that

χ = min{α :

(

α eT

e X

)

� 0, xii = 1, xij = 0 ij ∈ E, xij ∈ {0, 1}}
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Coloring as integer SDP

Exercise: Show that

χ = min{α :

(

α eT

e X

)

� 0, xii = 1, xij = 0 ij ∈ E, xij ∈ {0, 1}}

Leaving out integrality of X, we get lower bound

χ ≥ min{α : Y − J � 0, diag(Y ) = αe, yij = 0 ij ∈ E}

The SDP condition is a consequence of the Schur
complement lemma with Y = αX and J = eeT .

(

α eT

e X

)

≻ 0 ⇐⇒ X −
1

α
eeT ≻ 0.
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Theta function again

χ ≥ min{α : Y � J, diag(Y ) = αe, yij = 0 ij ∈ E}

This SDP gives again the theta function (dual form).

Copositive refinement: Since X =
∑

S λSxSxT
S , we can

further impose Y ∈ COP (recall that Y = αX):

α∗ := min{α : Y � J, Y ∈ COP, diag(Y ) = αe, yij = 0 ij ∈ E}

Taking feasible solution λS for χf (G), we note that
X =

∑

S λSxSxT
S is feasible, therefore

α∗ ≤ χf (G).

Dukanovic, Laurent, Gvozdenovic, R. (2007) α∗ = χf (G).
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Some timings to compute theta function

The number of constraints depends on the edge set |E|. If
m is small, then this SDP can be solved efficiently using
interior point methods.

n 100 200 300 400
|E| 490 2050 4530 8000

time 2 52 470 2240
|E| 1240 5100 11250 20000

time 11 560 *** ***

Times in seconds for computing ϑ(G) on random graphs
with different densities( p = 0.1 and p=0.25).
In each iteration, a linear equation with |E| variables has to
be solved, so no hope if |E| > 10,000.
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Some DIMACS graphs

graph n m ϑ ω

keller5 776 74.710 31.00 27
keller6 3361 1026.582 63.00 ≥59
san1000 1000 249.000 15.00 15
san400-07.3 400 23.940 22.00 22
brock400-1 400 20.077 39.70 27
brock800-1 800 112.095 42.22 23
p-hat500-1 500 93.181 13.07 9
p-hat1000-3 1000 127.754 84.80 ≥68
p-hat1500-3 1500 227.006 115.44 ≥94

Computations using boundary point method (Malick, Povh,
Wiegele, R.(2007)). The theta number for the bigger
instances has not been computed before .
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