Even pairs in Berge graphs Journées POC, Paris, April 2009

Nicolas Trotignon

CNRS - LIAFA — Université Paris 7

Berge graphs and perfect graphs

- A graph G is perfect is for every induced subgraph the chromatic number equals the size of largest clique

Berge graphs and perfect graphs

- A graph G is perfect is for every induced subgraph the chromatic number equals the size of largest clique
- A hole in a graph is an induced cycle of length at least 4, an antihole is the complement of a hole
- A graph is Berge if it contains no odd hole and odd antihole

Berge graphs and perfect graphs

- A graph G is perfect is for every induced subgraph the chromatic number equals the size of largest clique
- A hole in a graph is an induced cycle of length at least 4, an antihole is the complement of a hole
- A graph is Berge if it contains no odd hole and odd antihole
- Th [Chudnovsky, Robertson, Seymour and Thomas, 2002]: a graph is perfect if and only if it is Berge.

Even pairs

An even pair is a pair of vertices of a graph such that all induced paths linking them are of even length

Why are even pairs interesting?

- Theorem [Fonlupt and Uhry, 1982]: contracting an even pair of a graph preserves its chromatic number and the size of a largest clique

Why are even pairs interesting?

- Theorem [Fonlupt and Uhry, 1982]: contracting an even pair of a graph preserves its chromatic number and the size of a largest clique
- Theorem [Meyniel, 1987]: a minimally imperfect graph contains no even pair

NP-hardness

- Theorem [Bienstock, 1991]:
- deciding whether a given pair of vertices of a graph is an even-pair is CoNP-complete.

NP-hardness

- Theorem [Bienstock, 1991]:
- deciding whether a given pair of vertices of a graph is an even-pair is CoNP-complete.
- deciding whether a graph contains an even-pair is CoNP-complete.

Polynomiality for Berge graphs

Follows easily in $O\left(n^{9}\right)$ from the Berge recognition algorithm Chudnovsky, Cornuéjols, Liu, Seymour and Vušković, 2002

Proving that a class of graphs contains an even pair

Fist idea: start from an induced P_{3}

Result obtained:

Proving that a class of graphs contains an even pair

Fist idea: start from an induced P_{3}

Result obtained: no interesting result...

Proving that a class of graphs contains an even pair

Second idea: use induction

Result obtained:

Proving that a class of graphs contains an even pair

Second idea: use induction

Result obtained:

- a Meyniel graph is a graph such that all odd cycles of length at least 5 admit at least 2 chords
- a Meyniel graph either is a clique or admits an even pair
- new proof of "all Meyniel graphs are perfect"
- Meyniel 1987

Proving that a class of graphs contains an even pair

Third idea: find a better vertex

Result obtained:

Proving that a class of graphs contains an even pair

Third idea: find a better vertex

Result obtained:

- if a graph contains no prism, no square and no odd hole then it is a clique or it admits an even pair
- all such graphs are perfect
- Linhares Sales and Maffray, 2002

Proving that a class of graphs contains an even pair

Fourth idea:

- consider a set of vertices as a vertex
- use the Roussel and Rubio Lemma

Result obtained:

Proving that a class of graphs contains an even pair

Fourth idea:

- consider a set of vertices as a vertex
- use the Roussel and Rubio Lemma

Result obtained:

- an Artemis graph is a graph with no odd hole, no prism and no antihole of length at 5
- an artemis graph is a clique or admits an even pair, Maffray and Trotignon, 2002
- all artemis graphs are perfect
- coloring artemis graphs in time $O\left(n^{2} m\right)$ with Lévêque and Reed, 2004

First: how it was proved

Every Berge graph is basic or admits a decomposition

- take a Berge graph G.
- Suppose that G contains a well chosen induced subgraph H that easily satifies the Theorem.
So H is "good" : basic or has a decomposition.
- Prove that the rest of G must attach to H in a way that keeps "being good"
- From here on G can be assumed H-free.
- Go back to the first step with another good graph H.

The twelve classes

- About a dozen of steps of the decomposition process were needed by Chudnovsky, Robertson, Seymour and Thomas.
- \mathcal{F}_{0} : class of all Berge graphs
- \mathcal{F}_{1} : class of graphs from \mathcal{F}_{0} where some kind of line-graph of a 3-connected graph is forbidden
-
- \mathcal{F}_{11} : class of all graphs from \mathcal{F}_{10} with no antihole of length at least 6

Why should even pairs be involved in the process?

- Interestingly, all the famous "even pair" killers play the role of H at some step.

Why should even pairs be involved in the process?

- Interestingly, all the famous "even pair" killers play the role of H at some step.
- Question: is there some $0 \leq i \leq 11$ such that all graphs in \mathcal{F}_{i} are either a clique or admit an even pair?

Why should even pairs be involved in the process?

- Interestingly, all the famous "even pair" killers play the role of H at some step.
- Question: is there some $0 \leq i \leq 11$ such that all graphs in \mathcal{F}_{i} are either a clique or admit an even pair?
- answer: Yes, \mathcal{F}_{11} is included in Artemis
- something better: No

The Maffray conjecture: bipartisan graphs

- Conjecture [Maffray, 2002]: for every graph G in \mathcal{F}_{6}, one of G, \bar{G} has an even pair.

The Maffray conjecture: bipartisan graphs

- Conjecture [Maffray, 2002]: for every graph G in \mathcal{F}_{6}, one of G, \bar{G} has an even pair.
- \mathcal{F}_{6} : no odd hole, no odd antihole, no long prism,

The Maffray conjecture: bipartisan graphs

- Conjecture [Maffray, 2002]: for every graph G in \mathcal{F}_{6}, one of G, \bar{G} has an even pair.
- \mathcal{F}_{6} : no odd hole, no odd antihole, no long prism,

- Decomposition of bipartisan graphs
(Chudnovsky, Robertson, Seymour and Thomas):
- Basics: bipartite graphs and their complement.
- Operation: even skew partition.

The Chudnovsky and Seymour Theorem

- Th [Chudnovsky and Seymour, 2007]: every graph G in \mathcal{F}_{7} has an even pair, or a dominant pair or a star cutset, or is a clique.
- \mathcal{F}_{7} : all graphs in \mathcal{F}_{6} that contain no odd wheels.

Shorten the proof again?

Maffray conjecture?

Generalizing even pairs?

- a pair of vertices is P_{4}-free if no path of length 3 link them
- a graph is P_{4}-contractile if it can be shrunk to a clique by a sequence of contraction of P_{4}-free pair
- Conjecture [Lévêque, 2008]: if a graph contains no odd hole and no antihole on at least 6 vertices then it is P_{4}-contractile

What about perfect graphs with no even pairs?

- Researchers including Chudnovsky, Seymour and Thomas conjecture that Berge graphs with no even pair can be fully constructed from basic graphs by few simple operations.
Operations include: clique cutset, homogeneous set, 2-join ...
- This approach might lead to a combinatorial coloring algorithm for all perfect graphs.

