Tight Formulations for Some Simple Mixed Integer Sets

Laurence A. Wolsey

Pretty Structure, Good Characterizations, Existential Polytime and/or Polyhedral Combinatorics, Poincaré Institute, Paris, 7/4/2009

$$
X=\left\{(z, s) \in Z^{1} \times R_{+}^{1}: s+z \geq b\right\}
$$

where $f=b-\lfloor b\rfloor>0$.
The mixed integer rounding (MIR) inequality

$$
s \geq f(\lfloor b\rfloor)+1-z)
$$

is valid for X.
$X=\left\{(z, s) \in Z \times R_{+}^{1}: s+z \geq \frac{13}{8}\right\}$
MIR Inequality: $\quad s \geq \frac{1}{3}(z-3)$

MIR Example

$$
X=\left\{(z, s) \in Z \times R_{+}^{1}: s+z \geq \frac{13}{8}\right\}
$$

MIR Inequality: $s \geq \frac{5}{8}(2-z)$

Questions to be asked about a "simple" set X

- Describe a family \mathcal{F} of valid inequalities for X or $\operatorname{conv}(X)$
- Describe a separation algorithm for $\operatorname{conv}(X)$, or for the polyhedron described by the family \mathcal{F}
- Describe an extended formulation for X, if possible providing a tight formulation of $\operatorname{conv}(X)$
- (Additional Constraints). Given X, suppose that $P=\operatorname{conv}(X)$. Now consider $X \cap Q$ where Q is a polyhedron.
For which polyhedra Q is it true that

$$
\operatorname{conv}(X \cap Q)=\operatorname{conv}(X) \cap Q ?
$$

MIR gives Convex Hull: Proof

$$
\begin{aligned}
s+z & \geq b \\
s+f z & \geq f\lceil b\rceil \\
s & \geq 0
\end{aligned}
$$

In a facet, $s=\max (b-z, f(\lceil b\rceil-z), 0)$.

- If $s=b-z$, then facet is $z \leq\lfloor b\rfloor$.
- If $s=f(\lceil b\rceil-z)$, then facet is $\lfloor b\rfloor \leq z \leq\lceil b\rceil$
- If $s=0$, then facet is $z \geq\lceil b\rceil$.

Generalization

$$
X^{*}=\left\{(s, z) \in \mathbb{R}_{+}^{n} \times \mathbb{Z}^{n}: s^{i}+z^{i} \geq b_{i}, i=1, \ldots, n\right\} .
$$

Convex hull is obtained by adding MIR inequalities.
When is convex hull of $X^{*} \cap Q$ given by MIR inequalities?
When $Q=\left\{z \in \mathbb{R}^{n}: D x \leq d\right\}$ with D totally unimodular and d integer.

Multi-Item Discrete Lot-sizing Problem

$$
\begin{gathered}
\min \sum_{i=1}^{N I} \sum_{t=1}^{N T}\left(h_{t}^{i} s_{t}^{i}+b_{t}^{i} r_{t}^{i}+q_{t}^{i} y_{t}^{i}\right) \\
s_{t-1}^{i}-r_{t-1}^{i}+C^{i} y_{t}^{i}=d_{t}^{i}+s_{t}^{i}-r_{t}^{i} \forall i, t \\
\sum_{i=1}^{N I} y_{t}^{i} \leq 1 \forall t \\
s_{t}^{i}, r_{t}^{i} \geq 0, y_{t}^{i} \in\{0,1\} \forall i, t
\end{gathered}
$$

Equivalent formulation of flow constraints
Eliminate the variables r_{t} giving

$$
s_{t}^{i} \geq C^{i} \sum_{u=1}^{t} y_{u}^{i}-d_{1 t}^{i}
$$

and set $z_{t}^{i}=\sum_{u=1}^{t} y_{u}^{i}$

$$
\begin{array}{r}
s_{t}^{i} / C^{i} \geq z_{t}^{i}-d_{1 t}^{i} / C^{i} \forall i, t \\
0 \leq z_{t}^{i}-z_{t-1}^{i} \leq 1 \\
\sum_{i}\left(z_{t}^{i}-z_{t-1}^{i}\right) \leq 1 \forall i, t
\end{array}
$$

This is a set of disjoint two variable MIPs plus network constraints. Conclusion: Simple MIR inequalities give the convex hull for this multi-item problem.

Mixing Sets

The mixing set X^{M} consists of

$$
\begin{gathered}
s+z_{l} \geq b_{l} \text { for } l=1, \ldots, n \\
\\
s \in \mathbb{R}^{1}, z \in \mathbb{Z}^{n} .
\end{gathered}
$$

Let $f_{l}=b_{l}-\left\lfloor b_{l}\right\rfloor$ for all l.
A tight extended formulation for $\operatorname{conv}\left(X^{M}\right)$ is:

$$
\begin{gathered}
s=\sum_{i=1}^{n} f_{i} \delta_{i}+\mu \\
z_{t}+\mu+\sum_{\left\{i: f_{i} \geq f_{t}\right\}} \delta_{i} \geq\left\lfloor b_{t}\right\rfloor+1 \text { for } t=1, \ldots, n \\
\sum_{i=0}^{n} \delta_{i}=1 \\
\delta \in \mathbb{R}_{+}^{n+1}, \mu \in \mathbb{R}^{1}, z \in \mathbb{R}^{n} .
\end{gathered}
$$

A Network Dual Extended Formulation

Suppose wlog $1=f_{0}>f_{1} \geq f_{2} \cdots \geq f_{n}$. Let $\mu_{0}=\mu$ and $\mu_{t}=\mu+\sum_{i: f_{i} \geq f_{t}} \delta_{i}$ giving:

$$
\begin{gathered}
s=\sum_{i=0}^{n}\left(f_{i}-f_{i+1}\right) \mu_{i} \\
z_{t}+\mu_{t} \geq\left\lfloor b_{t}\right\rfloor+1 \text { for } t=1, \ldots, n \\
-\mu_{j-1}+\mu_{j} \geq 0 \text { for } j=1, \ldots, n \\
\mu_{0}-\mu_{n} \geq-1 \\
\mu \in \mathbb{R}^{n+1}, z \in \mathbb{R}^{n} .
\end{gathered}
$$

This is the transpose of a pure network matrix (dual network) matrix, and the extreme points are obviously integer.

Projection gives Mixing Inequalities

$$
\begin{gathered}
s=\sum_{i=0}^{n}\left(f_{i}-f_{i+1}\right) \mu_{i} \\
\mu_{t} \geq\left\lceil b_{t}\right\rceil-z_{t} \text { for } t=1, \ldots, n \\
\mu_{0} \geq\left\lceil b_{n}\right\rceil-1-z_{n}
\end{gathered}
$$

Mixing Inequality

$$
s \geq\left(1-f_{1}\right)\left(\left\lceil b_{n}\right\rceil-1-z_{n}\right)+\sum_{i=1}^{n}\left(f_{i}-f_{i+1}\right)\left(\left\lceil b_{t}\right\rceil-z_{t}\right)
$$

Example of Mixing Inequality

Consider the set

$$
X=\left\{(s, y) \in \mathbb{R}_{+}^{1} \times \mathbb{Z}^{3}: s+y_{1} \geq 0.7, s+y_{2} \geq 2.6, s+y_{3} \geq 1.4\right\}
$$

Mixing Inequality
$s \geq(1-0.7)\left(1-y_{3}\right)+(0.7-0.6)\left(1-y_{1}\right)+(0.6-0.4)\left(3-y_{2}\right)+0.4\left(2-y_{3}\right)$.

Additional Constraints for Mixing

All faces are of the form: Some Mixing Inequality is tight, and $\alpha_{i j} \leq z_{i}-z_{j} \geq \beta_{i j}$ with $\alpha_{i j}, \alpha_{i j} \in \mathbb{Z}$.

When is convex hull of $X^{M} \cap Q$ given by mixing inequalities?
When $Q=\left\{z \in \mathbb{R}^{n}: D x \leq d\right\}$ with D a network dual matrix and d integer.

Generalization: Bipartite Edge Covering

Given $G=\left(V_{1}, V_{2}, E\right)$, consider the set

$$
\begin{array}{r}
x_{i}+x_{j} \geq b_{i j} \forall(i, j) \in E \\
x_{i} \in \mathbb{Z}^{1} i \in I, x_{i} \in \mathbb{R}^{1} i \in L=V \backslash I
\end{array}
$$

Network Dual MIPs

Given $D=(V, A)$, consider the set $X^{N D}$:

$$
\begin{array}{r}
x_{i}-x_{j} \geq b_{i j} \forall(i, j) \in A \\
x_{i} \in \mathbb{Z}^{1} i \in I, x_{i} \in \mathbb{R}^{1} i \in L=V \backslash I
\end{array}
$$

There exists a tight extended formulation of the form

$$
\begin{array}{r}
\mu_{i j k}-\mu_{i j l(k)} \geq \beta_{i j k} \forall(i, j) \in A, k \in 1 . . Q \\
\mu_{i j k} \in \mathbb{R}^{1} \forall i, j, k
\end{array}
$$

with $\beta_{i j k} \in \mathbb{Z}$.
Its size depends on Q, the number of different fractional values the continuous variables take in the extreme points of $\operatorname{conv}(X)$.
Let $D_{L}=\left(L, A_{L}\right)$ be the digraph induced by the nodes corresponding to continuous variables.
Q is polynomial in size if D_{L} is a tree.

Open Questions

- Complexity when D_{L} is a bi-directed path.
- Membership Problem: Given $x^{*} \in \mathbb{R}^{|V|}$, decide whether $x^{*} \in \operatorname{conv}\left(X^{N D}\right)$.
- Every facet is induced by a tree in D_{L}. This would imply that Membership is in co-NP.

THANK YOU and ANY QUESTIONS

THEN over to JACK

