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Two Variable MIP Set

X = {(z, s) ∈ Z1 × R1
+ : s + z ≥ b}

where f = b − bbc > 0.

The mixed integer rounding (MIR) inequality

s ≥ f(bbc) + 1 − z)

is valid for X .

X = {(z, s) ∈ Z × R1
+ : s + z ≥ 13

8 }

MIR Inequality: s ≥ 1
3(z − 3)
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MIR Example

X = {(z, s) ∈ Z × R1
+ : s + z ≥ 13

8 }

MIR Inequality: s ≥ 5
8(2 − z)
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s+z >= 13/8, s >= 0
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X3 = {(z, x) ∈ Z × R1 : x ≤ z, x ≤ 13
8 }

MIR Inequality: x ≤ 1 + 5
8(z − 1) (Substitute x + s = 13/8)
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Questions to be asked about a “simple" set X

Describe a family F of valid inequalities for X or conv(X)

Describe a separation algorithm for conv(X), or for the
polyhedron described by the family F

Describe an extended formulation for X , if possible providing a
tight formulation of conv(X)

( Additional Constraints). Given X , suppose that P = conv(X).
Now consider X ∩ Q where Q is a polyhedron.
For which polyhedra Q is it true that

conv(X ∩ Q) = conv(X) ∩ Q?
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MIR gives Convex Hull: Proof

s + z ≥ b

s + fz ≥ fdbe

s ≥ 0

In a facet, s = max(b − z, f(dbe − z), 0).

If s = b − z, then facet is z ≤ bbc.

If s = f(dbe − z), then facet is bbc ≤ z ≤ dbe

If s = 0, then facet is z ≥ dbe.
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Generalization

X∗ = {(s, z) ∈ Rn
+ × Z

n : s i + z i ≥ bi , i = 1, . . . , n}.

Convex hull is obtained by adding MIR inequalities.

When is convex hull of X∗ ∩ Q given by MIR inequalities?

When Q = {z ∈ Rn : Dx ≤ d} with D totally unimodular and d
integer.
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Multi-Item Discrete Lot-sizing Problem

min
∑NI

i=1
∑NT

t=1(h
i
ts

i
t + b i

t r
i
t + qi

ty
i
t)

s i
t−1 − r i

t−1 + C iy i
t = d i

t + s i
t − r i

t ∀i, t∑NI
i=1 y i

t ≤ 1 ∀t

s i
t , r

i
t ≥ 0, y i

t ∈ {0, 1} ∀i, t

Equivalent formulation of flow constraints
Eliminate the variables rt giving

s i
t ≥ C i ∑t

u=1 y i
u − d i

1t
and set z i

t =
∑t

u=1 y i
u
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Reformulation

s i
t/C

i ≥ z i
t − d i

1t/C
i ∀i, t

0 ≤ z i
t − z i

t−1 ≤ 1∑
i

(z i
t − z i

t−1) ≤ 1 ∀i, t

This is a set of disjoint two variable MIPs plus network constraints.
Conclusion: Simple MIR inequalities give the convex hull for this
multi-item problem.
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Mixing Sets

The mixing set XM consists of

s + zl ≥ bl for l = 1, . . . , n

s ∈ R1, z ∈ Zn.

Let fl = bl − bblc for all l.
A tight extended formulation for conv(XM) is:

s =
∑n

i=1 fiδi + µ

zt + µ+
∑
{i:fi≥ft } δi ≥ bbtc+ 1 for t = 1, . . . , n∑n

i=0 δi = 1

δ ∈ Rn+1
+ , µ ∈ R1, z ∈ Rn.
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A Network Dual Extended Formulation

Suppose wlog 1 = f0 > f1 ≥ f2 · · · ≥ fn. Let µ0 = µ and
µt = µ+

∑
i:fi≥ft δi giving:

s =
∑n

i=0(fi − fi+1)µi

zt + µt ≥ bbtc+ 1 for t = 1, . . . , n

−µj−1 + µj ≥ 0 for j = 1, . . . , n

µ0 − µn ≥ −1

µ ∈ Rn+1, z ∈ Rn.

This is the transpose of a pure network matrix (dual network)
matrix, and the extreme points are obviously integer.
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Projection gives Mixing Inequalities

s =
∑n

i=0(fi − fi+1)µi

µt ≥ dbte − zt for t = 1, . . . , n

µ0 ≥ dbne − 1 − zn

Mixing Inequality

s ≥ (1 − f1)(dbne − 1 − zn) +
n∑

i=1

(fi − fi+1)(dbte − zt)
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Example of Mixing Inequality

Consider the set

X = {(s, y) ∈ R1
+ × Z

3 : s + y1 ≥ 0.7, s + y2 ≥ 2.6, s + y3 ≥ 1.4}.

Mixing Inequality

s ≥ (1−0.7)(1−y3)+(0.7−0.6)(1−y1)+(0.6−0.4)(3−y2)+0.4(2−y3).
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Additional Constraints for Mixing

All faces are of the form: Some Mixing Inequality is tight, and
αij ≤ zi − zj ≥ βij with αij , αij ∈ Z.

When is convex hull of XM ∩ Q given by mixing inequalities?

When Q = {z ∈ Rn : Dx ≤ d} with D a network dual matrix and d
integer.
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Generalization: Bipartite Edge Covering

Given G = (V1,V2,E), consider the set

xi + xj ≥ bij ∀(i, j) ∈ E

xi ∈ Z
1 i ∈ I, xi ∈ R

1 i ∈ L = V \ I
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Network Dual MIPs

Given D = (V ,A), consider the set XND :

xi − xj ≥ bij ∀(i, j) ∈ A

xi ∈ Z
1 i ∈ I, xi ∈ R

1 i ∈ L = V \ I

There exists a tight extended formulation of the form

µijk − µijl(k) ≥ βijk ∀(i, j) ∈ A , k ∈ 1..Q

µijk ∈ R
1 ∀ i, j, k

with βijk ∈ Z.
Its size depends on Q , the number of different fractional values the
continuous variables take in the extreme points of conv(X).
Let DL = (L ,AL) be the digraph induced by the nodes
corresponding to continuous variables.
Q is polynomial in size if DL is a tree.
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Open Questions

Complexity when DL is a bi-directed path.

Membership Problem: Given x∗ ∈ R|V |, decide whether
x∗ ∈ conv(XND).

Every facet is induced by a tree in DL . This would imply that
Membership is in co − NP.
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THANK YOU and ANY QUESTIONS

THEN over to JACK
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