Geometric Representations of Graphs

Bipartite planar graphs: representation by contacts of segments

vertices \rightarrow segments
edges \rightarrow contact points same topology

Bipartite planar graphs:

Contacts of segments $\rightarrow 2$ trees on 2 pages

Let G be a planar graph such that for any subgraph H of G (with $n(H)>1)$:

- $m(H) \leq 2^{*} n(H)-2$ then G is representable by a contact family of pseudo-segments.
- $m(H) \leq 2^{*} n(H)-3$ then G is representable by a contact family of segments.

Planar graphs:

Representation by contacts of triangles \rightarrow contacts of \mathbf{T}

Exponential size

Linear size

Vertex packing algorithm \rightarrow

- straight line drawing on a linear size grid
- representation by contacts of triangles

Incidence graph of a graph / a contact system

Planar Linear Hypergraphs:

Representation by contacts of segments and/or triangles
(Vertices are represented by segments or triangles Edged by contact points)

H linear $\Leftrightarrow 2$ edges share at most 1 vertex

Planar Linear Hypergraphs:

Representation by contacts of segments and/or triangles
(Edges are represented by segments or triangles
Vertices by contact points)

Our Hypergraph H (linear, planar)

Incidence graph R of a planar linear hypergraph H: planar bipartite graph without cycle of lenght 4
(white vertex \rightarrow triangle/segment
black vertex \rightarrow contact point)

H planar \Leftrightarrow R planar

Incidence graph

Splitting some vertices

3-Orientation

Symplifying $\rightarrow(2, \leq 1)$ Orientation

Constuction of a $(2, \leq 1)$-orientation:

- white vertices will get exactly 2 incoming edges
- black vertices will get at most 1 incoming edge

Make all faces of length 6

Add a vertex r incident to the black vertices of the external face

Double all edges

λ-orientation of a multigraph

Lemma:
Let G be a multigraph, let λ be a mapping from $V(G)$ to N.
Then there exists an orientation of G such that each vertex $v \in V(G)$ has
indegree bounded by $\lambda(v)$ if and only if
$\forall A \subseteq V(G):|E(G[A])| \leq \sum_{v \in A} \lambda(v)$
Moreover, this orientation is such that each vertex v has indegree $\lambda(v)$ if and only if we also have the global condition
$|E(G)|=\sum_{v \in V(G)} \lambda(v)$.

3 -orient the graph
We define $\lambda(v)=3$ for the original vertices and
$\lambda(r)=0$ for the extra vertex.
Using Euler formula, the previous lemma applies.

Types of Vertices

Type I

Type II

both incoming to white both incoming to black otherwise

Type II

one incoming to white one incoming to black one incoming to white

Split white vertices of type 2

Type I

Type I

Type II

Finally we get a $(2, \leq 1)$-Orientation

($2, \leq 1$)-Orientation

White: indegree $=2$
Black: indegree ≤ 1

Contacts of Pseudo-Segments

Stretching the Pseudo-Segments

Eventually...

Thank you for your attention...

