Manifolds, Room Partitionings, Abstract Sperner and PPAD

Jack Edmonds Laura Sanità

Bernhard von Stengel

Combinatorial manifolds

```
Given: rank r
```

collection M of r-element sets called **rooms**

```
set of vertices V = \bigcup M
```

wall = room without a vertex v (wall "opposite" v) any wall belongs to exactly 2 rooms (i.e. any (r-1)-set of vertices belongs to 0 or 2 rooms)

call M a manifold.

Room partitionings

Given a manifold M with vertex set V, room partitioning = partition of V into rooms. (Then |V| is a multiple of the rank r.)

Theorem.

M has an even number of room partitionings.

Proof by Parity Argument (PPA).

Example: Manifold

Room partitioning

New room partitioning

6 extra points, 12 extra rooms

Exponential length of paths

Note:

The path length is exponential in the number of **rooms**!

Abstract Sperner

- Manifold M of rank r
- each vertex v has label (color) in {1, ..., r}
- call a set of vertices multicolored if no two of its vertices have the same color.

Theorem.

M has an **even** number of multicolored rooms.

Abstract Sperner

start at multicolored room

allow missing color 1

allow missing color 1

allow missing color 1

find color 1, done!

Concrete Sperner

- simplex S with r vertices, triangulation T
- each vertex of T has color in {1, ..., r}
- color of a vertex of S not found on opposite facet (Sperner condition).

Theorem.

T has an **odd** number of multicolored simplices.

Proof: Corollary to Abstract Sperner

- Induction on rank r: each facet has odd number of multicolored simplices (in one dimension lower)
- Add vertex w of any color and connect w to outside vertices (\Rightarrow get manifold $T \cup \{w\text{-rooms}\}$).
- By induction: $T \cup \{w \text{-rooms}\}\$ has odd number of multicolored simplices that contain w
- → $T \cup \{w\text{-rooms}\}$ and hence T has odd number of multicolored simplices that do **not** contain w.

Sperner and PPAD

• PPA**D** = proof by parity argument with **direction**,

• direction "local" to the path.

PPAD = opposite orientation of end-rooms

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

$$\begin{vmatrix} \bullet \\ a_1 a_2 a_3 \end{vmatrix} \longrightarrow \begin{vmatrix} b_2 a_2 a_3 \end{vmatrix}$$

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,
rooms = facets of simplicial polytope

. . . with 0 in interior,

vertices = r-vectors, pivot to next room,

orientation = determinant of vertices in order of labels

Pivoting changes sign of determinant

Pivoting changes sign of determinant

Apply to orientable abstract manifolds

- Given a room with vertices $a_1 a_2 \dots a_r$, call any two **permutations** of the vertices **equivalent** if they differ by an **even** number of transpositions.
- \Rightarrow Get two equivalence classes called **orientations**.

Call adjacent rooms $\{a_1 \ a_2 \ a_r\}$ and $\{b_1 \ a_2 \ a_r\}$ **consistently** oriented if $a_1 \ a_2 \ a_r$ and $b_1 \ a_2 \ a_r$ have opposite orientation (doable \Rightarrow oriented manifold).

Simplicial polytopes and games

Given: $M = conv \{-e_1, ..., -e_r, b_1, ..., b_n\}$ with labels

- i for negative unit vector –e_i, i = 1,...,r
- $c(j) \in \{1, ..., r\}$ for r-vector $b_i > 0, j = 1,...,n$.

Then: completely labeled facets of M \Leftrightarrow Nash equilibria of the $r \times n$ bimatrix game $([e_{c(1)} \dots e_{c(n)}], [B_1 \dots B_n])$ where $B_j = b_j / (1 + || b_j ||_1), j = 1,...,n.$

Path lengths for Abstract Sperner

- Linear in number of rooms.
- May be **exponential** in number of vertices:
 - if rooms = facets of simplicial polytope,
 path-following via pivoting.

Path lengths for Abstract Sperner

- Linear in number of rooms.
- May be **exponential** in number of vertices:
 - if rooms = facets of simplicial polytope,
 path-following via pivoting.
 - in special case of Gale manifold:
 rooms = Gale evenness bit-strings (1 = vertex)
 111100011000
 100110001101
 011110011000
 110110001100
 (0's and even runs of 1's).

Path lengths for Abstract Sperner

- Linear in number of rooms.
- May be **exponential** in number of vertices:
 - if rooms = facets of simplicial polytope,
 path-following via pivoting.
 - in special case of Gale manifold:
 rooms = Gale evenness bit-strings (1 = vertex)
 111100011000
 100110001101
 011110011000
 110110001100
 ...
 (0's and even runs of 1's).

Example [Morris 1994]

c = 123456645231

000<mark>1</mark>10110110 **1**10110 **1**1011110 **1**111110

In general: N = 2r,

path exponentially

long in r .

Open problems

Is "Find a second room partitioning" in PPAD?

[Direction at most possible when choosing missing vertex *w*, otherwise don't get opposite orientations of partitions at end of paths even for polytopes, e.g. octahedron.]

... **PPA-complete**? [No such problem known.]

