Manifolds, Room Partitionings, Abstract Sperner and PPAD

Jack Edmonds
Laura Sanità

Bernhard von Stengel

Combinatorial manifolds

Given: rank r
collection M of r-element sets called rooms
set of vertices $V=\cup M$
wall = room without a vertex v (wall "opposite" v) any wall belongs to exactly 2 rooms
(i.e. any ($r-1$)-set of vertices belongs to 0 or 2 rooms)
call M a manifold.

Room partitionings

Given a manifold M with vertex set V, room partitioning $=$ partition of V into rooms.
(Then $|\mathrm{V}|$ is a multiple of the rank r.)

Theorem.
M has an even number of room partitionings.

Proof by Parity Argument (PPA).

Example: Manifold

Room partitioning

w-almost room partitioning

New room partitioning

Construct exponential example

Construct exponential example

Construct exponential example

Construct exponential example

Construct exponential example

Construct exponential example

6 extra points, 12 extra rooms

path length more than doubles!

Exponential length of paths

Note:

The path length is exponential in the number of rooms!

Abstract Sperner

- Manifold M of rank r
- each vertex v has label (color) in $\{1, \ldots, r\}$ call a set of vertices multicolored if no two of its vertices have the same color.

Theorem.

M has an even number of multicolored rooms.

Abstract Sperner

start at multicolored room

allow missing color 1

allow missing color 1

allow missing color 1

find color 1, done!

Concrete Sperner

- simplex S with r vertices, triangulation T
- each vertex of T has color in $\{1, \ldots, r\}$
color of a vertex of S not found on opposite facet
(Sperner condition).

Theorem.

T has an odd number of multicolored simplices.

Proof: Corollary to Abstract Sperner

- Induction on rank r: each facet has odd number of multicolored simplices (in one dimension lower)
- \quad Add vertex w of any color and connect w to outside vertices (\Rightarrow get manifold $\mathrm{T} \cup\{w$-rooms $\}$).
- By induction: $\mathrm{T} \cup\{w$-rooms $\}$ has odd number of multicolored simplices that contain w
$\Rightarrow \quad \mathrm{T} \cup\{w$-rooms $\}$ and hence T has odd number of multicolored simplices that do not contain w.

Sperner and PPAD

PPAD = proof by parity argument with direction,
direction "local" to the path.

PPAD = opposite orientation of end-rooms

rooms = facets of simplicial polytope

$$
\left|a_{1} a_{2} a_{3}\right|
$$

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation = determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation = determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation $=$ determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation $=$ determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation = determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation = determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation $=$ determinant of vertices in order of labels

rooms = facets of simplicial polytope

. . . with 0 in interior,
vertices $=r$-vectors, pivot to next room, orientation $=$ determinant of vertices in order of labels

Pivoting changes sign of determinant

Pivoting changes sign of determinant

Apply to orientable abstract manifolds

Given a room with vertices $a_{1} a_{2} \ldots a_{r}$, call any two permutations of the vertices equivalent if they differ by an even number of transpositions.
\Rightarrow Get two equivalence classes called orientations.

Call adjacent rooms $\left\{\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{r}}\right\}$ and $\left\{\mathrm{b}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{r}}\right\}$ consistently oriented if $a_{1} a_{2} \ldots a_{r}$ and $b_{1} a_{2} \ldots a_{r}$ have opposite orientation (doable \Rightarrow oriented manifold).

Simplicial polytopes and games

Given: $M=$ conv $\left\{-e_{1}, \ldots,-e_{r}, b_{1}, \ldots, b_{n}\right\}$ with labels

- $\quad i$ for negative unit vector $-e_{i}, i=1, \ldots, r$
- $\quad c(j) \in\{1, \ldots, r\}$ for r-vector $b_{j}>0, j=1, \ldots, n$.

Then: completely labeled facets of M
$\Leftrightarrow \quad$ Nash equilibria of the $r \times n$ bimatrix game

$$
\left(\left[e_{c(1)} \ldots e_{c(n)}\right],\left[B_{1} \ldots B_{n}\right]\right)
$$

where $\quad B_{j}=b_{j} /\left(1+\left\|b_{j}\right\|_{1}\right), \quad j=1, \ldots, n$.

Path lengths for Abstract Sperner

- Linear in number of rooms.

May be exponential in number of vertices:

* if rooms = facets of simplicial polytope, path-following via pivoting.

Path lengths for Abstract Sperner

- Linear in number of rooms.

May be exponential in number of vertices:

* if rooms = facets of simplicial polytope, path-following via pivoting.
* in special case of Gale manifold:
rooms $=$ Gale evenness bit-strings ($1=$ vertex)
111100011000100110001101
$011110011000 \quad 110110001100$... (0's and even runs of 1 's).

Path lengths for Abstract Sperner

- Linear in number of rooms.

May be exponential in number of vertices:

* if rooms = facets of simplicial polytope, path-following via pivoting.
* in special case of Gale manifold:
rooms $=$ Gale evenness bit-strings ($1=$ vertex)
111100011000100110001101
$011110011000 \quad 110110001100$... (0's and even runs of 1 's).

Example [Morris 1994]

$c=123456645231$

111111000000
011111100000
011110110000
011011110000
011011011000
011001111000
011000111100
001100111100
001101101100
001111001100
001111000110
000111100110

000110110110
000011110110
000011011110
000001111110
000000111111

In general: $\quad N=2 r$,
path exponentially
long in r.

Open problems

Is "Find a second room partitioning" in PPAD?
[Direction at most possible when choosing missing vertex w, otherwise don't get opposite orientations of partitions at end of paths even for polytopes, e.g. octahedron.]
... PPA-complete? [No such problem known.]

