Combinatorial Algorithms to Solve Network Interdiction and Scheduling Problems with Multiple Parameters

S.T. McCormick; GP Oriolo; B. Peis

Sauder School of Business, UBC; U. Rome; TU Berlin

Combinatorial Algorithms to Solve Network Interdiction and Scheduling Problems with Multiple Parameters

S.T. McCormick; GP Oriolo; B. Peis

Sauder School of Business, UBC; U. Rome; TU Berlin

S. Thomas McCormick

Sauder School of Business
University of British Columbia

Combinatorial Algorithms to Solve Network Interdiction and Scheduling Problems with Multiple Parameters

S.T. McCormick; GP Oriolo; B. Peis

Sauder School of Business, UBC; U. Rome; TU Berlin

S. Thomas McCormick

Sauder School of Business
The best research b-school in Canada!
University of British Columbia

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton
(5) Multiple Parameters
- What is it?
- Scheduling problem
- Multi-GGT

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves
(4) The Breakpoint Subproblem
- What is it?
- Algorithms
- Discrete Newton
(5) Multiple Parameters
- What is it?
- Scheduling problem
- Multi-GGT

What is Network Interdiction?

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $\operatorname{cap}_{c}(S)$.

What is Network Interdiction?

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $\operatorname{cap}_{c}(S)$.
- We have a second non-negative datum on each arc: $r_{i j}$ is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{i j} / 2$ to reduce the capacity of $i \rightarrow j$ to $c_{i j} / 2$.

What is Network Interdiction?

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $\operatorname{cap}_{c}(S)$.
- We have a second non-negative datum on each arc: $r_{i j}$ is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{i j} / 2$ to reduce the capacity of $i \rightarrow j$ to $c_{i j} / 2$.
- In Min Cut we assume that the removal cost of $i \rightarrow j$ is proportional to its capacity $c_{i j}$, but here removal cost is independent of $c_{i j}$.

What is Network Interdiction?

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $\operatorname{cap}_{c}(S)$.
- We have a second non-negative datum on each arc: $r_{i j}$ is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{i j} / 2$ to reduce the capacity of $i \rightarrow j$ to $c_{i j} / 2$.
- In Min Cut we assume that the removal cost of $i \rightarrow j$ is proportional to its capacity $c_{i j}$, but here removal cost is independent of $c_{i j}$.
- Finally, we have a budget $B \geq 0$ to spend on destroying arcs. Our objective is to spend at most B (maybe fractionally) in a way that minimizes the value of the residual flow.

What is Network Interdiction?

- We start with an ordinary max flow min cut network with source s, sink t, and capacities c. The capacity of cut S is $\operatorname{cap}_{c}(S)$.
- We have a second non-negative datum on each arc: $r_{i j}$ is the removal cost of destroying arc $i \rightarrow j$; we could spend, e.g., $r_{i j} / 2$ to reduce the capacity of $i \rightarrow j$ to $c_{i j} / 2$.
- In Min Cut we assume that the removal cost of $i \rightarrow j$ is proportional to its capacity $c_{i j}$, but here removal cost is independent of $c_{i j}$.
- Finally, we have a budget $B \geq 0$ to spend on destroying arcs. Our objective is to spend at most B (maybe fractionally) in a way that minimizes the value of the residual flow.
- In Min Cut we remove arcs until there is zero flow left, but here we remove only as much as we can under the budget.

Removing arcs greedily

- Thus if $B=0$, then the interdiction value is cap ${ }_{c}^{*}$, the ordinary min cut value; for $B \geq$ cap $_{r}^{*}$, the interdiction value is 0 .

Removing arcs greedily

- Thus if $B=0$, then the interdiction value is cap ${ }_{c}^{*}$, the ordinary min cut value; for $B \geq$ cap $_{r}^{*}$, the interdiction value is 0 .
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).

Removing arcs greedily

- Thus if $B=0$, then the interdiction value is cap ${ }_{c}^{*}$, the ordinary min cut value; for $B \geq$ cap $_{r}^{*}$, the interdiction value is 0 .
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
- Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.

Removing arcs greedily

- Thus if $B=0$, then the interdiction value is cap ${ }_{c}^{*}$, the ordinary min cut value; for $B \geq$ cap $_{r}^{*}$, the interdiction value is 0 .
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
- Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.
- Further thought reveals that we should destroy arcs of S greedily, from the max value of $\rho_{e}=c_{e} / r_{e}$ down to the minimum value: "bang for the buck".

Removing arcs greedily

- Thus if $B=0$, then the interdiction value is cap ${ }_{c}^{*}$, the ordinary min cut value; for $B \geq$ cap $_{r}^{*}$, the interdiction value is 0 .
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
- Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.
- Further thought reveals that we should destroy arcs of S greedily, from the max value of $\rho_{e}=c_{e} / r_{e}$ down to the minimum value: "bang for the buck".
- Proof: again we could use a pairwise interchange argument.

Removing arcs greedily

- Thus if $B=0$, then the interdiction value is cap ${ }_{c}^{*}$, the ordinary min cut value; for $B \geq$ cap $_{r}^{*}$, the interdiction value is 0 .
- Some thought shows that it is always optimal to destroy arcs belonging to some cut S (that may depend on B).
- Proof: if the removed arcs do not belong to a single cut, we could move an arc to a cut to remove more flow.
- Further thought reveals that we should destroy arcs of S greedily, from the max value of $\rho_{e}=c_{e} / r_{e}$ down to the minimum value: "bang for the buck".
- Proof: again we could use a pairwise interchange argument.
- So let's get some idea of how much flow we can remove by destroying arcs from a fixed cut S.

The interdiction curve for a fixed cut S

Assume that we concentrate all our destruction on arcs of S.

The interdiction curve for a fixed cut S

Assume that we concentrate all our destruction on arcs of S.

The interdiction curve for a fixed cut S

Assume that we concentrate all our destruction on arcs of S.

The interdiction curve for a fixed cut S

Assume that we concentrate all our destruction on arcs of S.

The interdiction curve for a fixed cut S

This curve is piecewise linear convex.

The overall interdiction curve: the B-profile

We overlay the cut-wise interdiction curves to get the overall curve.

The overall interdiction curve: the B-profile

We overlay the cut-wise interdiction curves to get the overall curve.

The overall interdiction curve: the B-profile

We overlay the cut-wise interdiction curves to get the overall curve.

The overall interdiction curve: the B-profile

We overlay the cut-wise interdiction curves to get the overall curve.

The overall interdiction curve: the B-profile

For a given value of B, we just select which S gives the minimum value at B, so the overall curve is the minimum of all the cut-wise curves.

The overall interdiction curve: the B-profile

Unfortunately, the minimum of a bunch of convex curves is not in general convex.

The overall interdiction curve: the B-profile

This is why Network Interdiction is NP Hard (Phillips '93; Wood '93).

The overall interdiction curve: the B-profile

If we take the lower envelope, or convex hull, of the overall interdiction curve, we get something tractable, the B-profile.

The overall interdiction curve: the B-profile

Now budget B corresponds to a convex combination of points coming from the interdiction curves of (one or) two cuts, S_{1} and S_{2}.

The overall interdiction curve: the B-profile

S_{1} corresponds to breakpoint $\left(B_{1}, C_{1}\right), S_{2}$ to $\left(B_{2}, C_{2}\right)$, and we have λ s.t. $B=\lambda_{1} B_{1}+\lambda_{2} B_{2}$; define $C=\lambda_{1} C_{1}+\lambda_{2} C_{2} \leq C^{*}=$ opt. resid. capacity.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.
- Thus either $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$ or $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.
- Thus either $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$ or $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$.
- Suppose that $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$. Then $B_{1} \leq B$ and so $\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$, or $C_{1} \leq(1+1 / \epsilon) C \leq(1+1 / \epsilon) C^{*}$.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.
- Thus either $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$ or $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$.
- Suppose that $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$. Then $B_{1} \leq B$ and so $\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$, or $C_{1} \leq(1+1 / \epsilon) C \leq(1+1 / \epsilon) C^{*}$.
- If instead $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$, then $C_{2} \leq C \leq C^{*}$ and so $\frac{B_{2}}{B} \leq 1+\epsilon$, or $B_{2} \leq(1+\epsilon) B$.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.
- Thus either $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$ or $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$.
- Suppose that $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$. Then $B_{1} \leq B$ and so $\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$, or $C_{1} \leq(1+1 / \epsilon) C \leq(1+1 / \epsilon) C^{*}$.
- If instead $\frac{B_{2}}{B}+\epsilon \frac{\overline{C_{2}}}{C} \leq 1+\epsilon$, then $C_{2} \leq C \leq C^{*}$ and so $\frac{B_{2}}{B} \leq 1+\epsilon$, or $B_{2} \leq(1+\epsilon) B$.
- Thus we can choose S_{1} and under-use the budget but have a factor $1+1 / \epsilon$ too much residual capacity, or choose S_{2} and have less than C^{*} residual capacity, but overrun the budget by a factor of $1+\epsilon$.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.
- Thus either $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$ or $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$.
- Suppose that $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$. Then $B_{1} \leq B$ and so $\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$, or $C_{1} \leq(1+1 / \epsilon) C \leq(1+1 / \epsilon) C^{*}$.
- If instead $\frac{B_{2}}{B}+\epsilon \frac{\overline{C_{2}}}{C} \leq 1+\epsilon$, then $C_{2} \leq C \leq C^{*}$ and so $\frac{B_{2}}{B} \leq 1+\epsilon$, or $B_{2} \leq(1+\epsilon) B$.
- Thus we can choose S_{1} and under-use the budget but have a factor $1+1 / \epsilon$ too much residual capacity, or choose S_{2} and have less than C^{*} residual capacity, but overrun the budget by a factor of $1+\epsilon$.
- The algorithmic question is then: Given B, how do we find S_{1} and S_{2} ? This shows that we also want B_{1}, B_{2}, C_{1} and C_{2}.

Linearizing the overall curve: the B-profile

- Burch et al '02 show that we can use S_{1} and S_{2} to get a pseudo-approximation algorithm for Network Interdiction:
- Choose some $\epsilon>0$; then ...
- $\lambda_{1}\left(\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C}\right)+\lambda_{2}\left(\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C}\right)=\frac{\lambda_{1} B_{1}+\lambda_{2} B_{2}}{B}+\epsilon \frac{\lambda_{1} C_{1}+\lambda_{2} C_{2}}{C} \leq 1+\epsilon$.
- Thus either $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$ or $\frac{B_{2}}{B}+\epsilon \frac{C_{2}}{C} \leq 1+\epsilon$.
- Suppose that $\frac{B_{1}}{B}+\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$. Then $B_{1} \leq B$ and so $\epsilon \frac{C_{1}}{C} \leq 1+\epsilon$, or $C_{1} \leq(1+1 / \epsilon) C \leq(1+1 / \epsilon) C^{*}$.
- If instead $\frac{B_{2}}{B}+\epsilon \frac{\overline{C_{2}}}{C} \leq 1+\epsilon$, then $C_{2} \leq C \leq C^{*}$ and so $\frac{B_{2}}{B} \leq 1+\epsilon$, or $B_{2} \leq(1+\epsilon) B$.
- Thus we can choose S_{1} and under-use the budget but have a factor $1+1 / \epsilon$ too much residual capacity, or choose S_{2} and have less than C^{*} residual capacity, but overrun the budget by a factor of $1+\epsilon$.
- The algorithmic question is then: Given B, how do we find S_{1} and S_{2} ? This shows that we also want B_{1}, B_{2}, C_{1} and C_{2}.
- Burch et al write a linear program that can do it, but here we want a combinatorial algorithm to do it.

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves
(4) The Breakpoint Subproblem
- What is it?
- Algorithms
- Discrete Newton
(5) Multiple Parameters
- What is it?
- Scheduling problem
- Multi-GGT

The linear program and its dual

- The normal min cut dual LP is

$$
\begin{aligned}
\min \sum_{u \rightarrow v} c_{u v} y_{u v} & \\
\text { s.t. } d_{u}-d_{v}+y_{u v} & \geq 0 \quad \text { for } u \rightarrow v \neq t \rightarrow s, \\
d_{t}-d_{s}+y_{t s} & \geq 1 \\
y_{u v} & \geq 0 \quad \text { all } u \rightarrow v .
\end{aligned}
$$

The linear program and its dual

- The normal min cut dual LP is

$$
\begin{aligned}
\min \sum_{u \rightarrow v} c_{u v} y_{u v} & \\
\text { s.t. } d_{u}-d_{v}+y_{u v} & \geq 0 \quad \text { for } u \rightarrow v \neq t \rightarrow s, \\
d_{t}-d_{s}+y_{t s} & \geq 1 \\
y_{u v} & \geq 0 \quad \text { all } u \rightarrow v .
\end{aligned}
$$

- To get an interdiction version, put a second dual variable $z_{u v}$ on each $u \rightarrow v$ that represents what fraction of $u \rightarrow v$ we are going to destroy.

The linear program and its dual

- The normal min cut dual LP is

$$
\begin{aligned}
\min \sum_{u \rightarrow v} c_{u v} y_{u v} & \\
\text { s.t. } d_{u}-d_{v}+y_{u v} & \geq 0 \quad \text { for } u \rightarrow v \neq t \rightarrow s, \\
d_{t}-d_{s}+y_{t s} & \geq 1 \\
y_{u v} & \geq 0 \quad \text { all } u \rightarrow v .
\end{aligned}
$$

- To get an interdiction version, put a second dual variable $z_{u v}$ on each $u \rightarrow v$ that represents what fraction of $u \rightarrow v$ we are going to destroy.
- The new LP is then

$$
\begin{aligned}
\min \sum_{u \rightarrow v} c_{u v} y_{u v} & \\
\text { s.t. } d_{u}-d_{v}+y_{u v}+z_{u v} & \geq 0 \quad \text { for } u \rightarrow v \neq t \rightarrow s, \\
d_{t}-d_{s}+y_{t s} & \geq 1 \\
\sum_{u \rightarrow v} r_{u v} z_{u v} & \leq B \\
y_{u v}, z_{u v} & \geq 0 \quad \text { all } u \rightarrow v .
\end{aligned}
$$

The linear program and its dual

- Repeat the new LP with dual variables:

\[

\]

The linear program and its dual

- Repeat the new LP with dual variables:

\[

\]

- When we "primalize" this interdiction dual LP we get new primal variable λ corresponding to the dual constraint $\sum_{u \rightarrow v} r_{u v} z_{u v} \leq B$, and the $z_{u v}$'s give us a second set of capacities.

The linear program and its dual

- Repeat the new LP with dual variables:

\[

\]

- When we "primalize" this interdiction dual LP we get new primal variable λ corresponding to the dual constraint $\sum_{u \rightarrow v} r_{u v} z_{u v} \leq B$, and the $z_{u v}$'s give us a second set of capacities.
- The primal interdiction LP is

$$
\begin{array}{rrl}
& \max _{x, \lambda}\left(x_{t s}-B \lambda\right) & \\
d: & \text { s.t. conservation } & \\
y_{u v}: & 0 \leq x_{u v} & \leq c_{u v} \\
z_{u v}: & x_{u v}-r_{u v} \lambda & \leq 0 .
\end{array}
$$

The linear program and its dual

- Repeat the primal interdiction LP and highlight the two capacities:

$$
\begin{aligned}
\max _{x, \lambda}\left(x_{t s}-B \lambda\right) & \\
\text { s.t. conservation } & \\
0 \leq x_{u v} & \leq c_{u v} \\
x_{u v}-r_{u v} \lambda & \leq 0
\end{aligned}
$$

The linear program and its dual

- Repeat the primal interdiction LP and highlight the two capacities:

$$
\begin{aligned}
& \max _{x, \lambda}\left(x_{t s}-B \lambda\right) \\
& \text { s.t. conservation } \\
& 0 \leq x_{u v} \leq c_{u v} \\
& x_{u v}-r_{u v} \lambda \leq 0
\end{aligned}
$$

- The two capacity constraints simplify into

$$
x_{u v} \leq \min \left(c_{u v}, \lambda r_{u v}\right),
$$

a parametric capacity in the scalar parameter λ.

The linear program and its dual

- Repeat the primal interdiction LP and highlight the two capacities:

$$
\begin{aligned}
& \max _{x, \lambda}\left(x_{t s}-B \lambda\right) \\
& \text { s.t. conservation } \\
& 0 \leq x_{u v} \leq c_{u v} \\
& x_{u v}-r_{u v} \lambda \leq 0
\end{aligned}
$$

- The two capacity constraints simplify into

$$
x_{u v} \leq \min \left(c_{u v}, \lambda r_{u v}\right),
$$

a parametric capacity in the scalar parameter λ.

- So let's investigate the behavior of this parametric min cut problem.

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves
(4) The Breakpoint Subproblem
- What is it?
- Algorithms
- Discrete Newton
(5) Multiple Parameters
- What is it?
- Scheduling problem
- Multi-GGT

Parametric capacity of fixed cut S

When λ is $\operatorname{small}, \operatorname{cap}(S, \lambda)=\lambda \operatorname{cap}_{r}(S)$.

Parametric capacity of fixed cut S

This continues as long as $\lambda r_{u v} \leq c_{u v}$ for all $u \rightarrow v \in \delta^{+}(S)$, or $\lambda \leq \rho_{u v}$.

Parametric capacity of fixed cut S

Thus the first breakpoint is when λ hits $\min _{\delta^{+}(S)} \rho_{u v}$.

Parametric capacity of fixed cut S

Thus the first breakpoint is when λ hits $\min _{\delta^{+}(S)} \rho_{u v}$.

Parametric capacity of fixed cut S

Thus the first breakpoint is when λ hits $\min _{\delta^{+}(S)} \rho_{u v}$.

Parametric capacity of fixed cut S

Thus the first breakpoint is when λ hits $\min _{\delta^{+}(S)} \rho_{u v}$.

Parametric capacity of fixed cut S

The parametric capacity curve for S is piecewise linear concave.

Parametric capacity of fixed cut S

For a value λ^{\prime} of λ we also get the local budget $B\left(S, \lambda^{\prime}\right)$ and local residual capacity $C\left(S, \lambda^{\prime}\right)$.

Conjugate duality between interdiction and parametric capacity for S

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.

Conjugate duality between interdiction and parametric capacity for S

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^{+}(S)$ in descending order of ρ_{e}. Then the breakpoints of S 's interdiction curve are $0, r_{1}, r_{1}+r_{2}, r_{1}+r_{2}+r_{3}$, \ldots... The slopes of S 's parametric capacity curve are $\ldots, r_{1}+r_{2}+r_{3}$, $r_{1}+r_{2}, r_{1}, 0$.

Conjugate duality between interdiction and parametric capacity for S

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^{+}(S)$ in descending order of ρ_{e}. Then the breakpoints of S 's interdiction curve are $0, r_{1}, r_{1}+r_{2}, r_{1}+r_{2}+r_{3}$, \ldots. The slopes of S 's parametric capacity curve are $\ldots, r_{1}+r_{2}+r_{3}$, $r_{1}+r_{2}, r_{1}, 0$.
- The slopes of S 's interdiction curve are $-\rho_{1},-\rho_{2}, \ldots$ The breakpoints of S 's parametric capacity curve are $\ldots, \rho_{3}, \rho_{2}, \rho_{1}$.

Conjugate duality between interdiction and parametric capacity for S

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^{+}(S)$ in descending order of ρ_{e}. Then the breakpoints of S 's interdiction curve are $0, r_{1}, r_{1}+r_{2}, r_{1}+r_{2}+r_{3}$, \ldots... The slopes of S 's parametric capacity curve are $\ldots, r_{1}+r_{2}+r_{3}$, $r_{1}+r_{2}, r_{1}, 0$.
- The slopes of S 's interdiction curve are $-\rho_{1},-\rho_{2}, \ldots$ The breakpoints of S 's parametric capacity curve are $\ldots, \rho_{3}, \rho_{2}, \rho_{1}$.
- Thus breakpoints and slopes are interchanged between S 's interdiction curve and its parametric capacity curve, though in reverse order and modulo a minus sign.

Conjugate duality between interdiction and parametric capacity for S

- Both curves are piecewise linear; the interdiction curve (residual capacity curve) is convex, the parametric capacity curve is concave.
- Index the arcs of $\delta^{+}(S)$ in descending order of ρ_{e}. Then the breakpoints of S 's interdiction curve are $0, r_{1}, r_{1}+r_{2}, r_{1}+r_{2}+r_{3}$, \ldots... The slopes of S 's parametric capacity curve are $\ldots, r_{1}+r_{2}+r_{3}$, $r_{1}+r_{2}, r_{1}, 0$.
- The slopes of S 's interdiction curve are $-\rho_{1},-\rho_{2}, \ldots$ The breakpoints of S 's parametric capacity curve are $\ldots, \rho_{3}, \rho_{2}, \rho_{1}$.
- Thus breakpoints and slopes are interchanged between S 's interdiction curve and its parametric capacity curve, though in reverse order and modulo a minus sign.
- In the language of conjugate duality, this is equivalent to saying that the parametric capacity curve $\operatorname{cap}(S, \lambda)$ is the negative of the conjugate dual of the interdiction curve for S, evaluated at $-\lambda$.

The overall parametric capacity curve: the λ-profile

Now overlay the parametric capacity curves for all S.

The overall parametric capacity curve: the λ-profile

Now overlay the parametric capacity curves for all S.

The overall parametric capacity curve: the λ-profile

Now overlay the parametric capacity curves for all S.

The overall parametric capacity curve: the λ-profile

Now overlay the parametric capacity curves for all S.

The overall parametric capacity curve: the λ-profile

For a fixed value of λ, we want to find the S whose parametric capacity at λ is minimum, so we just want the pointwise minimum of all these curves.

The overall parametric capacity curve: the λ-profile

For a fixed value of λ, we want to find the S whose parametric capacity at λ is minimum, so we just want the pointwise minimum of all these curves.

The overall parametric capacity curve: the λ-profile

Since the minimum of a bunch of concave curves is again concave, this time we do not need to linearize. We call this overall parametric capacity curve the λ-profile.

The overall parametric capacity curve: the λ-profile

We can compute things like cap* (λ) easily using parametric min cut technology.

The overall parametric capacity curve: the λ-profile

We can show that the conjugate duality between S 's interdiction and parametric capacity curves carries over to conjugate duality between the B profile and the λ-profile.

The overall parametric capacity curve: the λ-profile

Recall that to get our pseudo-approximation for a given B, we want to compute the two cuts S_{1} and S_{2} bracketing B on the B-profile.

The overall parametric capacity curve: the λ-profile

Conjugate duality implies that this is equivalent to finding a breakpoint λ^{\prime} on the λ-profile whose adjacent slopes bracket B, here S and U; we also get $B_{1}=B\left(S_{1}, \lambda^{\prime}\right), C_{1}=C\left(S_{1}, \lambda^{\prime}\right), B_{2}=B\left(S_{2}, \lambda^{\prime}\right)$, and $C_{2}=C\left(S_{2}, \lambda^{\prime}\right)$.

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves

4 The Breakpoint Subproblem

- What is it?
- Algorithms
- Discrete Newton
(5) Multiple Parameters
- What is it?
- Scheduling problem
- Multi-GGT

The key breakpoint subproblem

- Notice that any breakpoint $\hat{\lambda}$ of the λ-profile is defined by the intersection of a segment to its left coming from cut $S^{-}(\hat{\lambda})$ with local slope $\mathrm{sl}^{-}(\hat{\lambda})$, and a segment to its right coming from cut $S^{+}(\hat{\lambda})$ with local slope $\mathrm{sl}^{+}(\hat{\lambda})$, with $\mathrm{sl}^{-}(\hat{\lambda})>\mathrm{sl}^{+}(\hat{\lambda})$ by concavity.

The key breakpoint subproblem

- Notice that any breakpoint $\hat{\lambda}$ of the λ-profile is defined by the intersection of a segment to its left coming from cut $S^{-}(\hat{\lambda})$ with local slope $\mathrm{sl}^{-}(\hat{\lambda})$, and a segment to its right coming from cut $S^{+}(\hat{\lambda})$ with local slope $\mathrm{sl}^{+}(\hat{\lambda})$, with $\mathrm{sl}^{-}(\hat{\lambda})>\mathrm{sl}^{+}(\hat{\lambda})$ by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_{B} of the λ-profile such that sl${ }^{+}\left(\lambda_{B}\right) \leq B \leq \mathrm{sl}^{-}\left(\lambda_{B}\right)$, along with the corresponding $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$.

The key breakpoint subproblem

- Notice that any breakpoint $\hat{\lambda}$ of the λ-profile is defined by the intersection of a segment to its left coming from cut $S^{-}(\hat{\lambda})$ with local slope $\mathrm{sl}^{-}(\hat{\lambda})$, and a segment to its right coming from cut $S^{+}(\hat{\lambda})$ with local slope $\mathrm{sl}^{+}(\hat{\lambda})$, with $\mathrm{sl}^{-}(\hat{\lambda})>\mathrm{sl}^{+}(\hat{\lambda})$ by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_{B} of the λ-profile such that sl${ }^{+}\left(\lambda_{B}\right) \leq B \leq \mathrm{sl}^{-}\left(\lambda_{B}\right)$, along with the corresponding $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$.
- A technical detail: Suppose I give you λ_{B}. Can you then use it to compute $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$?

The key breakpoint subproblem

- Notice that any breakpoint $\hat{\lambda}$ of the λ-profile is defined by the intersection of a segment to its left coming from cut $S^{-}(\hat{\lambda})$ with local slope $\mathrm{sl}^{-}(\hat{\lambda})$, and a segment to its right coming from cut $S^{+}(\hat{\lambda})$ with local slope $\mathrm{sl}^{+}(\hat{\lambda})$, with $\mathrm{sl}^{-}(\hat{\lambda})>\mathrm{sl}^{+}(\hat{\lambda})$ by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_{B} of the λ-profile such that sl${ }^{+}\left(\lambda_{B}\right) \leq B \leq \mathrm{sl}^{-}\left(\lambda_{B}\right)$, along with the corresponding $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$.
- A technical detail: Suppose I give you λ_{B}. Can you then use it to compute $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$?
- Yes: We can use a combination of Picard-Queyranne decomposition w.r.t. an optimal flow at λ_{B}, and \min flow / max cut in the residual network to find them

The key breakpoint subproblem

- Notice that any breakpoint $\hat{\lambda}$ of the λ-profile is defined by the intersection of a segment to its left coming from cut $S^{-}(\hat{\lambda})$ with local slope $\mathrm{sl}^{-}(\hat{\lambda})$, and a segment to its right coming from cut $S^{+}(\hat{\lambda})$ with local slope $\mathrm{sl}^{+}(\hat{\lambda})$, with $\mathrm{sl}^{-}(\hat{\lambda})>\mathrm{sl}^{+}(\hat{\lambda})$ by concavity.
- The subproblem we now want to solve combinatorially: Given B, find breakpoint λ_{B} of the λ-profile such that sl${ }^{+}\left(\lambda_{B}\right) \leq B \leq \mathrm{sl}^{-}\left(\lambda_{B}\right)$, along with the corresponding $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$.
- A technical detail: Suppose I give you λ_{B}. Can you then use it to compute $S^{-}\left(\lambda_{B}\right)$ and $S^{+}\left(\lambda_{B}\right)$?
- Yes: We can use a combination of Picard-Queyranne decomposition w.r.t. an optimal flow at λ_{B}, and min flow / max cut in the residual network to find them
- So let's just concentrate on finding λ_{B}.

Binary search solves it

(1) Set $\lambda_{L}=0$ and $\lambda_{R}=$ cap $_{r}^{*}$; then all interesting values of λ are in $\left[\lambda_{L}, \lambda_{R}\right]$.

Binary search solves it

(1) Set $\lambda_{L}=0$ and $\lambda_{R}=$ cap $_{r}^{*}$; then all interesting values of λ are in $\left[\lambda_{L}, \lambda_{R}\right]$.
(2) Compute $\hat{\lambda}=\left(\lambda_{L}+\lambda_{R}\right) / 2$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$.

Binary search solves it

(1) Set $\lambda_{L}=0$ and $\lambda_{R}=$ cap $_{r}^{*}$; then all interesting values of λ are in $\left[\lambda_{L}, \lambda_{R}\right]$.
(2) Compute $\hat{\lambda}=\left(\lambda_{L}+\lambda_{R}\right) / 2$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$.
(3) If $B \in\left[\mathrm{sl}^{+}(\hat{\lambda}), \mathrm{sl}^{-}(\hat{\lambda})\right]$, then $\lambda_{B}=\hat{\lambda}$ and we can stop.

Binary search solves it

(1) Set $\lambda_{L}=0$ and $\lambda_{R}=$ cap $_{r}^{*}$; then all interesting values of λ are in $\left[\lambda_{L}, \lambda_{R}\right]$.
(2) Compute $\hat{\lambda}=\left(\lambda_{L}+\lambda_{R}\right) / 2$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$.
(3) If $B \in\left[\mathrm{sl}^{+}(\hat{\lambda}), \mathrm{sl}^{-}(\hat{\lambda})\right]$, then $\lambda_{B}=\hat{\lambda}$ and we can stop.
(9) Otherwise, if $B<\mathrm{sl}^{+}(\hat{\lambda})$ then replace λ_{L} by $\hat{\lambda}$; else $\left(B>\mathrm{sl}^{-}(\hat{\lambda})\right)$ replace λ_{R} by $\hat{\lambda}$ and go to 2 .

Binary search solves it

(1) Set $\lambda_{L}=0$ and $\lambda_{R}=$ cap $_{r}^{*}$; then all interesting values of λ are in $\left[\lambda_{L}, \lambda_{R}\right]$.
(2) Compute $\hat{\lambda}=\left(\lambda_{L}+\lambda_{R}\right) / 2$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$.
(3) If $B \in\left[\mathrm{sl}^{+}(\hat{\lambda}), \mathrm{sl}^{-}(\hat{\lambda})\right]$, then $\lambda_{B}=\hat{\lambda}$ and we can stop.
(9) Otherwise, if $B<\mathrm{sl}^{+}(\hat{\lambda})$ then replace λ_{L} by $\hat{\lambda}$; else $\left(B>\mathrm{sl}^{-}(\hat{\lambda})\right)$ replace λ_{R} by $\hat{\lambda}$ and go to 2 .

- This runs in something like $\Theta(\log (n D))$ time, where D is the size of the data.

Binary search solves it

(1) Set $\lambda_{L}=0$ and $\lambda_{R}=$ cap $_{r}^{*}$; then all interesting values of λ are in $\left[\lambda_{L}, \lambda_{R}\right]$.
(2) Compute $\hat{\lambda}=\left(\lambda_{L}+\lambda_{R}\right) / 2$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$.
(3) If $B \in\left[\mathrm{sl}^{+}(\hat{\lambda}), \mathrm{sl}^{-}(\hat{\lambda})\right]$, then $\lambda_{B}=\hat{\lambda}$ and we can stop.
(9) Otherwise, if $B<\mathrm{sl}^{+}(\hat{\lambda})$ then replace λ_{L} by $\hat{\lambda}$; else $\left(B>\mathrm{sl}^{-}(\hat{\lambda})\right)$ replace λ_{R} by $\hat{\lambda}$ and go to 2 .

- This runs in something like $\Theta(\log (n D))$ time, where D is the size of the data.
- Can we do better?

Discrete Newton gives a better algorithm

Set $\lambda_{L}=0$ and $\lambda_{R}=\operatorname{cap}_{r}^{*}$ as before. Denote $\mathrm{sl}^{+}\left(\lambda_{L}\right)$ by sl_{L}^{+}and $\mathrm{sl}^{-}\left(\lambda_{R}\right)$ by sl_{R}^{-}.

Discrete Newton gives a better algorithm

Set $\lambda_{L}=0$ and $\lambda_{R}=\operatorname{cap}_{r}^{*}$ as before. Denote $\mathrm{sl}^{+}\left(\lambda_{L}\right)$ by sl_{L}^{+}and $\mathrm{sl}^{-}\left(\lambda_{R}\right)$ by sl_{R}^{-}.

Discrete Newton gives a better algorithm

Set $\lambda_{L}=0$ and $\lambda_{R}=\operatorname{cap}_{r}^{*}$ as before. Denote $\mathrm{sl}^{+}\left(\lambda_{L}\right)$ by sl_{L}^{+}and $\mathrm{sl}^{-}\left(\lambda_{R}\right)$ by sl_{R}^{-}.

Discrete Newton gives a better algorithm

Compute $\hat{\lambda}$ as the intersection of the line of slope sl_{L}^{+}through $\left(\lambda_{L}, \operatorname{cap}^{*}\left(\lambda_{L}\right)\right)$, and the line of slope sl_{R}^{-}through $\left(\lambda_{R}, \operatorname{cap}^{*}\left(\lambda_{R}\right)\right)$, a max flow w.r.t. $\hat{\lambda}$, and $\mathrm{sl}^{-}(\hat{\lambda})$ and $\mathrm{sl}^{+}(\hat{\lambda})$.

Discrete Newton gives a better algorithm

If $B \in\left[\mathrm{sl}^{+}(\hat{\lambda}), \mathrm{sl}^{-}(\hat{\lambda})\right]$, then $\lambda_{B}=\hat{\lambda}$ and we can stop.

Discrete Newton gives a better algorithm

Otherwise, if $B<\mathrm{sl}^{+}(\hat{\lambda})$ then replace λ_{L} by $\hat{\lambda}$; else $\left(B>\mathrm{sl}^{-}(\hat{\lambda})\right)$ replace λ_{R} by $\hat{\lambda}$ and go to 2 .

Defining gaps

- How can we analyze the running time of this Newton- B algorithm?

Defining gaps

- How can we analyze the running time of this Newton- B algorithm?
- Let's think in terms of lines of slope B. Let L^{*} denote the line of slope B through the (as-yet unknown) point $\left(\lambda_{B}, \operatorname{cap}^{*}\left(\lambda_{B}\right)\right)$. This L^{*} is the highest possible line of slope B through any point of the λ-profile.

Defining gaps

- How can we analyze the running time of this Newton- B algorithm?
- Let's think in terms of lines of slope B. Let L^{*} denote the line of slope B through the (as-yet unknown) point $\left(\lambda_{B}, \operatorname{cap}^{*}\left(\lambda_{B}\right)\right)$. This L^{*} is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $\left(\lambda_{L}, \operatorname{cap}^{*}\left(\lambda_{L}\right)\right)$ lies below L^{*}.

Defining gaps

- How can we analyze the running time of this Newton- B algorithm?
- Let's think in terms of lines of slope B. Let L^{*} denote the line of slope B through the (as-yet unknown) point $\left(\lambda_{B}, \operatorname{cap}^{*}\left(\lambda_{B}\right)\right)$. This L^{*} is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $\left(\lambda_{L}, \operatorname{cap}^{*}\left(\lambda_{L}\right)\right)$ lies below L^{*}.
- Since the lines defining $\hat{\lambda}$ are tangents to the λ-profile, their intersection must lie above L^{*}, and so the line of slope B through this intersection point lies above L^{*}.

Defining gaps

- How can we analyze the running time of this Newton- B algorithm?
- Let's think in terms of lines of slope B. Let L^{*} denote the line of slope B through the (as-yet unknown) point $\left(\lambda_{B}, \operatorname{cap}^{*}\left(\lambda_{B}\right)\right)$. This L^{*} is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $\left(\lambda_{L}, \operatorname{cap}^{*}\left(\lambda_{L}\right)\right)$ lies below L^{*}.
- Since the lines defining $\hat{\lambda}$ are tangents to the λ-profile, their intersection must lie above L^{*}, and so the line of slope B through this intersection point lies above L^{*}.
- Define vgap_{L} to be the vertical distance between the line of slope B through the intersection point, and the line of slope B through $\left(\lambda_{L}\right.$, cap $\left.^{*}\left(\lambda_{L}\right)\right)$, and similarly for vgap_{R}.

Defining gaps

- How can we analyze the running time of this Newton- B algorithm?
- Let's think in terms of lines of slope B. Let L^{*} denote the line of slope B through the (as-yet unknown) point $\left(\lambda_{B}, \operatorname{cap}^{*}\left(\lambda_{B}\right)\right)$. This L^{*} is the highest possible line of slope B through any point of the λ-profile.
- Thus the line of slope B through, e.g., $\left(\lambda_{L}, \operatorname{cap}^{*}\left(\lambda_{L}\right)\right)$ lies below L^{*}.
- Since the lines defining $\hat{\lambda}$ are tangents to the λ-profile, their intersection must lie above L^{*}, and so the line of slope B through this intersection point lies above L^{*}.
- Define vgap_{L} to be the vertical distance between the line of slope B through the intersection point, and the line of slope B through $\left(\lambda_{L}\right.$, cap $\left.^{*}\left(\lambda_{L}\right)\right)$, and similarly for vgap_{R}.
- Also define slgap ${ }_{L}$ to be $\mathrm{sl}_{L}^{+}-B$ and slgap_{R} to be $B-\mathrm{sl}_{R}^{-}$.

vgap illustrated

The key inequality

- We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_{L} then the key inequality is

$$
\begin{equation*}
\frac{\operatorname{vgap}_{L}^{\prime}}{\operatorname{vgap}_{L}}+\frac{\operatorname{slgap}_{L}^{\prime}}{\operatorname{sggap}_{L}}<1 \tag{1}
\end{equation*}
$$

The key inequality

- We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_{L} then the key inequality is

$$
\begin{equation*}
\frac{\operatorname{vgap}_{L}^{\prime}}{\operatorname{vgap}_{L}}+\frac{\operatorname{sgap}_{L}^{\prime}}{\operatorname{sgap}_{L}}<1 \tag{1}
\end{equation*}
$$

- This immediately implies that at each iteration, one of $\operatorname{vgap}_{L}, \operatorname{vgap}_{R}$, slgap_{L}, or slgap_{R} is cut down by a factor of at least 2. Thus Newton- B is never worse than Binary Search.

The key inequality

- We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_{L} then the key inequality is

$$
\begin{equation*}
\frac{\operatorname{vgap}_{L}^{\prime}}{\operatorname{vgap}_{L}}+\frac{\operatorname{sgap}_{L}^{\prime}}{\operatorname{sgap}_{L}}<1 \tag{1}
\end{equation*}
$$

- This immediately implies that at each iteration, one of $\operatorname{vgap}_{L}, \operatorname{vgap}_{R}$, slgap_{L}, or slgap_{R} is cut down by a factor of at least 2. Thus Newton- B is never worse than Binary Search.
- (1) was originally proved in Mc+Ervolina '94. Then Rote, and Radzik '92-'98 showed that Newton- B is sometimes faster than Binary Search, and has a strongly polynomial bound.

The key inequality

- We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_{L} then the key inequality is

$$
\begin{equation*}
\frac{\operatorname{vgap}_{L}^{\prime}}{\operatorname{vgap}_{L}}+\frac{\operatorname{slgap}_{L}^{\prime}}{\operatorname{sggap}_{L}}<1 \tag{1}
\end{equation*}
$$

- This immediately implies that at each iteration, one of $\operatorname{vgap}_{L}, \operatorname{vgap}_{R}$, slgap_{L}, or slgap_{R} is cut down by a factor of at least 2. Thus Newton- B is never worse than Binary Search.
- (1) was originally proved in Mc+Ervolina '94. Then Rote, and Radzik '92-'98 showed that Newton- B is sometimes faster than Binary Search, and has a strongly polynomial bound.
- The better weakly polynomial bound is $O\left(\frac{\log (n D)}{1+\log \log (n D)-\log \log n}\right)$.

The key inequality

- We use primes to denote new values. When $\hat{\lambda}$ becomes the new λ_{L} then the key inequality is

$$
\begin{equation*}
\frac{\operatorname{vgap}_{L}^{\prime}}{\operatorname{vgap}_{L}}+\frac{\operatorname{sgap}_{L}^{\prime}}{\operatorname{sgap}_{L}}<1 \tag{1}
\end{equation*}
$$

- This immediately implies that at each iteration, one of $\operatorname{vgap}_{L}, \operatorname{vgap}_{R}$, slgap_{L}, or slgap_{R} is cut down by a factor of at least 2. Thus Newton- B is never worse than Binary Search.
- (1) was originally proved in Mc+Ervolina '94. Then Rote, and Radzik '92-'98 showed that Newton- B is sometimes faster than Binary Search, and has a strongly polynomial bound.
- The better weakly polynomial bound is $O\left(\frac{\log (n D)}{1+\log \log (n D)-\log \log n}\right)$.
- Sometimes there is an $O(m)$ bound on the number of iterations.

Some implications

- We didn't use much network structure in this analysis.

Some implications

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.

Some implications

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
- Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton- B.

Some implications

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
- Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton- B.
- The Burch et al pseudo-approximation framework carries through also.

Some implications

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
- Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton- B.
- The Burch et al pseudo-approximation framework carries through also.
- We are in the process of identifying other such problems.

Some implications

- We didn't use much network structure in this analysis.
- Thus we could define an interdiction version of any capacitated problem that can be formulated as an LP.
- Primalizing the LP would give a conjugate dual parametric problem that we could then solve via Newton- B.
- The Burch et al pseudo-approximation framework carries through also.
- We are in the process of identifying other such problems.
- Indeed, this Newton- B algorithm and its analysis works for any concave (or convex) function, even continuous ones.

Outline

(1) Network Interdiction

- What is it?
- Interdiction curves
(2) LP Duality
- Dual of interdiction
(3) Parametric Min Cut
- Parametric curves
(4) The Breakpoint Subproblem
- What is it?
- Algorithms
- Discrete Newton
(5) Multiple Parameters
- What is it?
- Scheduling problem
- Multi-GGT

Multiple budgets equals multiple parameters

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.

Multiple budgets equals multiple parameters

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.

Multiple budgets equals multiple parameters

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.
- Now we'd be trying to find a point on the parametric surface whose local derivatives bracket the given budgets in the coordinate directions.

Multiple budgets equals multiple parameters

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.
- Now we'd be trying to find a point on the parametric surface whose local derivatives bracket the given budgets in the coordinate directions.
- As before we could solve this via LP, but we'd prefer a combinatorial algorithm.

Multiple budgets equals multiple parameters

- A natural generalization is when there are multiple ways to destroy capacity, at different costs.
- It should be clear via duality that this would turn into a parametric min cut problem with multiple parameters.
- Now we'd be trying to find a point on the parametric surface whose local derivatives bracket the given budgets in the coordinate directions.
- As before we could solve this via LP, but we'd prefer a combinatorial algorithm.
- Interdiction already gets complicated with two parameters, so let's consider a simpler multiple parameter scheduling problem instead.

Chen's '94 scheduling problem

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote $c_{s j}$ by p_{j}, the processing time of job j.

Chen's '94 scheduling problem

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote $c_{s j}$ by p_{j}, the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.

Chen's '94 scheduling problem

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote $c_{s j}$ by p_{j}, the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.
- So assume instead that there is some non-trivial min cut. We want to outsource some of the processing of jobs until there exists a max flow saturating the residual processing time of every job.

Chen's '94 scheduling problem

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote $c_{s j}$ by p_{j}, the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.
- So assume instead that there is some non-trivial min cut. We want to outsource some of the processing of jobs until there exists a max flow saturating the residual processing time of every job.
- Initially assume that if we pay $\$ \lambda$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda\right)$ (where $a_{j} \geq 0$ is given for each j).

Chen's '94 scheduling problem

- We again start with a usual max flow network. We think of the nodes j such that $s \rightarrow j \in A$ as jobs, and we denote $c_{s j}$ by p_{j}, the processing time of job j.
- If a max flow in the network saturates all of these job arcs, then we are happy and the problem goes away.
- So assume instead that there is some non-trivial min cut. We want to outsource some of the processing of jobs until there exists a max flow saturating the residual processing time of every job.
- Initially assume that if we pay $\$ \lambda$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda\right)$ (where $a_{j} \geq 0$ is given for each j).
- Now we want to minimize λ such that there exists a flow saturating all residual job arcs.

Chen's scheduling problem: example

Here is a specific instance of this type of scheduling problem.

job nodes
interval nodes

Chen's scheduling problem: example

Here we have jobs 1, 2, 3 that we are scheduling on two machines.

job nodes
interval nodes

Chen's scheduling problem: example

Job 1 is available during $[0,10] ; 2$ during $[5,12] ; 3$ during $[3,15]$.

job nodes
interval nodes

Chen's scheduling problem: example

These time slots divide the total time into the five time intervals on the right.

job nodes
interval nodes

Chen's scheduling problem: example

The capacity into an interval is its width; the capacity out of an interval is (\# of machines) times its width.

job nodes
interval nodes

Chen's scheduling problem: example

At $\lambda=0$ there is no flow saturating s since, e.g., the total capacity out of $2=2+5<14=$ required flow into 2 .

job nodes
interval nodes

Chen's scheduling problem: example

At $\lambda=0$ the Min Cut is determined by jobs $2 \& 3$ requiring $12+14=26$ units, but having access to only 19 units of capacity, a gap of 7 units.

job nodes
interval nodes

Chen's scheduling problem: example

Thus we need to increase λ to at least $7 / 2=3.5$ to become feasible.

job nodes
interval nodes

Chen's scheduling problem: example

At $\lambda=3.5$ there is still a gap at 2: it requires 8.5 units, but has access to only 7 units, so λ increases from 3.5 to 5 , and now feasible.

job nodes
interval nodes

Chen's scheduling problem: example

This Newton-type algorithm uses $O(\#$ jobs $)$ iterations.

Chen's scheduling problem: example

But it can be done in $O(1)$ MFs via Gallo-Grigoriadis-Tarjan (GGT) '89 parametric min cut.

job nodes
interval nodes

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and μ such that if we pay $\$ \lambda+\$ \mu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu\right)$. In the (λ, μ) plane there is a piecewise linear convex curve separating feasible points from infeasible ones.

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and μ such that if we pay $\$ \lambda+\$ \mu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu\right)$.
For cut S with $D \subseteq \delta^{+}(S) \cap \delta^{+}(\{s\})$, the constraints defining this region have the form $\lambda a(D)+\mu b(D) \geq p(D)-c\left(\delta^{+}(S)\right)$.

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and μ such that if we pay $\$ \lambda+\$ \mu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu\right)$. We want to find a breakpoint of this curve whose local slopes bracket slope -1 .

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and μ such that if we pay $\$ \lambda+\$ \mu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu\right)$. We know how to do this: Newton- B.

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and μ such that if we pay $\$ \lambda+\$ \mu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu\right)$. We know how to do this: Newton- B.

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to

$$
\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)
$$

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν, these 2-parameter solutions trace out a piecewise linear curve in the ν direction.

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν, these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1 .

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν, these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1 .
- Again, we know how to do this via a recursive application of Newton- B.

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν, these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1 .
- Again, we know how to do this via a recursive application of Newton- B.
- This generalizes to any fixed number of parameters.

Three-parameter Chen

- Suppose now that there are three ways to outsource, λ, μ, and ν such that if we pay $\$ \lambda+\$ \mu+\$ \nu$, we reduce p_{j} to $\max \left(0, p_{j}-a_{j} \lambda-b_{j} \mu-d_{j} \nu\right)$.
- For any fixed value of ν this is a 2-parameter problem we know how to solve.
- As we vary ν, these 2-parameter solutions trace out a piecewise linear curve in the ν direction.
- We want to find a breakpoint on this curve whose local slopes bracket -1 .
- Again, we know how to do this via a recursive application of Newton- B.
- This generalizes to any fixed number of parameters.
- Open Question: LP is polynomial even when the number of parameters is not fixed. Can we get a combinatorial algorithm then?

Multi-parameter GGT

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}_{+}^{2} with \leq):

Multi-parameter GGT

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}_{+}^{2} with \leq):
- The objective $\operatorname{cap}(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ).

Multi-parameter GGT

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}_{+}^{2} with \leq):
- The objective $\operatorname{cap}(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ).
- It also satisfies Increasing Differences: for all $S \subseteq T$ and $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$,

$$
\operatorname{cap}(T, \lambda, \mu)-\operatorname{cap}\left(T, \lambda^{\prime}, \mu^{\prime}\right) \leq \operatorname{cap}(S, \lambda, \mu)-\operatorname{cap}\left(S, \lambda^{\prime}, \mu^{\prime}\right)
$$

Multi-parameter GGT

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}_{+}^{2} with \leq):
- The objective $\operatorname{cap}(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ).
- It also satisfies Increasing Differences: for all $S \subseteq T$ and $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$,

$$
\operatorname{cap}(T, \lambda, \mu)-\operatorname{cap}\left(T, \lambda^{\prime}, \mu^{\prime}\right) \leq \operatorname{cap}(S, \lambda, \mu)-\operatorname{cap}\left(S, \lambda^{\prime}, \mu^{\prime}\right)
$$

- Thm (Topkis): With these two properties, if $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$ then $S^{*}(\lambda, \mu) \subseteq S^{*}\left(\lambda^{\prime}, \mu^{\prime}\right)$.

Multi-parameter GGT

- Chen with ≥ 2 fits into a framework of Topkis '78 concerning parametric submodular optimization over a(n algebraic) lattice (here the lattice is \mathbb{R}_{+}^{2} with \leq):
- The objective $\operatorname{cap}(S, \lambda, \mu)$ is submodular in S for each fixed (λ, μ).
- It also satisfies Increasing Differences: for all $S \subseteq T$ and $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$,

$$
\operatorname{cap}(T, \lambda, \mu)-\operatorname{cap}\left(T, \lambda^{\prime}, \mu^{\prime}\right) \leq \operatorname{cap}(S, \lambda, \mu)-\operatorname{cap}\left(S, \lambda^{\prime}, \mu^{\prime}\right) .
$$

- Thm (Topkis): With these two properties, if $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$ then $S^{*}(\lambda, \mu) \subseteq S^{*}\left(\lambda^{\prime}, \mu^{\prime}\right)$.
- Corollary: In general, min cuts are non-decreasing along any chain in the lattice; for our 2-parameter scheduling problem, min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}_{+}^{2}.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.
- Here monotone min cuts implies that min cuts are nested, and so there are only $O(n)$ min cuts.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.
- Here monotone min cuts implies that min cuts are nested, and so there are only $O(n)$ min cuts.
- This is false in general; Carstensen, and Mulmuley give examples where the parametric curve has an exponential number of min cuts.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.
- Here monotone min cuts implies that min cuts are nested, and so there are only $O(n)$ min cuts.
- This is false in general; Carstensen, and Mulmuley give examples where the parametric curve has an exponential number of min cuts.
- But Discrete Newton works even in the general case.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.
- Here monotone min cuts implies that min cuts are nested, and so there are only $O(n)$ min cuts.
- This is false in general; Carstensen, and Mulmuley give examples where the parametric curve has an exponential number of min cuts.
- But Discrete Newton works even in the general case.
- True for our scheduling network, which is why we can use GGT.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.
- Here monotone min cuts implies that min cuts are nested, and so there are only $O(n)$ min cuts.
- This is false in general; Carstensen, and Mulmuley give examples where the parametric curve has an exponential number of min cuts.
- But Discrete Newton works even in the general case.
- True for our scheduling network, which is why we can use GGT.
- There are other 1-parameter cases where Topkis's structural result applies, see Arai, Ueno, Kajitani; Mc.; Fleischer; Fleischer, Iwata (SFM); Nagano (SFM); Scutellà; Milgrom and Shannon; Granot, Mc., Queyranne, Tardella.

GGT and Topkis in general

- For 1-parameter Min Cut, Increasing (or Decreasing) Differences is satisfied when only arcs at the source s (or sink t) are parametrized, and the capacities are monotone in the parameter.
- Here monotone min cuts implies that min cuts are nested, and so there are only $O(n)$ min cuts.
- This is false in general; Carstensen, and Mulmuley give examples where the parametric curve has an exponential number of min cuts.
- But Discrete Newton works even in the general case.
- True for our scheduling network, which is why we can use GGT.
- There are other 1-parameter cases where Topkis's structural result applies, see Arai, Ueno, Kajitani; Mc.; Fleischer; Fleischer, Iwata (SFM); Nagano (SFM); Scutellà; Milgrom and Shannon; Granot, Mc., Queyranne, Tardella.
- In all these cases except Milgrom and Shannon we can also get the GGT-style result that min cuts for all values of the parameter can be computed in $O(1)$ Min Cuts (SFM) time.

Multi-parameter GGT?

- Corollary: For our 2-parameter scheduling problem, min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}_{+}^{2}.

Multi-parameter GGT?

- Corollary: For our 2-parameter scheduling problem, min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}_{+}^{2}.
- Cases with two or more parameters still fall into Topkis's framework, but it is not clear so far even what the structure of these cuts looks like.

Multi-parameter GGT?

- Corollary: For our 2-parameter scheduling problem, min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}_{+}^{2}.
- Cases with two or more parameters still fall into Topkis's framework, but it is not clear so far even what the structure of these cuts looks like.
- Open Question: When capacities are (piecewise) linear, how many different min cuts can we have over all (λ, μ) ?

Multi-parameter GGT?

- Corollary: For our 2-parameter scheduling problem, min cuts are increasing along any non-decreasing curve (chain) in \mathbb{R}_{+}^{2}.
- Cases with two or more parameters still fall into Topkis's framework, but it is not clear so far even what the structure of these cuts looks like.
- Open Question: When capacities are (piecewise) linear, how many different min cuts can we have over all (λ, μ) ?
- Open Question: How quickly can we compute min cuts in the 2-parameter case?

Any questions?

Questions?

Comments?

