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Network Interdiction What is it?

What is Network Interdiction?

We start with an ordinary max flow min cut network with source s,
sink t, and capacities c. The capacity of cut S is capc(S).

We have a second non-negative datum on each arc: rij is the removal
cost of destroying arc i→ j; we could spend, e.g., rij/2 to reduce the
capacity of i→ j to cij/2.

In Min Cut we assume that the removal cost of i→ j is proportional to
its capacity cij , but here removal cost is independent of cij .

Finally, we have a budget B ≥ 0 to spend on destroying arcs. Our
objective is to spend at most B (maybe fractionally) in a way that
minimizes the value of the residual flow.

In Min Cut we remove arcs until there is zero flow left, but here we
remove only as much as we can under the budget.
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Network Interdiction What is it?

Removing arcs greedily

Thus if B = 0, then the interdiction value is cap∗c , the ordinary min
cut value; for B ≥ cap∗r , the interdiction value is 0.

Some thought shows that it is always optimal to destroy arcs
belonging to some cut S (that may depend on B).

Proof: if the removed arcs do not belong to a single cut, we could
move an arc to a cut to remove more flow.

Further thought reveals that we should destroy arcs of S greedily,
from the max value of ρe = ce/re down to the minimum value: “bang
for the buck”.

Proof: again we could use a pairwise interchange argument.

So let’s get some idea of how much flow we can remove by destroying
arcs from a fixed cut S.
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Network Interdiction Interdiction curves

The interdiction curve for a fixed cut S

Assume that we concentrate all our destruction on arcs of S.
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Network Interdiction Interdiction curves

The interdiction curve for a fixed cut S

This curve is piecewise linear convex.
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Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

We overlay the cut-wise interdiction curves to get the overall curve.
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Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

For a given value of B, we just select which S gives the minimum value at
B, so the overall curve is the minimum of all the cut-wise curves.
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Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

Unfortunately, the minimum of a bunch of convex curves is not in general
convex.
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Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

This is why Network Interdiction is NP Hard (Phillips ’93; Wood ’93).
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Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

If we take the lower envelope, or convex hull, of the overall interdiction
curve, we get something tractable, the B-profile.

capc(S)

capc(T )

B →

↑
residual capacity

capc(S)− c1

capc(S)− c1 − c2

0 r1 r1 + r2 r(S)

S
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feasible values B on U curve

infeasible values B

r(T )

r(U)

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 7 / 34



Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

Now budget B corresponds to a convex combination of points coming from
the interdiction curves of (one or) two cuts, S1 and S2.

S2
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residual capacity
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Network Interdiction Interdiction curves

The overall interdiction curve: the B-profile

S1 corresponds to breakpoint (B1, C1), S2 to (B2, C2), and we have λ s.t.
B = λ1B1 + λ2B2; define C = λ1C1 + λ2C2 ≤ C∗ = opt. resid. capacity.

(B,C)

C∗

B →
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residual capacity
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Network Interdiction Interdiction curves

Linearizing the overall curve: the B-profile

Burch et al ’02 show that we can use S1 and S2 to get a
pseudo-approximation algorithm for Network Interdiction:

Choose some ε > 0; then . . .
λ1

(
B1
B + εC1

C

)
+ λ2

(
B2
B + εC2

C

)
= λ1B1+λ2B2

B + ελ1C1+λ2C2
C ≤ 1 + ε.

Thus either B1
B + εC1

C ≤ 1 + ε or B2
B + εC2

C ≤ 1 + ε.

Suppose that B1
B + εC1

C ≤ 1 + ε. Then B1 ≤ B and so εC1
C ≤ 1 + ε, or

C1 ≤ (1 + 1/ε)C ≤ (1 + 1/ε)C∗.
If instead B2

B + εC2
C ≤ 1 + ε, then C2 ≤ C ≤ C∗ and so B2

B ≤ 1 + ε, or
B2 ≤ (1 + ε)B.
Thus we can choose S1 and under-use the budget but have a factor
1 + 1/ε too much residual capacity, or choose S2 and have less than
C∗ residual capacity, but overrun the budget by a factor of 1 + ε.

The algorithmic question is then: Given B, how do we find S1 and
S2? This shows that we also want B1, B2, C1 and C2.

Burch et al write a linear program that can do it, but here we want a
combinatorial algorithm to do it.
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The algorithmic question is then: Given B, how do we find S1 and
S2? This shows that we also want B1, B2, C1 and C2.

Burch et al write a linear program that can do it, but here we want a
combinatorial algorithm to do it.
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LP Duality Dual of interdiction

The linear program and its dual

The normal min cut dual LP is

min
∑

u→v cuvyuv
s.t. du − dv + yuv ≥ 0 for u→ v 6= t→ s,

dt − ds + yts ≥ 1
yuv ≥ 0 all u→ v.

To get an interdiction version, put a second dual variable zuv on each
u→ v that represents what fraction of u→ v we are going to destroy.

The new LP is then

min
∑

u→v cuvyuv
s.t. du − dv + yuv + zuv ≥ 0 for u→ v 6= t→ s,

dt − ds + yts ≥ 1∑
u→v ruvzuv ≤ B
yuv, zuv ≥ 0 all u→ v.
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LP Duality Dual of interdiction

The linear program and its dual

Repeat the new LP with dual variables:

min
∑

u→v cuvyuv
xuv : s.t. du − dv + yuv + zuv ≥ 0 for u→ v 6= t→ s,
xts: : dt − ds + yts ≥ 1
λ :

∑
u→v ruvzuv ≤ B
yuv, zuv ≥ 0 all u→ v.

When we “primalize” this interdiction dual LP we get new primal
variable λ corresponding to the dual constraint

∑
u→v ruvzuv ≤ B,

and the zuv’s give us a second set of capacities.

The primal interdiction LP is

maxx,λ (xts −Bλ)
d : s.t. conservation

yuv : 0 ≤ xuv ≤ cuv
zuv : xuv − ruvλ ≤ 0.

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 11 / 34



LP Duality Dual of interdiction

The linear program and its dual

Repeat the new LP with dual variables:

min
∑

u→v cuvyuv
xuv : s.t. du − dv + yuv + zuv ≥ 0 for u→ v 6= t→ s,
xts: : dt − ds + yts ≥ 1
λ :

∑
u→v ruvzuv ≤ B
yuv, zuv ≥ 0 all u→ v.

When we “primalize” this interdiction dual LP we get new primal
variable λ corresponding to the dual constraint

∑
u→v ruvzuv ≤ B,

and the zuv’s give us a second set of capacities.

The primal interdiction LP is

maxx,λ (xts −Bλ)
d : s.t. conservation

yuv : 0 ≤ xuv ≤ cuv
zuv : xuv − ruvλ ≤ 0.

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 11 / 34



LP Duality Dual of interdiction

The linear program and its dual

Repeat the new LP with dual variables:

min
∑

u→v cuvyuv
xuv : s.t. du − dv + yuv + zuv ≥ 0 for u→ v 6= t→ s,
xts: : dt − ds + yts ≥ 1
λ :

∑
u→v ruvzuv ≤ B
yuv, zuv ≥ 0 all u→ v.

When we “primalize” this interdiction dual LP we get new primal
variable λ corresponding to the dual constraint

∑
u→v ruvzuv ≤ B,

and the zuv’s give us a second set of capacities.

The primal interdiction LP is

maxx,λ (xts −Bλ)
d : s.t. conservation

yuv : 0 ≤ xuv ≤ cuv
zuv : xuv − ruvλ ≤ 0.

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 11 / 34



LP Duality Dual of interdiction

The linear program and its dual

Repeat the primal interdiction LP and highlight the two capacities:

maxx,λ (xts −Bλ)
s.t. conservation

0 ≤ xuv ≤ cuv
xuv − ruvλ ≤ 0.

The two capacity constraints simplify into

xuv ≤ min(cuv, λruv),

a parametric capacity in the scalar parameter λ.

So let’s investigate the behavior of this parametric min cut problem.
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Parametric Min Cut Parametric curves

Outline

1 Network Interdiction
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Interdiction curves
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Parametric Min Cut Parametric curves

Parametric capacity of fixed cut S

When λ is small, cap(S, λ) = λcapr(S).

c3 + ρ3(r1 + r2)

λ →

↑
parametric capacity

0

slope r(S) = r1 + r2 + r3

ρ3
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Parametric Min Cut Parametric curves

Parametric capacity of fixed cut S

This continues as long as λruv ≤ cuv for all u→ v ∈ δ+(S), or λ ≤ ρuv.
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Parametric Min Cut Parametric curves

Parametric capacity of fixed cut S

Thus the first breakpoint is when λ hits minδ+(S) ρuv.
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Parametric Min Cut Parametric curves

Parametric capacity of fixed cut S

The parametric capacity curve for S is piecewise linear concave.

slope 0
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Parametric Min Cut Parametric curves

Parametric capacity of fixed cut S

For a value λ′ of λ we also get the local budget B(S, λ′) and local residual
capacity C(S, λ′).

slope r1 + r2 = B(S, λ′)

λ →

↑
parametric capacity

capc(S)

0 ρ3 ρ2 ρ1

slope r1

c3 + ρ3(r1 + r2)

c3 + c2 + ρ2(r1)

slope 0

slope r(S) = r1 + r2 + r3

λ′

C(S, λ′) = λ−ρ3

ρ2−ρ3
c2 + c3
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Parametric Min Cut Parametric curves

Conjugate duality between interdiction and parametric
capacity for S

Both curves are piecewise linear; the interdiction curve (residual
capacity curve) is convex, the parametric capacity curve is concave.

Index the arcs of δ+(S) in descending order of ρe. Then the
breakpoints of S’s interdiction curve are 0, r1, r1 + r2, r1 + r2 + r3,
. . . . The slopes of S’s parametric capacity curve are . . . , r1 + r2 + r3,
r1 + r2, r1, 0.

The slopes of S’s interdiction curve are −ρ1, −ρ2, . . . . The
breakpoints of S’s parametric capacity curve are . . . , ρ3, ρ2, ρ1.

Thus breakpoints and slopes are interchanged between S’s
interdiction curve and its parametric capacity curve, though in reverse
order and modulo a minus sign.

In the language of conjugate duality, this is equivalent to saying that
the parametric capacity curve cap(S, λ) is the negative of the
conjugate dual of the interdiction curve for S, evaluated at −λ.
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Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

Now overlay the parametric capacity curves for all S.
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Now overlay the parametric capacity curves for all S.
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Now overlay the parametric capacity curves for all S.

capc(T ) = cap∗c

λ →

↑
parametric capacity

0 ρ2

S

T

capc(S)

ρ3 ρ1

c3 + ρ3(r1 + r2)

c3 + c2 + ρ2(r1)

slope r(S)

slope 0

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 16 / 34



Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

Now overlay the parametric capacity curves for all S.

capc(T ) = cap∗c

λ →

↑
parametric capacity

0 ρ2

S

T

U

capc(S)

ρ3 ρ1

c3 + ρ3(r1 + r2)

c3 + c2 + ρ2(r1)

capc(U)

slope r(S)

slope 0

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 16 / 34



Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

For a fixed value of λ, we want to find the S whose parametric capacity at
λ is minimum, so we just want the pointwise minimum of all these curves.
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Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

Since the minimum of a bunch of concave curves is again concave, this time
we do not need to linearize. We call this overall parametric capacity curve
the λ-profile.
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T

U
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capc(S)

ρ3 ρ1

c3 + ρ3(r1 + r2)
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Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

We can show that the conjugate duality between S’s interdiction and para-
metric capacity curves carries over to conjugate duality between the B-
profile and the λ-profile.

capc(T ) = cap∗c

λ →

↑
parametric capacity

0 ρ2

S

T

U

breakpoint is a breakpoint of S’s curve

breakpoint is interesection of S and U ’s curves

capc(S)

ρ3 ρ1

c3 + ρ3(r1 + r2)

c3 + c2 + ρ2(r1)

capc(U)

slope r(S)

slope 0

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 16 / 34



Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

Recall that to get our pseudo-approximation for a given B, we want to
compute the two cuts S1 and S2 bracketing B on the B-profile.

capc(T ) = cap∗c

λ →

↑
parametric capacity

0 ρ2

S

T

U

breakpoint is a breakpoint of S’s curve

breakpoint is interesection of S and U ’s curves

capc(S)

ρ3 ρ1

c3 + ρ3(r1 + r2)

c3 + c2 + ρ2(r1)

capc(U)

slope r(S)

slope 0

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 16 / 34



Parametric Min Cut Parametric curves

The overall parametric capacity curve: the λ-profile

Conjugate duality implies that this is equivalent to finding a breakpoint λ′

on the λ-profile whose adjacent slopes bracket B, here S and U ; we also
get B1 = B(S1, λ

′), C1 = C(S1, λ
′), B2 = B(S2, λ

′), and C2 = C(S2, λ
′).
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The Breakpoint Subproblem What is it?

Outline

1 Network Interdiction
What is it?
Interdiction curves

2 LP Duality
Dual of interdiction

3 Parametric Min Cut
Parametric curves

4 The Breakpoint Subproblem
What is it?
Algorithms
Discrete Newton

5 Multiple Parameters
What is it?
Scheduling problem
Multi-GGT
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The Breakpoint Subproblem What is it?

The key breakpoint subproblem

Notice that any breakpoint λ̂ of the λ-profile is defined by the
intersection of a segment to its left coming from cut S−(λ̂) with local
slope sl−(λ̂), and a segment to its right coming from cut S+(λ̂) with
local slope sl+(λ̂), with sl−(λ̂) > sl+(λ̂) by concavity.

The subproblem we now want to solve combinatorially: Given B, find
breakpoint λB of the λ-profile such that sl+(λB) ≤ B ≤ sl−(λB),
along with the corresponding S−(λB) and S+(λB).

A technical detail: Suppose I give you λB. Can you then use it to
compute S−(λB) and S+(λB)?

Yes: We can use a combination of Picard-Queyranne decomposition
w.r.t. an optimal flow at λB , and min flow / max cut in the residual
network to find them

So let’s just concentrate on finding λB.
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The Breakpoint Subproblem Algorithms

Binary search solves it

1 Set λL = 0 and λR = cap∗r ; then all interesting values of λ are in
[λL, λR].

2 Compute λ̂ = (λL + λR)/2, a max flow w.r.t. λ̂, and sl−(λ̂) and
sl+(λ̂).

3 If B ∈ [sl+(λ̂), sl−(λ̂)], then λB = λ̂ and we can stop.

4 Otherwise, if B < sl+(λ̂) then replace λL by λ̂; else (B > sl−(λ̂))
replace λR by λ̂ and go to 2.

This runs in something like Θ(log(nD)) time, where D is the size of
the data.

Can we do better?
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The Breakpoint Subproblem Discrete Newton

Discrete Newton gives a better algorithm

Set λL = 0 and λR = cap∗r as before. Denote sl+(λL) by sl+L and sl−(λR)
by sl−R.

S+
1L

capλ1L
(S+

1L)

capλ(S)

↑

λ→

λ1L

cap∗(λ)

a1Lλ+ b1L

λ1R

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 20 / 34



The Breakpoint Subproblem Discrete Newton

Discrete Newton gives a better algorithm

Set λL = 0 and λR = cap∗r as before. Denote sl+(λL) by sl+L and sl−(λR)
by sl−R.

S+
1L

capλ1L
(S+

1L)

capλ(S)

↑

λ→

λ1L

cap∗(λ)

a1Lλ+ b1L

λ1R

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 20 / 34



The Breakpoint Subproblem Discrete Newton

Discrete Newton gives a better algorithm

Set λL = 0 and λR = cap∗r as before. Denote sl+(λL) by sl+L and sl−(λR)
by sl−R.

capλ1R
(S−1R) = capλ1R

(S+
1R)

capλ1L
(S+

1L)

capλ(S)

↑

λ→

λ1L

a1Rλ+ b1R

cap∗(λ)

S+
1L

a1Lλ+ b1L

λ1R

S−1R
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The Breakpoint Subproblem Discrete Newton

Discrete Newton gives a better algorithm

Compute λ̂ as the intersection of the line of slope sl+L through
(λL, cap∗(λL)), and the line of slope sl−R through (λR, cap∗(λR)), a max

flow w.r.t. λ̂, and sl−(λ̂) and sl+(λ̂).

λ2 = λ2L

capλ(S)

↑

λ→

λ1L

a1Rλ+ b1R

cap∗(λ)

S+
1L

a1Lλ+ b1L

λ1R

S−1R capλ1R
(S−1R) = capλ1R

(S+
1R)
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The Breakpoint Subproblem Discrete Newton

Discrete Newton gives a better algorithm

If B ∈ [sl+(λ̂), sl−(λ̂)], then λB = λ̂ and we can stop.

λ2 = λ2L

capλ(S)

↑

λ→

λ1L

a1Rλ+ b1R

cap∗(λ)

S+
1L

a1Lλ+ b1L

λ1R
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The Breakpoint Subproblem Discrete Newton

Discrete Newton gives a better algorithm

Otherwise, if B < sl+(λ̂) then replace λL by λ̂; else (B > sl−(λ̂)) replace
λR by λ̂ and go to 2.

= capλ2
(S+

1L) = capλ2
(S−1R)

capλ1L
(S+

1L)

capλ(S)

↑

λ→

λ3λ2 = λ2L λ1R = λ2Rλ1L

capλ1L
(S+

2L)

a1Rλ+ b1R
S−1R = S−2R

a2Lλ+ b2L
S+

2L

cap∗(λ)

S+
1L

a1Lλ+ b1L

λB
capλ2L

(S+
2L)

capλ1R
(S−1R) = capλ1R

(S+
1R) =
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The Breakpoint Subproblem Discrete Newton

Defining gaps

How can we analyze the running time of this Newton-B algorithm?

Let’s think in terms of lines of slope B. Let L∗ denote the line of
slope B through the (as-yet unknown) point (λB, cap∗(λB)). This L∗

is the highest possible line of slope B through any point of the
λ-profile.

Thus the line of slope B through, e.g., (λL, cap∗(λL)) lies below L∗.

Since the lines defining λ̂ are tangents to the λ-profile, their
intersection must lie above L∗, and so the line of slope B through
this intersection point lies above L∗.

Define vgapL to be the vertical distance between the line of slope B
through the intersection point, and the line of slope B through
(λL, cap∗(λL)), and similarly for vgapR.

Also define slgapL to be sl+L −B and slgapR to be B − sl−R.
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The Breakpoint Subproblem Discrete Newton

vgap illustrated

capλ1L
(S+

1L)

capλ(S)

↑

λ→

λ3λ2 = λ2L λ1R = λ2Rλ1L

vgap1R

vgap2R

vgap2L

capλ1L
(S+

2L)

a1Rλ+ b1R
S−1R = S−2R

a2Lλ+ b2L
S+

2L

cap∗(λ)

vgap1L

S+
1L

a1Lλ+ b1L

λB
capλ2L

(S+
2L)

B(λ1L − λ2) + capλ2
(S+

1L)

B(λ1L − λ3) + capλ3
(S+

2L)

capλ1R
(S−1R) = capλ1R

(S+
1R) =

= capλ2
(S+

1L) = capλ2
(S−1R)
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The Breakpoint Subproblem Discrete Newton

The key inequality

We use primes to denote new values. When λ̂ becomes the new λL
then the key inequality is

vgap′L
vgapL

+
slgap′L
slgapL

< 1 (1)

This immediately implies that at each iteration, one of vgapL, vgapR,
slgapL, or slgapR is cut down by a factor of at least 2. Thus
Newton-B is never worse than Binary Search.

(1) was originally proved in Mc+Ervolina ’94. Then Rote, and Radzik
’92–’98 showed that Newton-B is sometimes faster than Binary
Search, and has a strongly polynomial bound.

The better weakly polynomial bound is O

(
log(nD)

1+log log(nD)−log logn

)
.

Sometimes there is an O(m) bound on the number of iterations.
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(
log(nD)

1+log log(nD)−log logn

)
.

Sometimes there is an O(m) bound on the number of iterations.
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The Breakpoint Subproblem Discrete Newton

Some implications

We didn’t use much network structure in this analysis.

Thus we could define an interdiction version of any capacitated
problem that can be formulated as an LP.

Primalizing the LP would give a conjugate dual parametric problem
that we could then solve via Newton-B.
The Burch et al pseudo-approximation framework carries through also.
We are in the process of identifying other such problems.

Indeed, this Newton-B algorithm and its analysis works for any
concave (or convex) function, even continuous ones.
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Multiple Parameters What is it?

Outline

1 Network Interdiction
What is it?
Interdiction curves

2 LP Duality
Dual of interdiction

3 Parametric Min Cut
Parametric curves

4 The Breakpoint Subproblem
What is it?
Algorithms
Discrete Newton

5 Multiple Parameters
What is it?
Scheduling problem
Multi-GGT
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Multiple Parameters What is it?

Multiple budgets equals multiple parameters

A natural generalization is when there are multiple ways to destroy
capacity, at different costs.

It should be clear via duality that this would turn into a parametric
min cut problem with multiple parameters.

Now we’d be trying to find a point on the parametric surface whose
local derivatives bracket the given budgets in the coordinate
directions.

As before we could solve this via LP, but we’d prefer a combinatorial
algorithm.

Interdiction already gets complicated with two parameters, so let’s
consider a simpler multiple parameter scheduling problem instead.
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Multiple Parameters Scheduling problem

Chen’s ’94 scheduling problem

We again start with a usual max flow network. We think of the nodes
j such that s→ j ∈ A as jobs, and we denote csj by pj , the
processing time of job j.

If a max flow in the network saturates all of these job arcs, then we
are happy and the problem goes away.

So assume instead that there is some non-trivial min cut. We want to
outsource some of the processing of jobs until there exists a max flow
saturating the residual processing time of every job.

Initially assume that if we pay $λ, we reduce pj to max(0, pj − ajλ)
(where aj ≥ 0 is given for each j).

Now we want to minimize λ such that there exists a flow saturating
all residual job arcs.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

Here is a specific instance of this type of scheduling problem.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

Here we have jobs 1, 2, 3 that we are scheduling on two machines.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

Job 1 is available during [0, 10]; 2 during [5, 12]; 3 during [3, 15].
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

These time slots divide the total time into the five time intervals on the
right.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

The capacity into an interval is its width; the capacity out of an interval is
(# of machines) times its width.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

At λ = 0 there is no flow saturating s since, e.g., the total capacity out of
2 = 2 + 5 < 14 = required flow into 2.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

At λ = 0 the Min Cut is determined by jobs 2 & 3 requiring 12 + 14 = 26
units, but having access to only 19 units of capacity, a gap of 7 units.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

Thus we need to increase λ to at least 7/2 = 3.5 to become feasible.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

At λ = 3.5 there is still a gap at 2: it requires 8.5 units, but has access to
only 7 units, so λ increases from 3.5 to 5, and now feasible.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

This Newton-type algorithm uses O(# jobs) iterations.
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Multiple Parameters Scheduling problem

Chen’s scheduling problem: example

But it can be done in O(1) MFs via Gallo-Grigoriadis-Tarjan (GGT) ’89
parametric min cut.
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Multiple Parameters Scheduling problem

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and µ such that if
we pay $λ+ $µ, we reduce pj to max(0, pj − ajλ− bjµ).
In the (λ, µ) plane there is a piecewise linear convex curve separating feasible
points from infeasible ones.

infeasible region I

↑

0

λ →

µ

λ0

µ0

(for these values of (λ, µ), there is
a flow saturating all arcs at s)

feasible region F
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Multiple Parameters Scheduling problem

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and µ such that if
we pay $λ+ $µ, we reduce pj to max(0, pj − ajλ− bjµ).
We want to find a breakpoint of this curve whose local slopes bracket slope
−1.
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Multiple Parameters Scheduling problem

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and µ such that if
we pay $λ+ $µ, we reduce pj to max(0, pj − ajλ− bjµ).
We know how to do this: Newton-B.
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Multiple Parameters Scheduling problem

Two-parameter Chen

Suppose now that there are two ways to outsource, λ and µ such that if
we pay $λ+ $µ, we reduce pj to max(0, pj − ajλ− bjµ).
We know how to do this: Newton-B.
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Multiple Parameters Scheduling problem

Three-parameter Chen

Suppose now that there are three ways to outsource, λ, µ, and ν such
that if we pay $λ+ $µ+ $ν, we reduce pj to
max(0, pj − ajλ− bjµ− djν).

For any fixed value of ν this is a 2-parameter problem we know how
to solve.

As we vary ν, these 2-parameter solutions trace out a piecewise linear
curve in the ν direction.

We want to find a breakpoint on this curve whose local slopes bracket
−1.

Again, we know how to do this via a recursive application of
Newton-B.

This generalizes to any fixed number of parameters.

Open Question: LP is polynomial even when the number of
parameters is not fixed. Can we get a combinatorial algorithm then?
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Multiple Parameters Multi-GGT

Multi-parameter GGT

Chen with ≥ 2 fits into a framework of Topkis ’78 concerning
parametric submodular optimization over a(n algebraic) lattice (here
the lattice is R2

+ with ≤):

The objective cap(S, λ, µ) is submodular in S for each fixed (λ, µ).
It also satisfies Increasing Differences: for all S ⊆ T and
(λ′, µ′) ≥ (λ, µ),

cap(T, λ, µ)− cap(T, λ′, µ′) ≤ cap(S, λ, µ)− cap(S, λ′, µ′).

Thm (Topkis): With these two properties, if (λ′, µ′) ≥ (λ, µ) then
S∗(λ, µ) ⊆ S∗(λ′, µ′).

Corollary: In general, min cuts are non-decreasing along any chain in
the lattice; for our 2-parameter scheduling problem, min cuts are
increasing along any non-decreasing curve (chain) in R2

+.
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Multiple Parameters Multi-GGT

GGT and Topkis in general

For 1-parameter Min Cut, Increasing (or Decreasing) Differences is
satisfied when only arcs at the source s (or sink t) are parametrized,
and the capacities are monotone in the parameter.

Here monotone min cuts implies that min cuts are nested, and so there
are only O(n) min cuts.

This is false in general; Carstensen, and Mulmuley give examples where
the parametric curve has an exponential number of min cuts.
But Discrete Newton works even in the general case.

True for our scheduling network, which is why we can use GGT.

There are other 1-parameter cases where Topkis’s structural result
applies, see Arai, Ueno, Kajitani; Mc.; Fleischer; Fleischer, Iwata
(SFM); Nagano (SFM); Scutellà; Milgrom and Shannon; Granot,
Mc., Queyranne, Tardella.

In all these cases except Milgrom and Shannon we can also get the
GGT-style result that min cuts for all values of the parameter can be
computed in O(1) Min Cuts (SFM) time.
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(SFM); Nagano (SFM); Scutellà; Milgrom and Shannon; Granot,
Mc., Queyranne, Tardella.

In all these cases except Milgrom and Shannon we can also get the
GGT-style result that min cuts for all values of the parameter can be
computed in O(1) Min Cuts (SFM) time.

McCormick et al (UBC-Rome-Berlin) Parametric Interdiction JPOC June 2013 32 / 34



Multiple Parameters Multi-GGT

GGT and Topkis in general

For 1-parameter Min Cut, Increasing (or Decreasing) Differences is
satisfied when only arcs at the source s (or sink t) are parametrized,
and the capacities are monotone in the parameter.

Here monotone min cuts implies that min cuts are nested, and so there
are only O(n) min cuts.

This is false in general; Carstensen, and Mulmuley give examples where
the parametric curve has an exponential number of min cuts.
But Discrete Newton works even in the general case.

True for our scheduling network, which is why we can use GGT.

There are other 1-parameter cases where Topkis’s structural result
applies, see Arai, Ueno, Kajitani; Mc.; Fleischer; Fleischer, Iwata
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Multiple Parameters Multi-GGT

Multi-parameter GGT?

Corollary: For our 2-parameter scheduling problem, min cuts are
increasing along any non-decreasing curve (chain) in R2

+.

Cases with two or more parameters still fall into Topkis’s framework,
but it is not clear so far even what the structure of these cuts looks
like.

Open Question: When capacities are (piecewise) linear, how many
different min cuts can we have over all (λ, µ)?

Open Question: How quickly can we compute min cuts in the
2-parameter case?
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Any questions?

Questions?

Comments?
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