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A new method is presented for measuring 
beliefs/likelihoods under uncertainty. It will simplify:y p y

• preference axiomatizations (SEU, PS, CEU);
• quantitative “belief” measurements;
• testing and characterizing qualitative properties.



1. Introduction and History1. Introduction and History 3

Savage (1954): First full-blown decision model for
uncertainty (restricted to SEU).uncertainty (restricted to SEU).

Savage‘54 is uncertainty-oriented:

- measurement of uncertainty/beliefs was central; 
- richness (continuity) imposed on state space;- richness (continuity) imposed on state space;
- measurement of utility is by-product.

Following Debreu (1959) and Arrow (1963), most 
modern analyses of uncertainty are outcome-oriented:

- measurement of utility is first (cf. micro-economics);
- richness (continuity) imposed on outcome space;( y) p p ;
- measurement of uncertainty is indirect.



4Uncertainty-oriented references:

1. Expected utility: 
Savage ‘54 von Neumann Morgenstern ‘44Savage 54, von Neumann-Morgenstern 44 
(+ Herstein & Milnor ‘53 + Jensen ‘67).

2. Nonexpected utility: 
U t i t Gilb ‘87- Uncertainty: Gilboa ‘87,  

Machina & Schmeidler ’92, 
G t ’95Grant ’95, 
Epstein & Zhang ’01,
K l ‘04Kopylov ‘04

- Risk:            Abdellaoui ‘02, 
N k ‘9Nakamura ‘95.
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For uncertainty (risk and "ambiguity"):
uncertainty oriented is most naturaluncertainty-oriented is most natural.

W d it t ti llWe do it systematically.
Most general, and simplest, axioms you ever saw!

Extra, mathematical, reason for 
simplicity + generality:
It naturally exploits set-theoretic structure on the y p
state space.

The idea of our “revealed-likelihood” method can be 
recognized in Gilboa’s (’87) axiom P2*; our work g ( ) ;
builds on it, and aims to give intuition to it.
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2 Notation2 Notation2. Notation2. Notation

t A t Acevent A event Ac

A Ac

Act, yielding γ under A,
d A

γ β

outcome γ outcome β
β under Ac.

γ β

Convention: γ is a good outcome β a bad oneConvention: γ is a good outcome, β a bad one,
γ ê β.
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Using one matrix to denote several acts:Using one matrix to denote several acts:

A Ac

γ β Act, yielding γ under A, β under Ac.γ β
γ' β' Act, yielding γ' under A, β' under Ac.
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3. Basic Likelihood  Measurements3. Basic Likelihood  Measurements
Point of departure is outcome level β.

(remember: γ ê β)Choose between two improvements.

A Ac
β β

B Bc
β ββ β β β=

?ê~Ä
βγGamble

on A
βγ Gamble

on B

Def. If strict preference ê for left gamble then: A êb B;p g b

Def. If indifference ~ then: A ~b B;
D f If t i t f f i ht bl th A BDef. If strict preference Ä for right gamble then: A Äb B.
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Under subjective expected utility (SEU):

A Ac B BcA A
β β

B B
β β=

βγ βγ

SEU-gain is ( ) SEU-gain is( )g
P(A)(U(γ) – U(β)) SEU gain is 

P(B)(U(γ) – U(β))

SEU: A êb B  ⇔ P(A) > P(B) Conclusion: BasicSEU: b
A ~b B  ⇔ P(A) = P(B)
A Äb B  ⇔ P(A) < P(B)

Conclusion: Basic 
revealed likelihood 
relations elicit b
probability orderings.



10Avoid contradictions in your measurements:

Savage's P4 excludes them for íb.  We rename (and 
weaken) P4 as basic likelihood consistency:ea e ) as bas c e ood co s ste cy

NOT [A ~b B and A êb B][ b b ]

I f f ll β d ' β'In preferences, for all γ ê β and γ' ê β':

A Ac B BcA A B B
β β β β=

NOT γ β γ β~
β' β' β' β'=

NOT
β β=

γ' β' γ' β'ê
and
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Obviously:Obviously:

Lemma. SEU ⇒ basic likelihood consistency. ·y

Many other models imply 
basic likelihood consistency also.y



4. The Likelihood  Method4. The Likelihood  Method
• Not identity, but equivalence, as point of departure.
• Under Ac not β but any outcomes of any act f resultUnder A not β, but any outcomes of any act f result.
• Under Bc not β, but any outcomes of any act g result.

We require ~ (instead of =) as point of departure.
c cA A B B

A is revealed 
more likely~

c cA A B B
f gβ β y

than Bf g
f g

β β
γ γp

Def If indifference ~ then: A ~ B;
Def. If strict preference ê for left gamble then: A ê B;
Def. If indifference  then: A B;
Def. If strict preference Ä for right gamble then: A Ä B.
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Will definitions always reveal a sensible likelihoodWill definitions always reveal a sensible likelihood 
ordering?
Or will they reveal contradictions (and then signalOr will they reveal contradictions (and then signal 
problems)? 
Let us try work on them and see where they take usLet us try, work on them, and see where they take us.



Basic elicitation:

14Comparison of new with preceding revelation method:

New elicitation:Basic elicitation: New elicitation:
c cA A B B

β β β β

c cA A B B
fβ β~

?
β β β β
γ β γ β

~
?

f g
f g

β β
γ γ

SEU-gain is 
P(A)(U(γ)–U(β))

SEU-gain is 
P(A)(U(γ)–U(β))

SEU-gain is 
P(B)(U(γ)–U(β))

SEU-gain is 
P(B)(U(γ)–U(β))

Strict preference ê for left 
gamble then: A ê B; etc. 

Strict preference ê for left 
gamble then: A êb B; etc.

A êb B  ⇔ P(A) > P(B)
A ~b B ⇔ P(A) = P(B)

SEU: Conclusion: Revealed 
likelihood orderings íA b B  ⇔ P(A)  P(B)

A Äb B  ⇔ P(A) < P(B)
likelihood orderings í
elicit probability 
orderings, as do theorderings, as do the 
basic orderings íb.Also if we drop the subscripts b.
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Under SEU, revealed likelihood orderings give 
desirable results.

Let us now investigate a general criterion, the 
analog of Savage’s P4, that revealed likelihood g g ,
orderings should not run into contradictions.
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Likelihood consistency:Likelihood consistency:
NOT [A B d A B]NOT   [A ~ B and A ê B]

Same as basic likelihood consistency (≈ P4), but y ( ),
with subscript b dropped. 

Directly in terms of preferences:
For all γ ê β, γ' ê β', f, f ', g, g‘,

A Ac B Bc

β f β g~
γ f γ g~

β' f ' β' g'~
NOT

β f β g
γ' f ' γ' g'êand



17Lemma. SEU ⇒ likelihood consistency.

General question: When, besides SEU, is revealed 
likelihood free of contradictions; i.e., when is our 

t i t t OK?measurement instrument OK?

Questions :Questions :
We assume “usual things,” 

- weak ordering, 
- monotonicity on outcomes/events as much as you want.

ti it t / t h t- continuity on outcomes/events as much as you want.

Then: how strong is likelihood consistency?
Does it imply more than Savage’s P4?
f ?If so, what?



18Hypothesis 1. Likelihood consistency ⇔
P4P4.

(No addition; implies no more than dominance.)

Hypothesis 2. Likelihood consistency ⇔
probabilistic sophistication.

Hypothesis 3. Likelihood consistency ⇔
Choquet expected utility.q p y

Hypothesis 4. Likelihood consistency ⇔
Subjective expected utility.



Likelihood consistency:Likelihood consistency:
NOT [A ~ B and A ê B]

19

NOT   [A B and A ê B]

Same as basic likelihood consistency ( P4) b t ith b i t b d d y(≈ P4), but with subscript b dropped. 

Directly in terms of preferences:
For all γ ê β, γ' ê β', f, f ', g, g‘,

A Ac B BcA Ac B Bc

β f β g~
γ f γ g~NOT γ f γ g

β' f ' β' g'~

NOT

γ' f ' γ' g'êand



20Answer:

Hypothesis 4 is correct!

Lik lih d i t bj ti t d tilitLikelihood consistency ⇔ subjective expected utility.

(Bayesians: Good news! A new foundation of 
Bayesianism!y

Non-Bayesians: Disappointing? Instrument doesn’t 
bring anything interesting?  Please wait.  NonEU will 
result from natural modifications.  Comes later.)
For now, we get very simple axiomatization of SEU!

T t t it t t t h i l i HTo state it, we turn to technical axioms.  Here 
uncertainty-orientedness also gives improvements.



Weakening Savage’s P6:
21

If both preferences Ä hold,

D
f

A
β

L
f

ê

g D
f

A
γ

L
f

ê

then for some partition Aγ,Aβ of A:

~ D
f

Aγ L
f

Aβg
f γ fβ

“If improving on the whole event is too much to get ~, 
then you can improve on a subevent.”
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Archimedean axiom:

The can be no infinite sequences of equally likely q q y y
disjoint nonnull events.
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Monotonicity:Monotonicity:

f íg if f(s) í g(s) for each state sf íg   if    f(s) í g(s) for each state s.

Only weak form needed!Only weak form needed!

That’s all.  Outcomes can be general; only richness 
on state space.  o state space
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Theorem [generalizing Savage ’54].  
Ass me “nondegenerac “ and sol abilit ith actsAssume “nondegeneracy“ and solvability, with acts 
measurable w.r.t. a Mosaic of events.  Then

Subjective expected utility holds

if and only if:

(i) Weak ordering;
(ii) Monotonicity;( ) y;
(iii) Archimedeanity;
(iv) Likelihood consistency.( ) y

Further,
P is unique;P is unique; 
U is unique up to unit and origin.
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More general than Savage in a structural sense:

E t t ti f i S ’ i lEvery structure satisfying Savage’s axioms also 
satisfies our axioms. Not vice versa.

We can handle:We can handle:
• general algebras (Kopylov 2004).
• Equally-likely finite state spaces (with atoms); q y y p ( )
• No richness in outcomes.

We are not more general in a “logical” sense.  
Savage’s theorem is not a corollary of oursSavage s theorem is not a corollary of ours.  
Axioms per se are logically independent.
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Strange thing:Strange thing:
Where did cardinality get in???
Outcome-oriented approaches always have to do Outco e o e ted app oac es a ays a e to do
something extra (linearity, mixtures, midpoints, 
tradeoffs, ...) to get cardinality in.  We didn’t.
Likelihood consistency seems to concern only ordinal 
comparisons of likelihood.
How come??How come??

Explanation:Explanation:
Likelihood consistency is the dual version of tradeoff 
consistency for outcomes The latter concernedconsistency for outcomes.  The latter concerned 
differences of utility.
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How use likelihood revelations for nonEU?

For those of you who like nonEU:
E i l ti f SEU b i l d th hEvery violation of SEU can be signaled through a 
contradictory likelihood revelation.  
We can classify the contradictionsWe can classify the contradictions, 
exclude the ones we don’t like 
(say the comonotonic violations)(say the comonotonic violations) 
and allow for others and, thus, 
get characterizations and measurements of all thoseget characterizations and measurements of all those 
models.

So, for generalizing SEU: 
we have to restrict the permitted likelihood revelationswe have to restrict the permitted likelihood revelations.
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5 Violations of Llc Consistency5 Violations of Llc Consistency5. Violations of Llc Consistency 5. Violations of Llc Consistency 
and Rankand Rank--DependenceDependencepp

Yet another axiomatization of rank-dependence!?
Well-known; so novelty of our general measurement 
instrument for uncertainty will be clearer.
You can judge it on its didactical merits, i.e. how 
easy it is.
If you don’t know rank-dependence yet: 
A very simple explanation is coming up.
We replace comonotonicity restrictions by “ranking 

i i ” di iposition” conditions.
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Example. Ellsberg paradox. Urn:
30 R 60 B/Y (unknown proportion)

Ä
B Y R
$    0 0 $    0 0

R Y B

$    $ 0 $  $ 0ê

We can get ε > 0 s.t.:

B Y R
$1+ε 0 0

R Y B

g

$1+ε $ 0 $  $ 0ê
~$1+ε 0 0 $    0 0

Reveals Y ê Y.  Signals that there is a problem! 
This and Y ~ Y: likelihood consistency is violatedThis and Y ~ Y: likelihood consistency is violated.
Signals that SEU is violated.
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We investigate more closely what is going onWe investigate more closely what is going on,
from perspective of rank-dependence.
Familiar to many of you Therefore suited toFamiliar to many of you.  Therefore, suited to 
demonstrate the applicability of revealed 
likelihood and uncertainty orientednesslikelihood, and uncertainty-orientedness.
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30 R 60 B/Y

Ä
B Y R
$ 0 0 $ 0 0

R Y B

$    $ 0 $  $ 0
Ä
ê

$    0 0 $    0 0

Left acts:   Y ranked worse than B.
Right acts: Y ranked worse than R.Right acts: Y ranked worse than R.

Decision weight of Y depends on ranking position. YDecision weight of Y depends on ranking position. Y
“adds” more to B (giving known probability) than to R.
This may explain why Y is weighted more for left actsThis may explain why Y is weighted more for left acts 
than for right acts.
Basic idea of rank-dependence: the weight of an eventBasic idea of rank dependence: the weight of an event 
can depend on its “ranking position,” i.e. the event 
yielding better outcomes.yielding better outcomes.
Notation: YB ê YR.
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In general:
Because weight of A depends on its ranking 
position, we should specify ranking position and 

D Dwrite AD instead of A.  AD is ranked event.
Let us reconsider revealed likelihoods from this 
perspective.
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D   A   L D’   B   L’

?

~

ê~Ä AD is revealed

f    β f
f    γ f

g    β g
g     γ g?ê~Ä A is revealed 

more likely
than BD’.increasingly 

f d
increasingly 

f dpreferred 
outcomes

preferred 
outcomes

Def If indifference ~ then: AD ~ BD’;
Def. If strict preference ê for left gamble then: AD ê BD’;
Def. If indifference  then: A B ;
Def. If strict preference Ä for right gamble then: AD Ä BD’.

Again, the concept of study should be ranked events 
AD, and not just events.
O l ti di tl l d i i i ht d iOur relation directly reveals decision-weight orderings 
of ranked events!
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Lemma. Under Choquet expected utility:
AD ê BD’ ⇒ π(AD) > π(BD'), i.e.A ê B ⇒ π(A )      π(B ), i.e. 

||                  ||
W(A∪D) > W(B∪D')W(A∪D)  W(B∪D )  

– –
W(D) W(D')W(D)         W(D')

AD ~ BD’ ⇒ π(AD) = π(BD')A B ⇒ π(A )    π(B ) 
AD Ä BD’ ⇒ π(AD)  <  π(BD').                  ·

Ellsberg is fine now.
C t di t Y Y h b l d bContradictory Y ê Y has been replaced by
noncontradictory YB ê YR; π(YB) > π(YR).
L t id lik lih d i tLet us reconsider likelihood consistency, now 
for ranked events.
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likelihood consistency:
[A B d A B ]

Rank-dependent
D’D DD’[A  ~ B and A  ê B   ]

cannot be. 
Necessary for

DD DD

Necessary for 
expected utility.Choquet

Directly in terms of preferences:
For all γ ê β, γ' ê β', f, f ', g, g‘,γ β γ β g g

g    β g
D   A   L
f    β f

D'   B    L'
~

g’ ’ g’f’ ’ f’

f    γ f ~ g    γ g
g β gβ

g’   β’ g’f’   β’ f’ ~
NOT

g’   γ’ g’f’   γ’ f’ ê
increasingly 

f d
increasingly 

f d preferred 
outcomes

preferred 
outcomes



Theorem [generalizing Savage ’54].  
36Gilboa ‘87

Assume “nondegeneracy“ and solvability, with acts 
measurable w.r.t. a general algebra of events.  Then

Subjective expected utility holds
Choquet

if and only if:

(i) Weak ordering;
(ii) Monotonicity;
(iii) Archimedeanity;
(iv) likelihood consistency.

Further,
Rank-dependent

P is unique; 
U is unique up to unit and origin.

W



More general than Savage in structural sense
d l i l i l

37Gilboa ‘87

and also in logical sense:
His assumptions and axioms directly imply ours.

Not vice versa.

We can handle:
general algebras (Kopylov earlier & more general here)general algebras (Kopylov earlier & more general here).
Equally-spaced finite state spaces (with atoms).
If no atoms then still no convex-rangedness of PIf no atoms, then still no convex rangedness of P.

We are not more general in a “logical” sense Savage’s
W

We are not more general in a logical  sense.  Savage s 
theorem is not a corollary of ours.  Axioms per se are 
logically independentlogically independent.
Likelihood consistency aims to popularize Gilboa's P2*.



Applications for Rank-Dependent Models
38

pp p

Rank-dependent revealed likelihood directly observes p y
orderings of decision weights, and is, therefore, a 
useful tool for analyzing properties of Choquet 

t d tilitexpected utility.
Better-suited than earlier tools because uncertainty-

i t doriented.

Q tit ti t f it WQuantitative measurements of capacity W:
Take "equally likely" partition A1,...,An such that 
A A1∪…∪Ai-1 ~ A b for all iAi

A1∪…∪Ai 1 ~ A1
b for all i.

All have decision weight 1/n.
S h ll lik l (" if ") titi ld t bSuch equally likely ("uniform") partitions could not be 
defined easily heretofore.



Testing qualitative properties of capacity W:
39

Convexity of W falsified if
AD ê AD∪E.

Characterizing qualitative properties of W:

W is convex 
iff
AD AD Enever AD ê AD∪E.

W / i i ti / b th W ifW2 more convex/pessimistic/amb.av. than W1 if 
(A∪F)D ~1 AD∪E ⇒ (A∪F)D Ç2 AD∪E;

etc.



Applications to Other Studies of Ambiguity
40

pp g y

Machina & Schmeidler '92, probabilistic sophistication.
L t β

, p p
Let γ ê β.

Not:

A   B   R B   A    R A   B   R B   A    R
β β hβ β h ~ β' β' h'β' β' h' ~
γ β hγ β h í γ' β' h'γ' β' h' Ä
β ββ β h β ββ β

A í B A Ä BA íms B A Äms B



Epstein & Zhang 2001:
T is linearly unambiguous if, for all γ ê β,

41

T is linearly unambiguous if, for all γ ê β,
T   R T  R

β gβ f Ç
NOT: Same for Tc

γ gγ f ê
β gβ f Ç

I NOT

E t i & Zh 2001

T ê TI.e., NOT:

Epstein & Zhang 2001:
T is unambiguous if, for γ ê β,

T A B R T A B R
β μ λ hβ λ μ h Ç

NOT: Same for Tc

γ μ λ hγ λ μ h ê
β μ λ hβ λ μ h Ç

T T if d d ifI t T ê T if measured under … specify 
the restrictions such and such …

I.e., not:



6. Conclusion6. Conclusion 42

For studying uncertainty, uncertainty orientedness 
seems to be optimal.
Th lik lih d M th d l t l f iThe likelihood Method: general tool for measuring 

uncertainty.  
Everything becomes nicer:f i ti tiy g• preference axiomatizations;
• quantitative measurements;
• testing and characterizing qualitative properties;testing and characterizing qualitative properties;

We showed some applications:G li i d i lif i S ’ ’54 SEUpp• Generalizing and simplifying Savage’s ’54 SEU.
• Generalizing and simplifying Gilboa’s ’87 CEU.
• Quantitative measurements of capacities.Quantitative measurements of capacities.
• Transparent characterization of convex capacities

and more-convex-than.• New interpretations of probabilistic sophistication of• New interpretations of probabilistic sophistication of
M&S’92, unambiguity of E&Z’01.


