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e Central in this work will be the recent finding
of the home bias, with investors preferring
domestic stocks to foreign stocks in ways
beyond uncertainty or utility.

 Here decisions depend on the source of
uncertainty (Fox & Tversky, 1995)
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O Since Keynes (1921) and Knight (1921), economist
has argued that in most situations of interest to

economics, uncertainty concern one-shot events.

O We owe to de Finetti (1931) and Ramsey (1931)
that subjective probabilities can be defined for

chnt ovientc fra ~hAi
one-snot evenisirom cnoice.

O Savage formalized the work of de Finetti and
Ramsey providing a subjective theory of rational
choice / probability.
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O Two main criticisms against SEU Msofficel
O Allais paradox

Table 1: Allais paradox

100 Balls

#1 #2 - #11 #12 - #100

A S$1M $1M 0

0 S5M 0
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MSOfficel 1 claimed here that this violation was due to "absolute non-ambiguity pronness".
Abdellaoui Mohammed; 03/04/2007
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O Ellsberg (three-color) paradox

Table 2: Ellsberg (three-color) paradox

30 balls 60 balls

Red Black Yellow

T $1000 0 $1000

0 $1000 $1000
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O As a reaction to these criticisms

O Generalizations of Expected Utility
e CEU (Gilboa, 1987; Schmeidler 1989)
e MEU (Gilboa & Schmeidler 1989)
e CPT (Tversky & Kahneman 1992)

The ‘common denominator’ of these models is a
biseparable preference model (Ghirardato & Marinacci
2001).

O ‘Liberation’ of subjective probability theory from Specific
Preference Functionals (Probabilistic Sophistication)
e Machina & Schmeidler (1992)
e Chew & Sagi (2006)
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MSOffice2 | claimed here that we finally combined the two criticisms to end up with a tool allowing quantitative ambiguity analysis:

"Common denominator" model + "Exchangeability-based PS"
Abdellaoui Mohammed; 03/04/2007
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O Savagean setup

e S denotes a state space

e X the outcome set (non-negative real numbers)
* (E;ixy, ..., E i X, ) denotes a simple act

e xEy denotes (E:x, S-E:y)

e > is a weak order on the set of acts
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O We assume a biseparable representation of =
0 Unknown probabilities
* Forx2y, ECS:
V(xEy) = W(E)u(x) + (1-W(E))u(y)
W is a weighting function (a capacity)
e u: X—> IR
0 Known probabilities

* V(xpy) = w(p)u(x) + (1-w(p))u(y)
e w: [0,1]-[0,1] is the probability weighting function
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MSOffice3 I insisted here on the neutrality of using the dichotomy: "known" vs. "unknown" probabilities; to avoid the trap of the use of words like
ambiguity or uncertainty.
This seems simple, but i think that it is pedagogically more helpful. A reading of the introduction of Epstein & Zhang shows how the early use

of the word ambiguity is problematic.
Abdellaoui Mohammed; 03/04/2007
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O Equally likely relation
O A ~* B if xAy ~ xBy for some x >.

OExchangeability

O A and B are exchangeable if exchanging the
outcomes under events A and B in an act does not
affect its preference value.

(xAyBf ~ xByAf)

O A partition is exchangeable if all of its elements
are mutually exchangeable.
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O Probabilistic sophistication

O PS holds if there exists a probability measure P on
S such that for each act f the only relevant aspect
for its preference value is the induced probability
distribution.

(Py=Py) = (f~ g)

0 Consequence: The preference of an event

captures everything relevant for preference
evaluation.
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O Probabilistic sophistication
Under PS:

O two events are exchangeable iff they have the
same probability

O All events in an exchangeable partition (E,, ...,E,)
have probability 1/n.
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O Ellsberg two-color paradox

O Two urns:

e Known Urn contains 50 Rk (Red from known) and 50 Bk
(Black from known);

e Unknown Urn containing 100 RY (Red from unknown)
and BY (Black from unknown).

0 Common preferences (under SEU):
e 1000Rk0 > 1000RU0 = P(RX) > P(RY)
« 1000B%0 >1000BY0 = P(B¥) > P(BY)
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O Reconciliation with Bayesian Beliefs

O Distinguishing two sources (small worlds) of
uncertainty.

e Decision makers has a general dislike of the unknown
Urn (source 1) relative to the known Urn (source 2).

e Similarly, the performance of the Dow Jones index
tomorrow can be one source of uncertainty, and the
performance of the Nikkei index tomorrow is another.

A source is a collection (an algebra) of events that
pertain to a particular mechanism of uncertainty
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O Reconciliation with Bayesian Beliefs

O The two-color paradox concerned a between
source comparison

O Events R* and B¥ are exchangeable and events RY
and BY are also exchangeable:
e (Rk:$100, B¥:0) ~ (B*:$100, R*:0)
e (R4:5$100, B4:0) ~ (B“:5100, R“:0)
O The above exchangeabilities suggest that the
events in question have subjective probability 1/2
(Chew and Sagi 2006a, 2006b).
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O PS and Uniformity

0 We call a source uniform if PS holds with respect
to that source.

O Chew and Sagi (20064, b) showed that, under
some regularity conditions, a source is uniform iff
the following conditions hold.

i. Events that are equally likely are exchangeable.

ii. For each pair of disjoint events, one contains a subset
that is exchangeable with the other.

iii. For each n there exists an exchangeable n-fold
partition.
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0O Consequence:

O For a rich uniform source, we can elicit subjective
probabilities to any degree of precision using a
bisection method and using condition ii
(comparability).

e For example we can partition S into two equally likely
events E!; and E%, that then must have probability %.

* Next we partition E!, into two equally likely events E2,
and E2, that must both have probability %, and we
partition E1, into E%; and E?, that also have probability
Y.
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O Uniformity and Ellsberg three-color paradox

0 Assume that an urn contains 30 R balls, and 60 B
and Y balls in unknown proportion.
e People prefer betting on R to betting on B (P(R) > P(B));

e People prefer betting on [B or Y] to betting on [Ror Y],
which contradicts the inequality derived before.

O The (ambiguity) of the urn is not uniform

e Events have different effects and interactions in
different configurations, with the weight of Y high in
the presence of B but low in the absence of B.
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O Combining biseparability and PS
O Unknown Probabilities
e Assume that For x>y, ECS:
V(xEy) = W(E)u(x) + (1-W(E))u(y)
* Under PS, there exists a transformation function wq
such that W(E) = w¢[P(E)].
O Known Probabilities
* V(xpy) = w(p)u(x) + (1-w(p))uly)

Function w, called the weighting function, is specific to
the case of known probabilities.
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O Quantifying attitudes towards uncertainty

O The weighting functions w, and w provide convenient tools
for expressing various attitudes towards uncertainty and
risk.

O Consider two sources of uncertainty S; and S, and two
(corresponding) exchangeable partitions (AL, i=1,...,n) and
(A2, i=1,...,n). AJ (k) is the cumulative union of exch. events
In source j.

0 Comparison of willingness to bet on events generated by
S1 and willingness to bet on events generated by S2, could
guantitatively analyzed through the decision weights

w,(k/n) and w,(k/n), i=1,...,n-1.



O Shapes of probability transformations

d

T inverse-S, extreme

P (likelihood inverse-S
expected utility insensitivity) ("fifty-fifty")

pessimism prevailing pessimistic
finding fifty-fifty

Abdellaoui (2000); Bleichrodt & Pinto (2000); Gonzalez &
Wu 1999; Tversky & Fox, 1997.
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O Tractable quantifications of ambiguity
attitudes:

O The use of probability transformation functions
(resulting from the combination of biseparability
and PS) allows for easy and intuitive within subject
comparisons of attitudes towards uncertainty.

0 Comparative concepts can be defined, with one
weighting function being more convex or more
inverse-S shaped than another one.
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O For empirical purposes, we consider two
simple indexes for likelihood insensitivity and

pessimism.
O Assume that

w(p) = ¢ + sp on the open interval (0,1) with c the
intercept and s the slope.

Oletd=1-c—-s bethe distance from 1 of the line
at p = 1 (dual intercept).
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O Likelihood Sensitivity and Pessimism

O Index of Likelihood insensitivity: a=c+d,
O Index of pessimism: b=d-c.

probability probability

Likelihood (in-)Sensitivity Pessimism
23
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Quantitative indexes of pessimism and likelihood insensitivity
w(p)
d= d=
1 1 " .5‘_. d - -
T 0 0.89 A+ 011 o | A o
AN
c= c=
o= 0.117/. 0.087/
0 0 oF 0k
s —0.11 )/ ot
. =C . F|g3 10.4.
Fig.1. Fig.2. o e
Insensitivity Insensitivity _Insen5|t.|V|ty _ ;232252_“6“22_
index a: 0; index a: 0; index a: 0.22; essimism
pessimism pessimism index pessimism index Iiondex b 0.06

index b: 0. b: 0.22.

b: 0.
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O Ellsberg two-color paradox continued
O Let us remember that
P(RK) = P(BX) = P(RY) = P(BY) = .
O For the events R¥ and B¥, the weight is w,(1/2) =

0.4, and for events R" and BY, the weight w (1/2) =
0.3.

O Different weighting explains the different
preferences.
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Exper

O Participants:

0 62 students from the ENSAM-Paris. They were
mathematically sophisticated and well acquainted
with probability theory, but had no training in
economics or decision theory.

O Stimuli; unknown probabilities

O Three sources of uncertainty:
|.  French Stock Index (CAC40) [how much it would change in
a given day]
Il.  Temperature in Paris [on May 31, 2005]

Ill. Temperature in the capital of a randomly drawn remote
country [on May 31, 2005].



O Decomposition of the universal event

E=S
: i
E | E
I
: '= :
| | |
E : E : E ! E
I I |
: = = : :
b /4 ayp a3y b,
1 | : I : | |
E ! E ! E = ! E . E | |
1 I I | I
: = : — : : :
bo Ay A1/ A3/8 a1/ ds/g Az a7/g b,

The italicized numbers and events in the bottom row were not elicited.
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O Stimuli; known probabilities

O Utility u(.) and probability weighting function w(.)
were elicited through certainty equivalents.

O Procedure and Motivation

O Each participant was interviewed individually (95
minutes with a break of few minutes).

O All participants received a flat payment of 20 €. For 31
subjects, real incentives were implemented through
the random lottery incentive system (higher prize:
1000 €) in addition to flat payment.
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O Uniformity confirmed for 5 out of 6 cases
Figure 1. Probability distributions for CAC40 Figure 2. Probability distributions for Paris temperature
101 Real data over LT 107 Real data over JUPEL L
i the year 2006 ¥~ I 1900-2006 ¥~
O /7
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O Power Utility
Figure 3. Cumulative distribution of powers
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O Method for Measuring Ambiguity Attitude

O Certainty equivalents were measured for gambles on
events. Knowing utility, we could calculate w¢[P(E)] for
events E, and then knowing P(E), infer w..

O Consider a source S, and the corresponding
exchangeable partitions (A, i=1,...,n).

0 Assume that A (k) is the union of k exchangeable
O Assume that

CE ~ (A,(k):5100, S- A.(k): 0).
O We have

u(CE) = w,[P(A:(k)Ju(5$100) + (1- w,[P(A;(k)])u(O)



O Overall Results

Figure 4. Average probability transformations for real payment
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O Results at individual level

Figure 8.3. Probability transformations for participant 2
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O Results at individual level
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O We have demonstrated that a biseparable
representation of preferences combined with PS
can be used to analyze ambiguity for uniform
sources of uncertainty.

O The Ellsberg two-color example was reconciled
with consistent subjective probabilities.

O We introduced a new method for deriving
subjective probabilities and demonstrated its
validity (good calibrations were achieved).

O We demonstrated the feasibility of complete
guantifications of ambiguity attitudes.



