Uniform Sources of Uncertainty for Subjective Probabilities and Ambiguity

Mohammed Abdellaoui

(joint with Aurélien Baillon and Peter Wakker)

"Informal"

- Central in this work will be the recent finding of the home bias, with investors preferring domestic stocks to foreign stocks in ways beyond uncertainty or utility.
- Here decisions depend on the source of uncertainty (Fox & Tversky, 1995)

Introduction

- ☐ Since Keynes (1921) and Knight (1921), economist has argued that in most situations of interest to economics, uncertainty concern one-shot events.
- □ We owe to de Finetti (1931) and Ramsey (1931) that subjective probabilities can be defined for one-shot events from choice.
- □ Savage formalized the work of de Finetti and Ramsey providing a subjective theory of rational choice / probability.

Introduction

☐ Two main criticisms against SEU MSOffice1○ Allais paradox

Table 1: Allais paradox

	100 Balls		
	#1	#2 - #11	#12 - #100
> A	\$1M	\$1M	\$1M
В	0	\$5M	\$1M
A'	\$1M	\$1M	0
→ _{B′}	0	\$5M	0

Diapositive 4

MSOffice1

I claimed here that this violation was due to "absolute non-ambiguity pronness". Abdellaoui Mohammed; 03/04/2007

Introduction

Ellsberg (three-color) paradox

Table 2: Ellsberg (three-color) paradox

	30 balls	60 balls	
	Red	Black	Yellow
→ f	\$1000	0	0
g	0	\$1000	0
f'	\$1000	0	\$1000
□ g′	0	\$1000	\$1000

MSOffice2

Introduction

- ☐ As a reaction to these criticisms
 - Generalizations of Expected Utility
 - CEU (Gilboa, 1987; Schmeidler 1989)
 - MEU (Gilboa & Schmeidler 1989)
 - CPT (Tversky & Kahneman 1992)

The 'common denominator' of these models is a biseparable preference model (Ghirardato & Marinacci 2001).

- 'Liberation' of subjective probability theory from Specific Preference Functionals (Probabilistic Sophistication)
 - Machina & Schmeidler (1992)
 - Chew & Sagi (2006)

Diapositive 6

MSOffice2

I claimed here that we finally combined the two criticisms to end up with a tool allowing quantitative ambiguity analysis: "Common denominator" model + "Exchangeability-based PS"

Abdellaoui Mohammed; 03/04/2007

□ Savagean setup

- S denotes a state space
- X the outcome set (non-negative real numbers)
- (E₁: x₁, ..., E_n: x_n) denotes a simple act
- xEy denotes (E:x, S-E:y)
- ≥ is a weak order on the set of acts

MSOffice3

Preliminaries

- □ We assume a biseparable representation of ≥
 - Unknown probabilities
 - For $x \ge y$, $E \subset S$:

$$V(xEy) = W(E)u(x) + (1-W(E))u(y)$$

- W is a weighting function (a capacity)
- u: $X \rightarrow IR$
- Known probabilities
 - V(xpy) = w(p)u(x) + (1-w(p))u(y)
 - w: $[0,1] \rightarrow [0,1]$ is the probability weighting function

Diapositive 8

MSOffice3

I insisted here on the neutrality of using the dichotomy: "known" vs. "unknown" probabilities; to avoid the trap of the use of words like ambiguity or uncertainty.

This seems simple, but i think that it is pedagogically more helpful. A reading of the introduction of Epstein & Zhang shows how the early use of the word ambiguity is problematic.

Abdellaoui Mohammed; 03/04/2007

- □ Equally likely relation
 - \circ A \sim * B if xAy \sim xBy for some x > y.
 - □ Exchangeability
 - A and B are exchangeable if exchanging the outcomes under events A and B in an act does not affect its preference value.

 $(xAyBf \sim xByAf)$

 A partition is exchangeable if all of its elements are mutually exchangeable.

□ Probabilistic sophistication

 PS holds if there exists a probability measure P on S such that for each act f the only relevant aspect for its preference value is the induced probability distribution.

$$(P_f = P_g) \Rightarrow (f \sim g)$$

 Consequence: The preference of an event captures everything relevant for preference evaluation.

□ Probabilistic sophistication

Under PS:

 two events are exchangeable iff they have the same probability

All events in an exchangeable partition (E₁, ...,E_n) have probability 1/n.

Bayesian Beliefs for Ellsberg?

- □ Ellsberg two-color paradox
 - o Two urns:
 - Known Urn contains 50 R^k (Red from known) and 50 B^k (Black from known);
 - Unknown Urn containing 100 R^u (Red from unknown) and B^u (Black from unknown).
 - o Common preferences (under SEU):
 - $1000R^{k}0 > 1000R^{u}0 \Rightarrow P(R^{k}) > P(R^{u})$
 - $1000B^k0 > 1000B^u0 \Rightarrow P(B^k) > P(B^u)$

Bayesian Beliefs for Ellsberg?

- □ Reconciliation with Bayesian Beliefs
 - Distinguishing two sources (small worlds) of uncertainty.
 - Decision makers has a general dislike of the unknown Urn (source 1) relative to the known Urn (source 2).
 - Similarly, the performance of the Dow Jones index tomorrow can be one source of uncertainty, and the performance of the Nikkei index tomorrow is another.

A source is a collection (an algebra) of events that pertain to a particular mechanism of uncertainty

Bayesian Beliefs for Ellsberg?

- □ Reconciliation with Bayesian Beliefs
 - The two-color paradox concerned a between source comparison
 - Events R^k and B^k are exchangeable and events R^u and B^u are also exchangeable:
 - $(R^k:\$100, B^k:0) \sim (B^k:\$100, R^k:0)$
 - (R^u:\$100, B^u:0) ~ (B^u:\$100, R^u:0)
 - The above exchangeabilities suggest that the events in question have subjective probability 1/2 (Chew and Sagi 2006a, 2006b).

□ PS and Uniformity

- We call a source uniform if PS holds with respect to that source.
- Chew and Sagi (2006a, b) showed that, under some regularity conditions, a source is uniform iff the following conditions hold.
 - i. Events that are equally likely are exchangeable.
 - ii. For each pair of disjoint events, one contains a subset that is exchangeable with the other.
 - iii. For each n there exists an exchangeable n-fold partition.

□ Consequence:

- For a rich uniform source, we can elicit subjective probabilities to any degree of precision using a bisection method and using condition ii (comparability).
 - For example we can partition S into two equally likely events E_1^1 and E_2^1 that then must have probability ½.
 - Next we partition E_1^1 into two equally likely events E_1^2 and E_2^2 that must both have probability $\frac{1}{4}$, and we partition E_2^1 into E_3^2 and E_4^2 that also have probability $\frac{1}{4}$.

- ☐ Uniformity and Ellsberg three-color paradox
 - Assume that an urn contains 30 R balls, and 60 B and Y balls in unknown proportion.
 - People prefer betting on R to betting on B (P(R) > P(B));
 - People prefer betting on [B or Y] to betting on [R or Y], which contradicts the inequality derived before.
 - The (ambiguity) of the urn is not uniform
 - Events have different effects and interactions in different configurations, with the weight of Y high in the presence of B but low in the absence of B.

□ Combining *biseparability* and PS

- Unknown Probabilities
 - Assume that For x ≥ y, E⊂S:
 V(xEy) = W(E)u(x) + (1-W(E))u(y)
 - Under PS, there exists a transformation function w_S such that $W(E) = w_S[P(E)]$.
- Known Probabilities
 - V(xpy) = w(p)u(x) + (1-w(p))u(y)
 Function w, called the weighting function, is specific to the case of known probabilities.

- Quantifying attitudes towards uncertainty
 - The weighting functions w_s and w provide convenient tools for expressing various attitudes towards uncertainty and risk.
 - O Consider two sources of uncertainty S_1 and S_2 and two (corresponding) exchangeable partitions (A_i^1 , i=1,...,n) and (A_i^2 , i=1,...,n). A_i^1 (k) is the cumulative union of exch. events in source j.
 - Comparison of willingness to bet on events generated by S1 and willingness to bet on events generated by S2, could quantitatively analyzed through the decision weights

$$w_1(k/n)$$
 and $w_2(k/n)$, i= 1,...,n-1.

□ Shapes of probability transformations

Abdellaoui (2000); Bleichrodt & Pinto (2000); Gonzalez & Wu 1999; Tversky & Fox, 1997.

- ☐ Tractable quantifications of ambiguity attitudes:
 - The use of probability transformation functions (resulting from the combination of biseparability and PS) allows for easy and intuitive within subject comparisons of attitudes towards uncertainty.
 - Comparative concepts can be defined, with one weighting function being more convex or more inverse-S shaped than another one.

- ☐ For empirical purposes, we consider two simple indexes for likelihood insensitivity and pessimism.
 - o Assume that
 - w(p) = c + sp on the open interval (0,1) with c the intercept and s the slope.
 - o Let d = 1 c s be the distance from 1 of the line at p = 1 (dual intercept).

□ Likelihood Sensitivity and Pessimism

 \circ Index of Likelihood insensitivity: a = c + d,

o Index of pessimism: b = d - c.

Likelihood (in-)Sensitivity

Pessimism

□ Examples

- □ Ellsberg two-color paradox continued
 - o Let us remember that

$$P(R^k) = P(B^k) = P(R^u) = P(B^u) = \frac{1}{2}$$
.

- o For the events R^k and B^k , the weight is $w_k(1/2) = 0.4$, and for events R^u and B^u , the weight $w_u(1/2) = 0.3$.
- Different weighting explains the different preferences.

Experimental Method

□ Participants:

 62 students from the ENSAM-Paris. They were mathematically sophisticated and well acquainted with probability theory, but had no training in economics or decision theory.

☐ Stimuli; unknown probabilities

- o Three sources of uncertainty:
 - I. French Stock Index (CAC40) [how much it would change in a given day]
 - II. Temperature in Paris [on May 31, 2005]
 - III. Temperature in the capital of a randomly drawn remote country [on May 31, 2005].

□ Decomposition of the universal event E = SЕ Е Е Е Е Е a_{1/2} E E

The italicized numbers and events in the bottom row were not elicited.

Experimental Method

- ☐ Stimuli; known probabilities
 - Utility u(.) and probability weighting function w(.) were elicited through certainty equivalents.
- □ Procedure and Motivation
 - Each participant was interviewed individually (95 minutes with a break of few minutes).
 - All participants received a flat payment of 20 €. For 31 subjects, real incentives were implemented through the random lottery incentive system (higher prize: 1000 €) in addition to flat payment.

Results: Subjective Probabilities

□ Uniformity confirmed for 5 out of 6 cases

Results: Utility

□ Power Utility

Results: Ambiguity for U. Sources

☐ Method for Measuring Ambiguity Attitude

- \circ Certainty equivalents were measured for gambles on events. Knowing utility, we could calculate $w_s[P(E)]$ for events E, and then knowing P(E), infer w_s .
- o Consider a source S_1 and the corresponding exchangeable partitions $(A_i, i=1,...,n)$.
- Assume that A_i(k) is the union of k exchangeable events
- O Assume that $CE \sim (A_i(k):\$100, S-A_i(k): 0).$
- We have $u(CE) = w_1[P(A_i(k)]u(\$100) + (1 w_1[P(A_i(k)])u(0))$

□ Overall Results

Figure 4. Average probability transformations for real payment

Fig. a. Raw data and linear interpolation.

□ Results at individual level

□ Results at individual level

Concluding Remarks

- We have demonstrated that a biseparable representation of preferences combined with PS can be used to analyze ambiguity for uniform sources of uncertainty.
- ☐ The Ellsberg two-color example was reconciled with consistent subjective probabilities.
- □ We introduced a new method for deriving subjective probabilities and demonstrated its validity (good calibrations were achieved).
- ☐ We demonstrated the feasibility of complete quantifications of ambiguity attitudes.