

Multi-objective Optimization Inspired by Nature

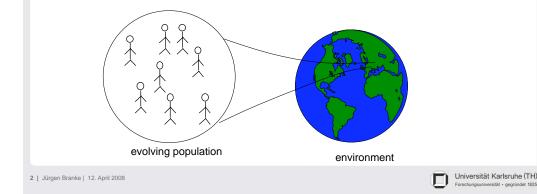
Jürgen Branke Institute AIFB University of Karlsruhe, Germany Karlsruhe Institute of Technology

Evolutionary algorithms

Darwin's principle of natural evolution:

survival of the fittest

in populations of individuals (plants, animals), the better the individual is adapted to the environment, the higher its chance for survival and reproduction.



Menu

Appetizer

Evolutionary algorithms

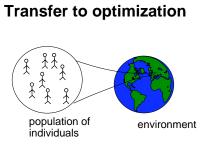
Main course

Using evolutionary algorithms instead of exact optimizers for MOPs Multi-objective evolutionary algorithms

Including preference information in MOEAs

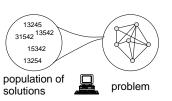
Desert

Current research Summary Kartsruke Institute of Technology



Natural evolution

- individual
- environment
- fitness/how well adapted
- · survival of the fittest
- mutation
- crossover

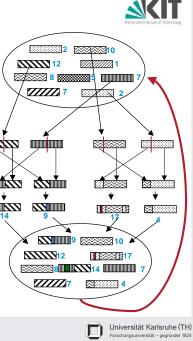


Evolutionary algorithms

- potential solution
- problem
- · cost/quality of solution
- good solutions are kept
- small, random perturbations
- · recombination of partial solutions

Basic algorithm

INITIALIZE population (set of solutions) in the second se **EVALUATE Individuals** according to goal ("fitness") REPEAT **SELECT** parents **RECOMBINE** parents (CROSSOVER) MUTATE offspring ★ ¥ EVALUATE offspring **FORM** next population UNTIL termination-condition



Industrial applications

- Warehouse location problem (Locom)
- Process scheduling (Unilever)
- Job shop scheduling (Deer & Company, SAP, Volvo)
- Turbine design (Rolce Royce, Honda)
- Portfolio optimization (First Quadrant)
- Cleaning team assignment (Die Bahn)
- Chip design (Texas Instruments)
- Roboter movement (Honda)
- Nuclear fuel reloading (Siemens)
- Design of telephone networks (US West)
- Games (creatures)
- Military pilot training (British Air Force)
- Vehicle routing (Pina Petroli)
- · Coating of fuorescent lamps (Philips)
-

6 | Jürgen Branke | 12. April 2008

4 | Jürgen Branke | 12. April 2008

Advantages/Disadvantages

- + No restriction w.r.t. fitness function (e.g. does not have to be differentiable)
- + Universal applicability
- + Easy to integrate heuristic knowledge if available
- + Easy to parallelize
- + Easy to use (usually inexpensive to develop)
- + Anytime algorithms (available time is fully utilized)
- + Can deal with multiple objectives
- + User-interaction possible
- + Allow for continuous adaptation
- + Can work with stochastic fitness functions
- Computationally expensive
- No guaranteed solution quality
- Parameter tuning necessary

Major design decisions

- Representation
- · Genetic operators
- Selection mechanism
- Crossover/Mutation probability
- Population size
- Stopping criterion

Universität Karlsruhe (TH)

Г

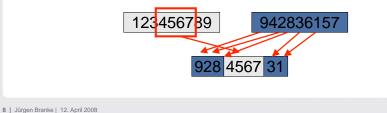
Simple example: Travelling Salesman Problem

Universität Karlsruhe (TH)

iniversität • nem



- Permutation encoding: 3-1-4-5-7-2-6-8-9
- · Mutation: Exchange two cities
- Order crossover (OX)
 - select partial sequence from one parent, fill up in order of other parent



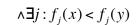
Multiple objectives

- · It is not always clear which solution is better
- Let f_i , i=1...d be the different optimization criteria. Then,

a solution x is said to **dominate** a solution y ($x \succ y$) if and only if the following condition is fulfilled:

 $x \succ y \Leftrightarrow f_i(x) \le f_i(y) \quad \forall i \in \{1...d\}$

f2



- $\wedge \exists j : f_j(x) < f_j(y)$ Among a set of solutions P, the **non-dominated set** of solutions P' are those that are not dominated by any member of the set P
- A solution which is not dominated by any other solution in the search space is called Pareto-optimal.
- User preferences are required

```
10 | Jürgen Branke | 12. April 2008
```

	Universität Karlsruhe (TI Forschungsuniversität - gegründet 18
	Forschungsuniversität • gegründet 18

Single-Objective

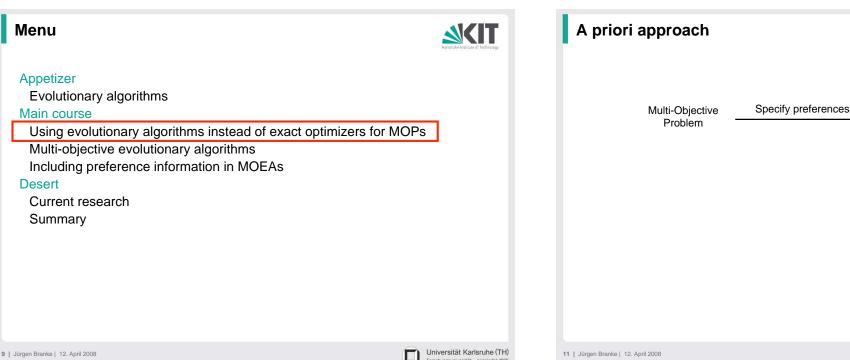
Problem

Optimize

Solution

olutionar

algorithm



adjust

preference

information

Specifying preferences

Difficult!

Example: Tell me which travel plan you prefer!

Advantages / Disadvantages of EAs

Universität Karlsruhe (TH)

- + Allows to solve problems where no exact methods exist
- Metaheuristics do not guarantee (Pareto-) optimality - Solutions generated in subsequent iterations may dominate each other - Adjusting preference information may lead to unexpected results Days London Days London - Computationally expensive Days Paris Days Paris Universität Karlsruhe (TH) Universität Karlsruhe (TH) 12 | Jürgen Branke | 12. April 2008 14 | Jürgen Branke | 12. April 2008 niversität . nem **Specifying preferences** A posteriori - The power of populations a priori Multi-Objective Specify preferences Single-Objective Problem Problem Vulti-objective f2 f2 f2 Optimize Optimize evolutionary Selected Specify preferences Solution Pareto Front f1 f1 f1 a posteriori Constraints Linear weighting Reference point and w 1 most EMO approaches achievement scalarizing function w2

15 | Jürgen Branke | 12. April 2008

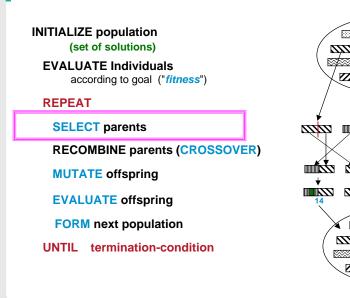
Universität Karlsruhe (TH)

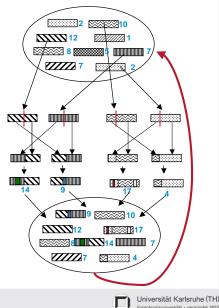
Multiobjective Evolutionary Algorithms (MOEAs)

16 | Jürgen Branke | 12. April 2008

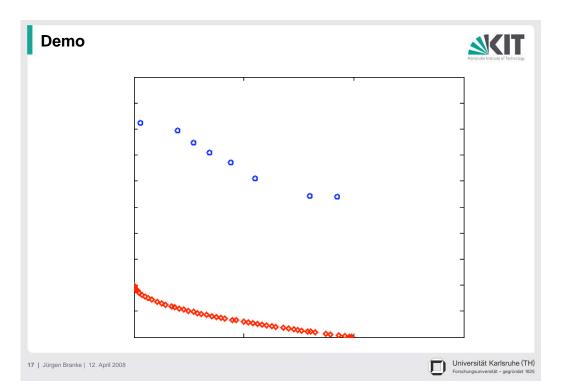
nasuniversität • aeari

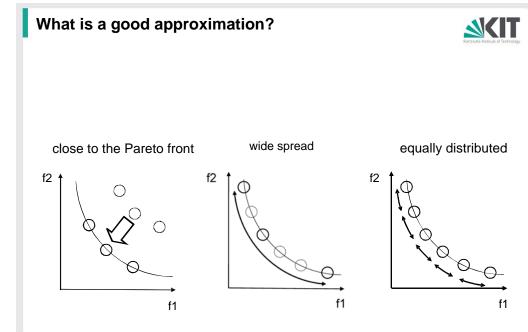
- Since EAs work with a population of solutions, they can search for all (a representative subset of) Pareto-optimal solutions in one run
- Single EMO run is usually much more effective than multiple runs with different objectives





Universität Karlsruhe (TH) 18 | Jürgen Branke | 12. April 2008





19 | Jürgen Branke | 12. April 2008

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

Non-dominated Sorting GA (NSGA-II) [Deb et al. 2002]

Based on two ideas:

- 1. Pareto ranking: based on Pareto-dominance
- 2. Crowding distance: mechanism to maintain diversity in the population

Other popular approach:

Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler

NSGA-II: Overall algorithm Front 1 Form new old Front 2 Diversity population

sorting

reject

reject

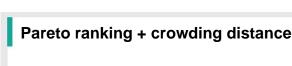
Front 3

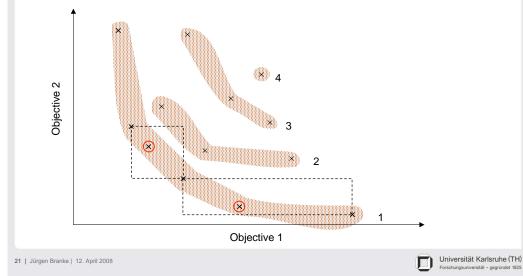
...

Front k

20 | Jürgen Branke | 12. April 2008

Universität Karlsruhe (TH) niversität • nem





Advantages of finding the complete front

Universität Karlsruhe (TH)

Г

- + Not necessary to specify preferences a priori
- + Allows DM to choose solution after having seen the alternatives

+ Interactive search of Pareto front

- Optimization prior to interaction, thus interaction very fast
- Only non-dominated solutions are presented to the user
- Direct navigation by user is possible
- Additional information on distribution of solutions along the front may be provided to the user (nadir point, ideal point, ...)

pop

off-

spring

22 | Jürgen Branke | 12. April 2008

Non-dominated

sorting

Advantages of finding the complete front

Universität Karlsruhe (TH)

Г

- + Not necessary to specify preferences a priori
- + Allows DM to choose solution after having seen the alternatives
- + Interactive search of Pareto front
- + Offer different alternatives to different customers (e.g., mean-variance portfolio optimization)
- + Reveal common properties among Pareto-optimal solutions (some variables are always the same)
- + Understand the causes for the trade-off

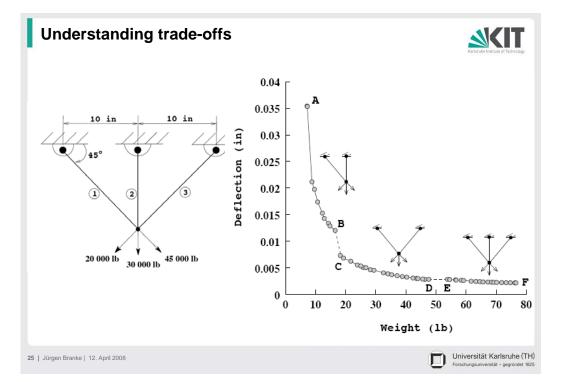
24 | Jürgen Branke | 12. April 2008

Advantages of finding the complete front

- + Allows DM to choose solution after having seen the alternatives
- + Interactive search of Pareto front
- + Offer different alternatives to different customers (e.g., mean-variance portfolio optimization)
- + Reveal common properties among Pareto-optimal solutions (some variables are always the same)
- + Understand the causes for the trade-off
- + Aid in other optimization tasks (constraints, multi-objectivization)

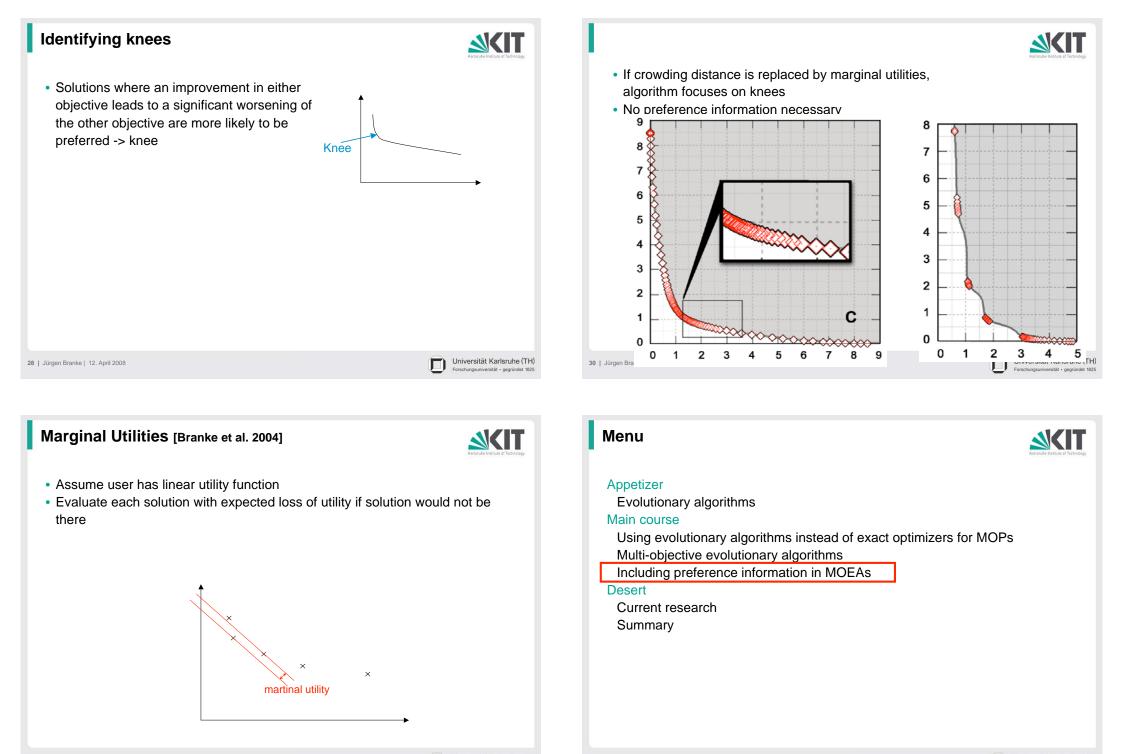
26 | Jürgen Branke | 12. April 2008

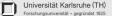
Universität Karlsruhe (TH)



Do we really need the whole front?

- Computational overhead
- · Large set of alternatives, difficult to search by DM
- · Identify "most interesting" regions
- Take into account partial user preferences
- · Bias the distribution
- Restrict the distribution





Motivation

Universität Karlsruhe (TH)

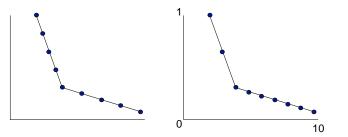
iniversität • nem

Г

- · Although a user generally cannot specify his/her preferences exactly before alternatives are known, he/she usually has some rough idea as to what solutions are desired
 - "A solution should have at least x in objective f1."
 - "f1 of x would be good, f1 of y would be great."
 - "My target solution would look something like this."
 - "If a solution is worse by one unit in objective f1, it should be at least x units better in objective f2 to be interesting."
 - "Objective f1 is somewhat more important than objective f2."
- Hope: Find a larger variety of more interesting solutions more quickly.

EMO doesn't need user preferences. Does it?

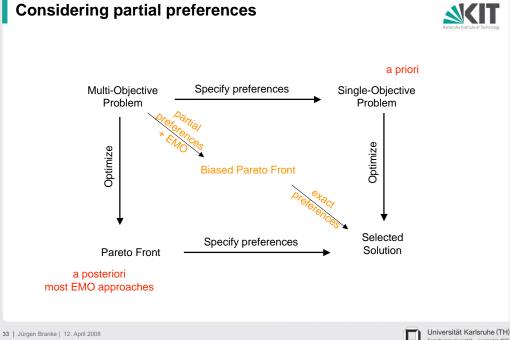
- · All EMO approaches attempt to find a representative set of the Pareto optimal front
- Usually, representative means well distributed



• But: distribution depends on scaling of the objectives

```
34 | Jürgen Branke | 12. April 2008
```

32 | Jürgen Branke | 12. April 2008



... at least x in objective f1." "

Universität Karlsruhe (TH)

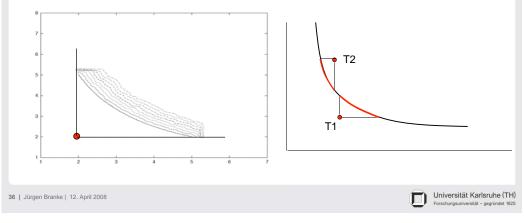
Г

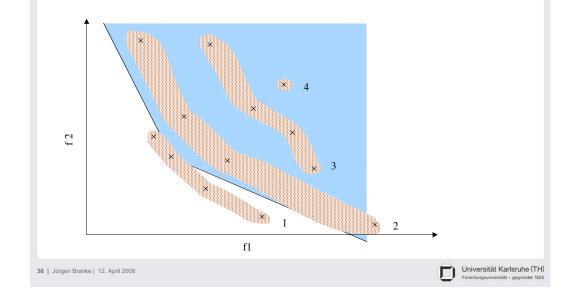
- Constraint: f1>x
- · Constraints are easy to integrate into EMO
 - Lexicographic ordering (feasible solution always dominates infeasible solution)
 - Penalty
 - Additional objective
 - ...

35 | Jürgen Branke | 12. April 2008

"... target solution ..." "

- Minimize distance to ideal solution (single objective) 1.
- Minimize maximal distance in any objective (single objective) 2.
- 3. Goal Attainment [Fonseca & Fleming, 1993]/Goal Programming [Deb, 1999]
 - Do not reward improvement over ideal solution $f1 \rightarrow max\{0, f1-f1^*\}$





0.5

0.4

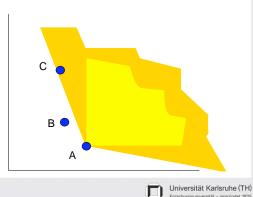
0.2

0.0

"... at least x units better in objective f2 ..."

- Maximal and minimal trade-offs
- Guided MOEA [Branke et al. 2001]
- · Modify definition of dominance
- Can be achieved by a simple transformation of the objectives
- · Not so easy for more than 2 objectives

 $\Omega_1(x) = f_1(x) + w_{12}f_2(x)$ $\Omega_2(x) = f_2(x) + w_{21}f_1(x)$ $x \succ y \Leftrightarrow \Omega_i(x) \le \Omega_i(y) \ \forall i \in \{1,2\}$ $\wedge \exists j : \Omega_i(x) < \Omega_i(y)$



0.4 Faster convergence and better coverage of the interesting area of the

guided MOEA

39 | Jürgen Branke | 12. April 2008

0.2

0.2

 \square

The effect of guidance

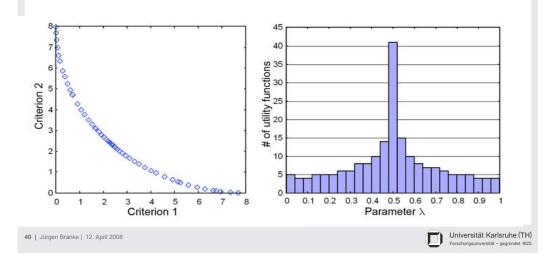
standard MOEA

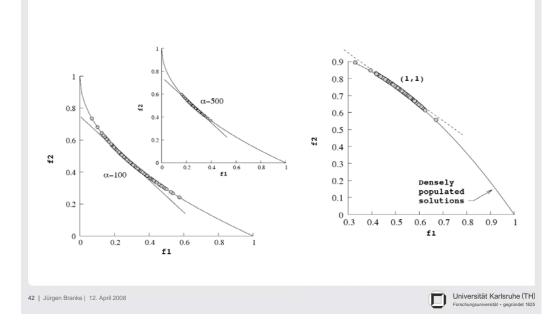
0.4

Pareto-optimal front

Marginal utility with preferences

• With non-uniform distribution of utility functions



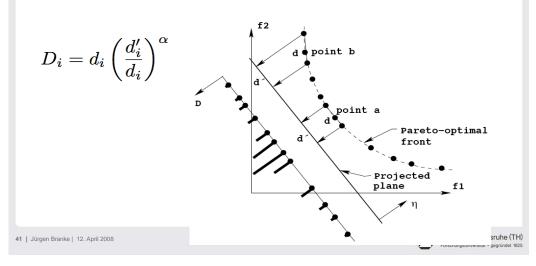


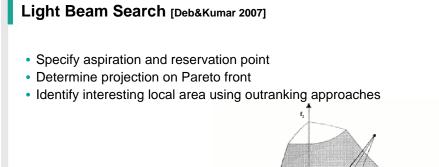
 \mathbf{f}_1

Universität Karlsruhe (TH)

KIT Kartsruhe Institute of Technology

- User specifies weights and spread parameter
- Crowding distance calculation is modified





43 | Jürgen Branke | 12. April 2008

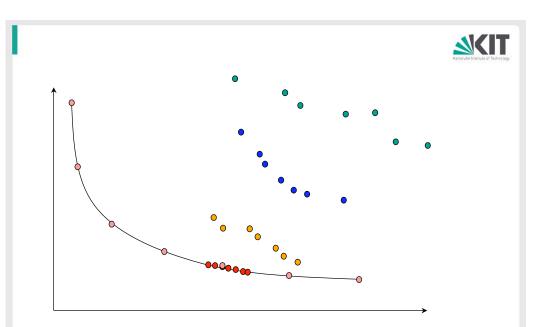
Interactive MOEA

Universität Karlsruhe (TH)

unasuniversität • aear

- Narrow down / refocus search during MOEA run
- Explicitly by
 - adjusting constraints
 - moving the target
 - modifying the max/min trade-offs
 - ...
- · Implicitly by comparing solutions
 - learn user preferences

44 | Jürgen Branke | 12. April 2008



Menu

Appetizer

Evolutionary algorithms

Main course

Using evolutionary algorithms instead of exact optimizers for MOPs Multi-objective evolutionary algorithms

Including preference information in MOEAs

Desert

Current research Summary

46 | Jürgen Branke | 12. April 2008

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Current research

- · Many-objective problems (difficulty: almost all solutions non-dominated)
- Multiobjectivization (influence diversity and search space structure)
- Noisy objective functions (e.g., stochastic simulation)
- Worst-case multi-objective optimization
- · Using metamodels in case of expensive fitness evaluation
- Individual = Set of solutions

Summary

- Evolutionary algorithms open new possibilities in multi-objective optimization because
 - they are very general problem solvers
 - they work on a population of solutions and can thus search for a whole set of solutions simultaneously
- Different ways to use EAs in MOO:
 - 1. As single-objective optimizer in classical MOO techniques
 - 2. To generate an approximation to the whole Pareto front
 - 3. With partial user preferences resulting in a partial front or biased distribution
 - 4. Interactively guided by the user

48 | Jürgen Branke | 12. April 2008

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

EMO resources

Books:

- K. Deb: "Multi-objective optimization using evolutionary algorithms". Wiley, 2001
- C. Coello Coello, D. A. Van Veldhuizen and G. B. Lamont: "Evolutionary algorithms for solving multi-objective problems". Kluwer, 2002
- J. Branke, K. Deb, K. Miettinen, R. Slowinski: "Multi-objective optimization interactive and evolutionary approaches". Springer, to appear

Websites:

http://www.lania.mx/~coello

[Branke et al. 2001] J. Branke, T. Kaußler, H. Schmeck: "Guidance in evolutionary multi-objective optimization". Advances in Engineering Software, 32:499-507

[Branke et al. 2004] J. Branke, K. Deb, H. Dierolf, M. Osswald: "Finding knees in multiobjective optimization". Parallel Problem Solving from Nature, Springer, pp. 722-731 Branke and Deb Biased

[Branke and Deb 2004] J. Branke and K. Deb: "Integrating user preferences into evolutionary multi-objective optimization". In Y. Jin, editor, *Knowledge Incorporation in Evolutionary Computation*, Springer, pages 461–477

[Deb 1999]: "Solving goal programming problems using multi-objective genetic algorithms". Congress on Evolutionary Computation, IEEE, pp. 77-84

- [Deb et al. 2002] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan: "A fast and Elitist multiobjective Genetic Algorithm: NSGA-II". IEEE Transactions on Evolutionary Computation 6(2):182-197
- [Deb and Kumar 2007] K. Deb and A. Kumar: "Light beam search based multiobjective optimization using evolutionary algorithms". Congress on Evolutionary Computation, IEEE, pp. 2125-2132
- [Fonseca and Fleming 1993] C. M. Fonseca and P. J. Fleming: "Genetic algorithms for multiobjective optimization: Formulation, discussion, and generatization".

International Conference on Genetic Algorithms, Morgan Kaufmann, pp. 416-423

50 | Jürgen Branke | 12. April 2008

Universität Karlsruhe (TH) Forschungsuniversität - gegründet 1825

