

Methods and Models for Decision Making

Alberto Colorni – Dipartimento INDACO, Politecnico di Milano Alessandro Luè – Consorzio Poliedra, Politecnico di Milano

<u>Aims:</u>

- introduction to the basics of decision theory
- discussion about decision making in design (and in other fields)
- presentation of risk analysis, multicriteria, group decision, ...
- definition of possible research topics (in design area)

Outline:

- (1) Introduction
- (3) Mental models
- (5) Classification
- (7) Ranking-2, multicriteria
- (9) Seminar
- (11) Group decision
- (13) Research topics
- (15) Conclusions

(2) Tools & frame

- (4) Design & decision
- (6) Ranking-1, risk analysis
- (8) A tentative case (discuss.)
 - (10) Rating problems
 - (12) Genetic alg. + ...
 - (14) Case results (if any ...)

DM: an introduction

The steps of a decision

different actors (Decision Makers, DM's)

a (possibly pre-defined) procedure

Short history: • 40's \rightarrow Genesis (during the 2° war)

- 50-60's → **Development [*]** (LP probl. & Combinatorics)
- 60-70's \rightarrow Specialization (non linear, integer, B&B, ...)
- 70-80's \rightarrow Multicriteria (the importance of trade-off)
- 50-90's \rightarrow Multiple DM (the different points of view)
- 80-00's \rightarrow Decision Aiding (sw supporting the process)

[*] max f(x), s.t. x C X (with X finite or infinite set)

Links & references:

- <u>http://www.informs.org</u> (the INFORMS site)
- <u>http://www.euro-online.org</u> (the EURO site)
- <u>http://www.airo2.org</u> (the AIRO, Italian site)
- <u>http://corsi.metid.polimi.it</u> (the site of Center METID)
- A. Tsoukias, *From decision theory to decis. aiding method.*, EJOR, 2007

An "ideal" decision problem

Someone who decides

with respect to one clear **objective** with a set of well defined **constraints** with all the suitable **information**

in presence of a finite set of alternatives

Two (ideal) examples

Ideal example 1

Combinatorial optimization

Your chorus is defining the storyboard of a concert and you must choose between a set of mottetti (a "mottetto" is a choral musical composition). Each mottetto $(m_1, m_2, ..., m_n)$ has a time of execution t_j and a level of success s_j (j = 1,...,n). The total time of the exhibition is T min.

What can you do ?

If you want, consider this specific instance:

n = 4; t = (10, 22, 37, 9); s = (60, 55, 100, 15); T = 45

- (i) What are the variables ?
- (ii) How many solutions ?
- (iii) What is the optimal choice ?

Linear programming

You must define the week production of a (small) firm that has only 2 products, PA and PB.

One item of PA needs 2 units of the resource R1 and 1 unit of the resource R2.

One item of PB needs 1 unit of the resource R1 and 3 units of the resource R2.

The net revenue for each item (PA or PB) is 500 €.

You have (weekly) 400 units of R1 and 900 units of R2.

You know that the maximum possible sale for PB is 250 items.

What can you do ?

- (i) What are the variables ?
- (ii) How many solutions ?
- (iii) What is the optimal choice ? (you can solve with Excel ...)

- Uncertainties (non-deterministic context, data mining)
- **Complexity** (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- **Different rationalities** (criteria and preferences)
- Various time horizons (often)
- Use of simulation models

Tools

A formal decision process needs instruments for:

i. abstraction

- ii. analysis
- iii. synthesis

(and more ...)

Tools for abstraction / 1

- 1736
- Konigsberg

- The 7 bridges
- A riddle

- Euler
- Graph theory

- The Euler model
- The answer (similar to ...)

Tools for abstraction / 2

Sherlock Holmes & the death of count Kinskij

- The count drunk poisoned water (from one of his 7 lovers)
- All 7 lovers were in the castle the day of his death
- The murderer should have come to the castle twice (one for exploring, the other for killing), while the others only one.
- Statements of the 7 women:

Alice saw	BCEF	
Barbara saw	ACDEG	
Clara saw	ABD	
Diana saw	BCE	Elementary,
Elena saw	ABDG	my dear Watson
Francesca saw	AG	(said Sherlock H.)
Gloria saw	BEF	

The solution

S. H. & the death of count Kinskij

General reports

- <u>http://teoriadeigrafi.altervista.org/teoria_dei_grafi.pdf</u> (a tutorial)
- http://en.wikipedia.org/wiki/Graph_theory
- http://en.wikipedia.org/wiki/Route_inspection_problem
- Applications
 - <u>http://bla</u>...
 - <u>http://bla</u>...

- A famous problem TSP
 - http://www-e.uni-magdeburg.de/mertens/TSP/index.html
 - http://www.tsp.gatech.edu/index.html
 - http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html

Tools for analysis / 1

Sudoku (Corriere della Sera, 3 Sept. 2006)

		4			9		
	1	6	2	4	3	8	
	8					5	
4			6	2			1
3			9	8			4
	3					6	
	6	7	3	5	1	4	
		2			8		

- Branching rules \rightarrow a tree
- A lot of (small) subproblems

Tools for analysis / ...

		4			9		
	1	6	2	4	3	8	
	8				4	5	
4			6	2			1
3			9	8			4
	3					6	
	6	7	3	5	1	4	
	4	2			8		

]

Step 6

		4			9	1	
	1	6	2	4	3	8	7
	8	3			4	5	
4			6	2			1
3			9	8			4
	3					6	
	6	7	3	5	1	4	X
	4	2			8		

Step 4

What number in position X? 2 or 9

branch (a) $\rightarrow X = 2$

but if X = 2, there is no place for a 2 in the right-high block; so $X = 2 \rightarrow NO$

branch (b) $\rightarrow X = 9$ in this case ...

Tools for analysis / ...

Step 8

		4				9	1	
	1	6	2		4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
8	6	7	3	2	5	1	4	9
	4	2				8		

Step 9

		4				9	1	
	1	6	2	Y	4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
8	6	7	3	2	5	1	4	9
	4	2				8		

What in the position Y?

5 or 9

branch (b1) → *Y* = 5 *in this case …*

Open situations (to be explored) are (b1) with Y = 5, and (b2) with Y = 9

Tools for analysis / ...

Step 13 (of b1)

The solution (visualization)

- Branching rules
- A lot of (easier) subproblems
- Stopping rules

POLITECNICO DI MILANO

Tools for synthesis

Who is the all time world's best boxeur ?

Indicators:

- strength
- speed
- n. of victories
- years of premiership
- ...

We need a common framework to compare the alternatives !

Tools & frame

Decision processes: a frame

A real decision process

- <u>Uncertainties</u> (non deterministic context, ...)
- Complexity (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- Different rationalities (criteria and preferences)
- Different time horizons (often)
- Use of simulation models

 The perception of the problem: differences between
cognitive approach

Decision processes in a non-deterministic context

(a) Normative theory ——— what the DM (prescriptive) should do

(b) Cognitive theory → what the DM (descriptive) really does → experimental tests

Examples

- Change names or positions for the options
- Change measure units
- Add a constant value for all the results

Lotteries (case A and case B)

Lotteries (case C)

Ellsberg

Given the two preferences on A1 and B2, it is **not guaranteed** that their aggregation (C1) is the preferred one

- Caution: do not combine too easily the options
- Normally, the ambiguity is avoided, "even if this is not rational "

(Ellsberg)

ExamplesI prefer to be missionaire (with respect to engineer)
in peace and prefer to be missionaire (...) in warso choice ... is
better then ...

 I prefer chicken with respect to beef (when there is nothing else) and I prefer chicken ... also when there is fish

(leaving ... out of consideration)

Counterexamples (see in next lessons) Extraction from an urn filled with 100 balls (Tversky e Kahneman, 1986) The possible choices in uncertainty conditions (see "Sindaco di Utopia")

Extraction (in two conditions) / 1

n. of balls	situation A	situation B	n
90 white	0	0	90
6 red	45	45	6
1 green	30	45	1
1 blue	-15	-10	3
2 yellow	-15	-15	

n. of balls	situat. C	situat. D	n. of balls
90 white	0	0	90 white
6 red	45	45	7 red
1 green	30	-10	1 green
3 yellow	-15	-15	2 yellow

better ...

Better C or D ?

Extraction (in two conditions) / 2

Principle of TRANSITIVITY

If the decision prefers A over B and B over C, then A **must** be preferred over C

Examples:

- Since V. Rossi is better than Stoner, and Stoner is better than Melandri, ...
 - Buying emission units (Kyoto protocol) is better than cutting the production, and cutting the production is better than not respecting the constraints on emissions, so ...

Principle of CRASH

The decision-maker is (relatively) indifferent to small progressive changes, but at some point become aware of the (large) gap and ...

Cognitive theory: estimation

C-5°