

Alberto Colorni - Dipartimento INDACO, Politecnico di Milano
Alessandro Luè - Consorzio Poliedra, Politecnico di Milano

MMDM - Lesson 2

God in 7 steps:

- A decision problem involve a choice
- Usually you have a "real" decision problem (and not an "ideal" one)

- There are tools for decision aiding
\rightarrow abstraction / analysis / synthesis

Index:

- (1) Introduction
- (3) Mental models
- (5) Classification
- (7) Ranking-2, multicriteria
- (9) Seminar
- (11) Group decision
- (13) Research topics
- (15) Conclusions
(2) Tools \& frame
(4) Design \& decision
(6) Ranking-1, risk analysis
(8) A tentative case (discuss.)
(10) Rating problems
(12) Genetic alg. + ...
(14) Case results (if any ...)

Examples (Theler, 1991)

(1) $\left[\begin{array}{ll}\text { Colorni won } & \left\{\begin{array}{l}200 € \text { (at a homely bingo) } \\ 800 € \text { (at a parish bingo) }\end{array}\right. \\ \text { Luè won } & 1.000 € \text { (at a Politecnico bingo) }\end{array}\right.$
who is more satisfied?
who is less unhappy?
who is less unhappy?
who is more satisfied?
(1) There is a dissociation for the winnings
(2) There is an aggregation for the losses
(3) There is a dissociation between low winnings and high losses
(4) There is a aggregation between high winnings and low losses

Dissociation $=$ overestimation
Aggregation $=$ underestimation

A subjective utility function
(Bernoulli, S. Pietroburgo, 1738)

$$
\begin{aligned}
& u\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)<\mathrm{u}\left(\mathrm{x}_{1}\right)+\mathrm{u}\left(\mathrm{x}_{2}\right) \rightarrow \text { UTI LI TY } \\
& \mathbf{u}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)>\mathrm{u}\left(\mathrm{y}_{1}\right)+\mathrm{u}\left(\mathrm{y}_{2}\right) \rightarrow \text { DI SUTI LI TY }
\end{aligned}
$$

Risk and perception - 1

Protocol A	20\% immediate death 80% increase expected lifetime by 30 years	Better A or B ?
Protocol B	100\% increase expected lifetime by 18 years	
		Anticancer therapy on "group X" at European Institute of Oncology (IEO) Patients of about 40 years, with expected life of 3-6 months
$[\text { Protocol C }$	80\% immediate death 20% increase expected lifetime by 30 years	
Protocol D	75\% immediate death 25% increase expected lifetime by 18 years	Better C or D ?

Risk and perception - 2

- Group X \bullet Only 1 patient in 4 reacts positively, then who react can choose between E and F

Protocol E 20% immediate death

Anticancer therapy
on "group X" at IEO

- Comment $1 \longrightarrow$ this situation (E-F) is the same of the previus one (C-D)
- Comment $2 \longrightarrow$ The decision-makers "clears" the information context (only 1 in $4 \ldots$...) and decides between the proposed options

The mental model may depend on the communication

Definitions - 1
(a) Objective probability (frequentist) $\quad \longrightarrow \quad \mathbf{p}=\mathbf{f} / \mathbf{t}$

ratio of the number of favorable cases (f)
to number of total cases (t)
\longrightarrow
applicable only to problems with repeated events ∞ (many) times
(b) Subjective probability $\longrightarrow \quad \mathbf{p}=\ldots(?)$
 everyone can assess its own probability to every casual event, this represents his degree of confidence
$\xrightarrow{ }$ h how can you measure this probability ?

- Examples
by means of a lottery

Random events: what probability ?

$$
\begin{aligned}
& \mathrm{O}=\text { objective probability } \\
& \mathrm{S}=\text { subjective probability }
\end{aligned}
$$

1. Probability of having two pairs and changing one card ...

0 s
2. Probability that my number wins to the lottery "Lotteria Italia"

0 S
3. Probability of rain tomorrow in Milan

0 s
4. Probability that (having 60 years and being in good health) I will be alive in 20 years
5. Probability that, from a survey of 2000 people done before the

0 S elections, I guess the party who will govern Italy
6. Probability that if the avian influence hits Italy, the vaccine is effective

0 S
7. Probability that Soldatino wins the Gran Premio degli Assi a Tordivalle
(Febbre da cavallo, a movie of 1982)
8. Other examples proposed by you ...

Axioms of probability theory

A1 - Probability $\mathbf{p (e)}$ of an event $(e):$ value between <0 (impossible)
A2 - Complementary probability (the event does not occur): 1-p(e)

A3 - For events ($\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}$) that are mutually exclusive : $\mathbf{p (\mathbf { e } _ { 1 } \text { or } \ldots \text { or } \mathbf { e k } _ { \mathbf { k } }) =}$ $=p\left(e_{1}\right)+\ldots+p\left(e_{k}\right)$

A5 - For 2 non-indipendent events ($\mathrm{e}_{1}, \mathrm{e}_{2}$)

$$
\begin{aligned}
\mathbf{p (e 1 / e 2)}= & \frac{\mathbf{p (e 1} \text { AND } \mathbf{e} 2)}{p\left(\mathbf{e}_{2}\right)} \\
& \frac{\mathbf{p (\mathbf { e } _ { 2 } / \mathbf { e } _ { 1 }) * \mathbf { p } (\mathbf { e } _ { 1 })}}{\mathbf{p}\left(\mathbf{e}_{2}\right)} \\
& \text { An example follows }
\end{aligned}
$$

(Bayes, 1763)

A6 - If an event has an expected value $\mathbf{v}_{\mathbf{0}}$ then a sequence of \mathbf{n} repetitions has an expected value of $\mathbf{n} * \mathbf{v}_{\mathbf{0}}$
(see Lottery L1)

The barometer (an example)

w = state of nature

```
w1 = good weather
w2 = bad weather
```

	y1
y2	.55
y3	.25

$$
\begin{aligned}
& \text { y1 }=\text { clear } \\
& \text { y2 }=\text { variable } \\
& \text { y3 }=\text { rain }
\end{aligned}
$$

	w1	w2
y1	. 50	. 05
y2	. 20	. 05
y3	. 10	. 10

w1 w2

.91	.09
.80	.20
.50	.50
$p(w / y)$	

w1 w2

$p(w)$
$p(w / y)$
$p(y / w) \longrightarrow \quad$ in this case does not make much sense

Definitions - 2

Lottery

Given a certain event R1 of which the decision-maker knows how to estimate the utility (that is, his level of satisfaction), if exists an uncertain event $\mathbf{R 2}$ with a higher utility, the decision-maker is able to compare the utility of R1 (obtainable with certainty) with the equivalent utility of obtaining R2 with probability p and obtaining nothing (the null event) with probability (1-p). Determining \mathbf{p} is a prerogative of the decision-maker.

Utility (see following slide)

State of nature

The set of variables that are not controlled by the decision-maker, but that influence the final result (also known as "exogenous variables").

Expected value vs. Expected utility

Mental models - 2

[Tversky \& Kahneman]

Frame effect

- Avian influence (possible death)
- Group at risk: $\mathbf{6 0 0}$ people

- Aversion to the risk in case of winnings
- Propensity for risk in case of losses

Choice vs. rejection

Shafir (1993)

Cause for divorce, with the choice for the custody of the only child
 Group 1

Parent A	Parent B
Average Income	High income
Normal health	Small health problems Regular working hours
Many business trips relationship with the child	Very close relationship with the child
Stable social life	Extremely active social life

Group 2

\longrightarrow Which parent would you reject the child's custody to?

I nfo on the parent B are strongly polarized

Example (more)

- Preference for an alternative vs. Rejection of an alternative

```
ONE BETWEEN MANY
```

ONE AGAI NST MANY

- If

the two situation should coincide
(but it is not always true)
- Choiche vs Non-choice

lack of information (however \rightarrow experiments)
difficulty in appreciating the differences \rightarrow incomparability
- Often the difficulty of settling the conflict

Outranking methods (Electre)
is overcomed \longrightarrow introducing other alternatives (to facilitate the comparison)

Conclusions

- Bibliography:

1. M.Piattelli Palmarini, "Psicologia ed economia delle scelte" (in Italian), Codice, 2005.
2. D. Kahneman, A. Tversky, "Choices, Values, and Frames", Cambridge Un. Press, 2000

- Test

which sequence is the most probable one?
which final result (T / C) is the most probable one?

C : cross T : head

- Two problems

Two problems

1. Example of Bayes

- a woman at a doctor \rightarrow nodule
- examination \rightarrow possibile tumor (10%)

$\left.\begin{array}{l}y 1=\text { positive result } \\ y 2=\text { negative result }\end{array}\right\}\left\{\begin{array}{l}w 1=\text { tumor } \\ w 2=\text { healthy }\end{array}\right.$

2. Example by Tversky (1992)

choice?

choice?

Decision Aid (DA) in design context

- Why Decision Aid (DA) in this context ?
- Design of what?
i. PRODUCT
ii. SERVICE
iii. PROCESS
iv. ... (other) ... ?

Case 1 - Product

- Tha nail holder avoiding to hurt one's hand while hammering
\square
the objective
- A great number of alternatives!
\Rightarrow hand protection
\square for
\square
\square
- From a large amount of knowledge to a (limited) set of alternatives

$$
\text { Focus } \rightarrow \text { generating possible solutions }
$$

Case 1 - Knowledge vs Concept

- Knowledge a set (space) of propositions that are true or false
- An object defined by a set of attributes (and by their possible values)
- Space K the cartesian product of the attributes
- Space C a space where to add/eliminate/change the attributes
- From space K to space C and vice-versa

Case 1 - The C-K theory

Link to ...

Case 1 - A branch tree

- A node:

\rightarrow
a predecessor (father)

\squaremore successors (children)

- In general

\Rightarrow a condition (constraint) is "inherited" by the father
\rightarrow the children describe a partition of the "world"
represented in the node (solr U solr $_{r+1}$ U...U solr+k \equiv soln)
- The role of the bounds
$\Rightarrow \quad B \& B$ (branch and bound) methods

Case 2 - Service

- A (public) service for weak demand (irregular) mobility

- A "dial-a-ride" system
- What is a good service?

\rightarrow low cost ?
\square high coverage?
\square quick door-to-door?
Focus \rightarrow different point of view
$\rightarrow \ldots$
http://projectapps.vtt.fi/Connect/portal/alias_Rainbow/lang_en/tabID_3342/DesktopDefault.aspx

Case 2 - A specific ITS (intelligent transport system)

- Dial-a-ride (DaR) service
\square a trade-off between

- A classical balance between economics and quality
- DaR service:
\square when-where the demand appears

weak demand
night hours
particular customers
\rightarrow safe (door-to-door)
http://www.tempi.piacenza.it/prontobus/prontobus.asp\#come_nasce_prontobus

Case 2 - The trade-off approach

- Three points of view:
i. the planner objective is the area coverage
ii. the manager objective is the cost control
iii. the customer objective is the Level of Service (LoS)
- What measures?
- How compare them ?

Case 2 - The conceptual path

1. Definition of (multiple) objectives
2. Choice of the set of indicators (each with its measure unit)
3. Matrix of effects/impacts (quantitative and qualitative)
4. From indicators to utilities
the value functions (...)
5. Matrix of evaluation (values in a common scale)
6. ... (see in the following)

Case 3 - Process

- The urban plan of a (small) town
- A set of coordinate actions \quad the need
- Identification of elementary actions
- Evaluation of the effects (costs, impacts, ...)

Focus \rightarrow analysis of the combinations of (elementary) actions

Case 3 - The effect of a combination

- Example $1 \longrightarrow$ the value of the refugee suitcase
- a set of items
- each item has a value and a weight
- the refugee can choose a subset of them
- there is a constraint of total weight supported
- how does the refugee choose ?
- Example $2 \longrightarrow$ the value of the beautycase
- toothbrush (value vb)
- toothpaste (value v_{p})
- other objects (not important...)
- the value V of the beautycase is the sum or ...?

Case 3 - Accumulation (the sum operator)

- Model:

item	Vi	Wi
1	50	10
2	80	8
3	20	5
4	60	5

$$
\begin{aligned}
\max f= & 50 x_{1}+80 x_{2}+20 x_{3}+60 x_{4} \\
& 10 x_{1}+8 x_{2}+5 x_{3} x 3+5 x_{4} \leq W
\end{aligned}
$$

$$
x_{i}=0,1
$$

$W($ total weight supported $)=16$

ADDITIVE MODEL

- Decision aid: an algorithm
exact : 2^{4} combinations (see ${ }^{*}$)

$$
\left.\begin{array}{l}
\text { item }_{4} \rightarrow 60 / 5=12 \\
\text { item }_{2} \rightarrow 80 / 8=10 \\
\text { item }_{1} \rightarrow 50 / 10=5 \\
\text { item }_{3} \rightarrow 20 / 5=4
\end{array}\right\} \text { then } . .
$$

Case 3 - Combinatories
values: $50,80,20,60$
weight: $10,8,5,5 \quad(W=16)$

$\#$	$X_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	\mathbf{f}
1	0	0	0	0	0
2	0	0	0	1	60
3	0	0	1	0	20
4	0	0	1	1	80
5	0	1	0	0	80
6	0	1	0	1	140
7	0	1	1	0	100
8	0	1	1	1	n.f.

$\#$	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	\mathbf{f}
9	1	0	0	0	50
10	1	0	0	1	110
11	1	0	1	0	70
12	1	0	1	1	n.f.
13	1	1	0	0	n.f.
14	1	1	0	1	n.f.
15	1	1	1	0	n.f.
16	1	1	1	1	n.f.

Case 3 - Synergy (some operators)

- A set Ω of elements
- A function f such that $\left[\begin{array}{l}\text { - } \\ \hline\end{array}(\Phi)=0 \quad\right.$ (the function is monotone
- $f(A) \leq f(B)$ if $A \underline{~} B \quad$ non decreasing
- Choquet integral (a rough presentation):
- $\Omega=\left\{X_{1}, x_{2}, x_{3}\right\}$
- $f(\Omega)=\alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)+\gamma f\left(x_{3}\right)+\delta f\left(x_{1}, x_{2}\right)+\ldots+\sigma f\left(x_{1}, x_{2}, x_{3}\right)$ with $\alpha, \beta, \ldots, \sigma$ weights
- OWA (Ordered Weighted Average):
- order the elements following their value
- define different weights with respect to the rank position
- example $1 \rightarrow$ weight 1 for the higher
- example $2 \rightarrow$ weight 0 for the extremes \rightarrow the gym. jury

Case 3 - A regional plan

- Key-point: a plan is a set of coordinated actions
- So

> feasible actions
> combinations of actions
> synergies or cumulus of effects
$>$ alternatives (feasible)
$>$ effects (of each alternatives to the set of indicators)

Decision Aid (DA) in design context

- Why Decision Aid (DA) in this context ?
- Design of what?
i. PRODUCT from (distributed) knowledge to concept
(generating-analyzing possible sol.)
ii. SERVICE
consider the different actors \& their points
of view
iii. PROCESS \quad combination of (elementary) actions

