

Alberto Colorni - Dipartimento INDACO, Politecnico di Milano
Alessandro Lué - Consorzio Poliedra, Politecnico di Milano

God in 7 steps: - Real decision = choice between alternatives,
\rightarrow various complexities and aiding tools

- The importance of the communication
\rightarrow perception of the problem by the DM
- Design of ... \rightarrow product / service / process
- Analyzing the elements and the whole

> But what are you looking for?

Index:

- (1) Introduction
- (3) Mental models
- (5) Classification
- (7) Ranking-2, multicriteria
- (9) Seminar
- (11) Group decision
- (13) Research topics
- (15) Conclusions
(2) Tools \& frame
(4) Design \& decision
(6) Ranking-1, risk analysis
(8) A tentative case (discuss.)
(10) Rating problems
(12) Genetic alg. + ...
(14) Case results (if any ...)

Classification

Evaluation = classification

- A set of alternatives (solutions, options)
- Possible partitions (classifications)
- Classes:

not pred.

- Two problems:

$$
\begin{aligned}
& \text { choice } \rightarrow \text { what you want (and the remaining } \ldots \text {) } \\
& \text { or } \\
& \text { rejection } \rightarrow \text { what you don't (and the remaining } \ldots \text {) }
\end{aligned}
$$

Examples of classification

- Michelin guide
- Medical diagnosis
- Marketing
- Linneo classification
- Envir. impact assess.
- PhD student selection
- Electoral districts
- Measure of land vulnerability
- Feasibility of projects
- Student eval. in 3 cat. (ok - exam - no)
- Level of alert in civil defence
- Breakdown diagnosis
- Smart electoral districting(*)
- More ... (suggestions ?)

Smart electoral districting

Bruno Simeone

Dip. Statistica, Probabilità e Statistiche Applicate
Università di Roma "La Sapienza"
http://w3.uniroma1.it/dspsa/docenti/Simeone/

In Massachussets in 1821, Governor Elbridge Gerry enacted an electoral redistricting plan that would enable him to be re-elected with high probability.

Gerrymandering

The unusual salamander shape of one of these districts gave origin to the term gerry-mander
(a contraction of Gerry-salamander).

Gerrymandering / 1

(adapted from Dixon, Plischke 1950)

EXAMPLE

Consider the territory represented in the figure as a chessboard divided into 81 "elementary zones" (units) with the same population

```
PROBLEM
Design a map of 9 uninominal districts
formed by 9 units each
```

Y	O	O	O	Y	Y	O	Y	O
O	O	Y	O	Y	O	Y	O	O
O	O	Y	Y	O	O	Y	Y	O
O	Y	Y	O	Y	O	Y	O	O
Y	O	O	Y	O	Y	Y	O	O
O	Y	Y	O	Y	Y	Y	Y	O
Y	Y	O	Y	O	Y	Y	O	Y
Y	Y	Y	O	Y	O	O	Y	Y
O	Y	O	O	Y	Y	O	O	O

For simplicity we assume that in each unit the vote is homogeneous: colours yellow (Y) and orange (O) define a possible vote distribution.

BALANCED VOTE $\rightarrow 41$ units Y, 40 units 0

Gerrymandering / 2

The orange party wins 1 seat

The
wins 8 seats

Gerrymandering / 3

The orange party wins 8 seats

The yellow party
wins 1 seat

Presidential Elections - USA 2004

[Criteria]

Population equality

District populations must be as balanced as possible.

Administrative boundaries

The boundaries of electoral districts and other administrative areas must cross each other as little as possible.

Compactness

The districts must have "regular" geometric shapes: octopus or banana districts must be avoided.

Compactness measure

in D unit i is the farthest from S

Bad case 1

large district
small district

Bad case 2

Bad case 3

Ranking problems

Key-points of an evaluation system

- What relation between A and B ?
- A better than B
a binary one
- A not worse than B
$\rightarrow A>B$
- A indifferent to B
$\rightarrow A \geq B$
- A not comparable with $B \rightarrow A$? B
- Note the difference between
$\square A \sim B$ (I'm able to compare and I say that ...)
\Rightarrow A ? B (l'm not able to compare)
- From a pair (A, B) to a set (A, B, \ldots, Z)

Ranking problems (the main category)

1. Risk analysis \rightarrow when the DM has no the complete knowledge of the context (state of nature, exogen variables), then the choice between the alternatives could depend by the risk attitude of the DM (and also by his/her perception of the problem)
2. Multi-criteria analysis \rightarrow when the DM identifies more than one criterion, then

the choice between alternatives needs the search of a trade-off solution (because usually there is not an alternative better from every point of view)

Ranking-1: risk analysis

The mayor of Utopia

```
An example of:
- non-deterministic environment \(\rightarrow\) incomplete data
- making the solution independent of the missing information
- lotteries and risk attitude of the DM
- utility function (difference between value and utility)
```


An example of ...

Utopia $\rightarrow \rightarrow \rightarrow$

A real problem:
the level of employment
uncertain results (dependent by the state of nature ω)

Actions

with $\omega_{1} \ldots$
with $\omega_{2} \ldots$
with $\omega_{1} \ldots$
with $\omega_{2} \ldots$

- 50 (certain)
$-\operatorname{action} \mathbf{a}_{4}<\operatorname{n}^{\circ}$ of new jobs $2 c$
$-\operatorname{action} \mathbf{a}_{\mathbf{0}} 工 \quad \begin{aligned} & \text { cost } 0 \\ & 0 \text { new jobs }\end{aligned}$

Certain and uncertain data

		a_{1}	a_{2}	a_{3}	a_{4}	a_{0}
(certain data) \rightarrow	cost	c	c	$2 c$	$2 c$	0
(incertain data) \rightarrow	jobs	$?$	$?$	50	$?$	0

| | Jobs | Prob. | Jobs | Prob. | Jobs | Jobs | Prob. | Jobs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\omega}_{1}$ | $\mathbf{5 0}$ | $\mathbf{1 0 \%}$ | $\mathbf{1 1 0}$ | 5% | | $\mathbf{1 1 0}$ | 50% | |
| $\boldsymbol{\omega}_{2}$ | $\mathbf{1 0}$ | 90% | $\mathbf{1 0}$ | 95% | $\mathbf{5 0}$
 (certain) | $\mathbf{1 0}$ | 50% | $\mathbf{0}$ |

- How much the mayor is willing to risk (to spend) to create jobs ?
- What action is the best for him ?

Preliminary questions / 1: preferable solutions

Are there actions a priori preferable to others ?

Preliminary questions / 2: preferable solutions

Preferable solutions without considering costs

Preliminary questions / 3: lottery
$\begin{aligned} & \text { What is the value of the probability } \pi \text { that makes you believe these } \\ & \text { two situations are equivalent? } \\ & \text { (i) } \quad 110 \text { jobs with prob. } \pi \text { or } 10 \text { jobs with prob. (1- } \pi) \\ & \text { (ii) } 50 \text { certain jobs }\end{aligned}$

$$
\pi=?
$$

Lotteries

What is the value of the probability π that makes you believe these two situations are equivalent?
(i) 110 jobs with probability π or 10 jobs with probability (1- π)
(ii) obtain 50 certain jobs?

LOTTERY

Equivalence between a certain outcome and a couple of possible outcomes

Lotteries

What is the value of the probability π that makes you believe these two situations are equivalent?
(i) 110 jobs with probability π or 10 jobs with probability (1- π)
(ii) 50 certain jobs

a lottery

\square Decision
O Chance

- Outcome

Other questions / 4: certain jobs with cost c

cost 2c
 50 certain jobs

cost C

how many certain jobs?

Other questions / 5: a second lottery

What is the value of the probability p that makes you believe these two (not deterministic) situations are equivalent?

Decision
\bigcirc Chance
A Outcome

Does the decision-maker deem more useful to go from 10 to 50 jobs, or from 50 to 110 ?

That is \rightarrow it is better to have 40 more jobs being in a situation with few employees
or
have 60 more jobs being in a situation that already has a discrete number of employees ?

Possible answers

- Q1: preferable actions a priori ?
- Q2: preferable actions evaluating only the \mathbf{n}° of jobs? yes (see figure)
- Q3: probability $\pi=0.60$

- Q4: with cost c 20 certain jobs
- Q5: probability $p=0.25$
- Q6: better to increase the number of jobs from 10 to 50 (instead than...)

6 questions: 2 for estimating parameters, the others for checking the DM answers

Utility function for the number of jobs

Basic difference:

values vs utilities

Utility: $\mathrm{u}_{110}=1, \quad \mathrm{u}_{50}=\alpha, \quad \mathrm{u}_{10}=\beta, \quad \mathrm{u}_{0}=0$

Since utility is measured in a conventional scale (usually between 0 and 1),
to the worst outcome (0 jobs) is associated the value 0 , while to the best (110 jobs) is associated the value 1.

Utility function: the numerical solution

Utility: $u_{110}=1, u_{50}=\alpha, u_{10}=\beta, u_{0}=0$
$1 * \pi+\beta *(1-\pi)=\alpha$
$1 * p+\beta *(1-p)=\alpha * 0.5+0 * 0.5$

Utility function : the result

$$
\begin{aligned}
& 1 * \pi+\beta *(1-\pi)=\alpha \\
& 1 * p+\beta *(1-p)=\alpha * 0.50+0 * 0.50
\end{aligned}
$$

Answers: $\pi=.60, p=.25$

$$
\beta=5 / 55 \cong 0.09
$$

$$
\begin{array}{ll}
u_{110} & =1.000 \\
u_{50} & =0.630 \\
u_{10} & =0.090 \\
u_{0} & =0.00
\end{array}
$$

Check: from10 to $50 \rightarrow$ variation of the utility $=(0.63-0.09)=\mathbf{0 . 5 4}$ from 50 to $110 \rightarrow$ variation of the utility $=(1.00-0.63)=0.37$

Utility function for the costs (roughly)

Of course even for this criterion it is necessary to interview the decision-maker for understanding the shape of his utility function $u(c)$ regarding the economical aspects.

Suppose that you have done it and that the result is ...

A Multi-Criteria Analysis (MCA) problem

Evaluation matrix

	a_{1}	a_{2}	a_{3}		a_{4}
$\mathrm{u}_{\text {cost }}$	a_{0}				
	0.500	0.500	0.250	0.250	1.000
	$\mathrm{u}_{\text {jobs }}$	$\mathbf{0 . 1 4 4}$	0.135	0.630	0.545
	0.000				

- How do you get the value 0.144 ?
- It is the expected utility of a_{1} as regards the employment criterion \rightarrow

$$
\rightarrow 0.63 * 0.10+0.09 * 0.90=0.063+0.081=0.144
$$

- The problem has two "dominated solutions" (a_{4} and a_{2})
- The choice between the others has to be done:
what are the preferences of the decision-maker

Multi-Criteria Analysis

Evaluation matrix

	a_{1}	a_{2}	a_{3}	a_{4}	a_{0}
	$u_{\text {cost }}$	0.500	0.500	0.250	0.250
$\mathrm{u}_{\text {Jobs }}$	1.000				
	0.144	0.135	0.630	0.545	0.000

Preferences \rightarrow vector of weights for the criteria $\rightarrow(0.4,0.6)$

The final choice

In the space (in this case a plane) of the criteria

$$
\text { only } 3 \text { efficient solutions }
$$

Global utility and ranking (using the criteria weights 0.4 and 0.6)

Synthesis

PROBLEM

 Risk attitude of the DM

Utility of jobs
Utility of costs

> Utility functions

SOLUTION

(depends on the preferences
of the decision-maker)

Test-1

In a decision problem under conditions of uncertainty, a utility function is a relationship - expressed in an appropriate scale, usually [0, 1] between outcome values and utilities perceived by the DM

(a) True

(b) False

Test-2

The following graph shows the utility functions for a worker and an entrepreneur; the utility function of the worker is represented by curve B, while curve A represents the perceived utility by the entrepreneur
(a) True
(b) False

Test-3

As regards the number of jobs, $\mathbf{a}_{\mathbf{2}}$ is preferred with respect to $\mathbf{a}_{\mathbf{4}}$
(a) True
(b) False

