

Alberto Colorni – Dipartimento INDACO, Politecnico di Milano Alessandro Lué – Consorzio Poliedra, Politecnico di Milano

MMDM – Lesson 4

- God in 7 steps: Four classes of decision problems
 - The main two (in this context) \rightarrow ranking, rating
 - Binary relations $(A > B, A \ge B, A \sim B, A ? B)$
 - Ranking-1 \rightarrow the risk analysis
 - Non-deterministic environment (random outcomes)
 - Lotteries to measure the risk attitude of the DM
 - Utility function (one for each indicator) of *this* DM

Index:

- (1) Introduction
- (3) Mental models
- (5) Classification
- (7) Ranking-2, multicriteria (8) A tentative case
- (9) Rating problems
- (11) Group decision
- (13) Research topics
- (15) Conclusions

- (2) Tools & frame
- (4) Design & decision
- (6) Ranking-1, risk analysis
- (10) Seminar M. Henig
- (12) Genetic alg. + ...
- (14) Case results (if any ...)

Ranking-2: multicriteria analysis

MultiObjective / MultiCriteria

□ Decision problem with <u>one DM</u> and <u>full information</u>

Different points of view (objectives or criteria)

□ Final solution = a good trade-off between the criteria

❑ Various phases → ph1: from indicators to utilities ph2: subset of efficient solutions ph3: preference and final solution

□ Two cases (one continuous, one discrete) for understanding

The various phases

- □ A decision problem with different (conflicting) objectives/criteria
- □ Objectives = continuous case // Criteria = discrete case
- □ The need of a synthesis (considering different points of view)
- Ph1 The treatment of different data (from indicators to utilities)
- Ph2 The search of efficient (or non-dominated or Pareto) solutions
- Ph3 The final (best trade-off solution) choice and the sensitivity
- □ The procedure is not "objective", but the analysis can point out the crucial aspects of subjectivity (what influence, where, ...)

Example – The incinerator project

*There is an air standard quality Q**

- Variables of decision:
 - D = plant dimension,
 - H = smokestack height,
 - P = % of pollutant eliminated
- Sectors of attention:
 - economics,
 - waste service,
 - fly sefety (the smokestack),
 - local viability (congestion),
 - environment.

Indicators (measures of the effects)

Sector	Indicator	Constraint	Objective
Economics	R (benefits-costs)	-	max R
Service	D (smaltiti wastes)	D ≤ D *	-
Security	H (air trafic)	H ≤ H*	-
Viability	D (number of vehicles)	D < D*	-
Environm.	P (% removed particules)	P ≤ 100%	max Q/Q*

- Indicators \rightarrow directly in the constraints
 - directly in the obj. functions
 - undirectly in the o.f. (i.e. particules)
- Sector models (to supply the measures)

The variable space (decisions)

• Three (continuous) variables

- Each point $x \in X$ is a feasible solution (∞ solutions)
- For each point x it is possible to compute the values of R & Q (sector models)

• Each vector **x** (a tern of decision variables) corresponds to a vector **f** (a cople of results)

How obtaining F from X

- Region X is known (you can explore it)
- For each $\overline{x} \rightarrow$ the corresponding \overline{f}
- In general: $x \in X \rightarrow f \in F$
- So, you have F

• Question: given two vectors of results, is it better $\hat{f}~ or~ \tilde{f}~?$

Dominance

- Comparison bertween $\,\hat{f}\,$ and $\,\,\widetilde{f}\,$
- \hat{f} dominates \tilde{f} (and the solution \hat{x} dominates the solution \widetilde{x}): why ?
- Definition (1), *dominance* → in a decision problem with m objectives (to be maximized) max f₁(x), ..., max f_m(x), a solution x dominates a solution y if f₁(x) ≥ f₁(y), ..., f_m(x) ≥ f_m(y), that is the solution x obtains better (or equivalent) results with respect to the solution y, for all the objectives.
- Definition (2), *efficient solution* → a solution x non dominated by any other solution is called efficient (or parentian).

Example2 – A sabbatical year

• Professor C. has to decide where going for a sabbatical year

Data are the following:	Rome	Berlin	Selfer a	Moscou	706.
Reward	5	7	10	2	7
University prestige	3	9	4	6	5
Quality of life	10	4	5	3	3

- Qualitative scales, converted in numerical [0, 10] ones
- Search for the best choice, between the 5 alternatives
- A multi-criteria (discrete set of options) decision problem

More about dominance

- In this context it is still valid the concept of dominance ?
- There are 2 dominated solutions
 3 efficient (non dominated) solutions
- If ithe data are correct and if the teacher is rational, he must choose only between → Rome – Berlin – Geneva
- So he has reduced the options, but he doesn't already chosen the final solution
- What option ? It depends on the importance that the teacher acknowledges to the various criteria: economics, working place, environment
- The preference structure of the DM could be very complex; but in the simpler case it is a vector with dimension equal to the number of criteria (3 in this case)

Common & different features

- Commun elements:
 - deterministic problems (all the data are known)
 - multi objective/criteria _____ 2 in the case of incineretor
 - 3 in the case of sabbatical

- only one DM
- Decision problems \rightarrow 1/m/d (1 dec.maker / m criteria / det. info)
- Different elements:
 - continuous problema with ∞ solutions (MODM),
 discrete problem with only 5 alternatives (MCDM)
 - in one case (incineretor) we have done only definitions, in the other (sabbatical) we obtained the efficient solutions
- MODM (or MCDM) \rightarrow trade-off \rightarrow subjectivity

POLITECNICO DI MILANO

Three phases of the choice

• Phase 1 \rightarrow Data analysis

- the objectives of the decision maker are measured by functions
- each function shows the value of an indicator
- each indicator has his own unit
- to compare a common scale is needed
- the scale is the measure of the utilities perceived by the decision maker

Phase 2 → Efficient solutions

- are there some dominated solutions among the others (infinite or prearranged) ?
- elimination of the dominated solutions
- not dominated or efficient or Pareto solutions (synonyms) remain

Phase 3 → Final choice

- analysis of the preferences structure of the decision maker
- vector of weights (pair comparison)
- weighted sum of the utility of each alternative
- ranking, final choice, sensitivity

Phase 1 – Indicators (and their units of measure)

• Example of the incinerator :

max f ₁ (profit)	\rightarrow	millions €/year
max f ₂ (air quality)	\rightarrow	fraction between 2 values in mg/m ³

- What: to analyze the link between a certain indicator and utility perceived by the decision maker → a function u_k (i_k), where i_k represent the value of the indicator related to the objective-function f_k(x)
- Why: the utility function u_k allows to affirm that the solution \$\hat{x}\$ is better than the solution \$\overline{x}\$ (following that objective or criteria) if u_k(\$\hat{x}\$) > u_k(\$\overline{x}\$); while there is no preference if u_k(\$\hat{x}\$) = u_k(\$\overline{x}\$)
- Examples of utility functions

Estimation of the utility functions

- By the literature
- By an empirical procedure (points):

- 2. To state the shape of the utility function (increasing? decreasing? Non-monotonic?)
- 3. To estimate the function

The mean fraction: step 1

Fix the min & max values

[m²/inhabitant]

© Alberto Colorni

POLITECNICO DI MILANO

Phase 2 – Evaluation matrix

• Discrete case:

Multi Criteria Analysis (MCA)

- a finite number (usually small) of alternatives
- a finite number of criteria (m)
- Evaluation matrix

• Example (sabbatical):

Reward
University prestige
Quality of life

R	В	G	M	I
(5	7	10	2	7)
3	9	4	6	5
10	4	5	3	3)

Values are in the conventional scale

POLITECNICO DI MILANO

Phase 2 – Efficient solutions

Are there cities in which the teacher will not (...) in the future ?
 Phase 2

Search of the dominated alternatives (and then of the efficient alternatives)

• **Dominance** \rightarrow alternative A dominates alternative B if:

 $u_{1A} \ge u_{1B}, u_{2A} \ge u_{2B}, \dots, u_{mA} \ge u_{mB}$ (and if for at least an attribute there is >)

NO

Search of efficient solutions

- comparison between r columns
 - (how many comparisons?)

B dominates M

B dominates T

- **Example** R dominates B, or viceversa ? . R dominates G, or viceversa ?
 - Malassia (as Tanada sa a a
 - M dominates T, or viceversa ?

Efficient solutions are \rightarrow Z R, B

© Alberto Colorni

Phase 3 – The final choice

Weight assignment: list

Weight assignment: hierarchy

POLITECNICO DI MILANO

© Alberto Colorni

Weights on the hierarchy

Pair comparison

- How to obtain the vector of the weights?
 - Thanks to many pair comparison between criteria

1/2 3 c_1 1 6 c_2

• Example:

Responses of the decision maker:

 C_1

- c₂ is 2 times more important than c₁
- c₁ is 3 times more important than c₃
- c_2 is 6 times more important than c_3
- Substitution rate
 - To a worsening of 1 unit as regards c₂ must correspond an improvement of 2 units as regard c₁ so that the DM considers equally (indifferently) the two alternatives

* * *

- The same for the other pair comparisons: c_1 in comparison with c_3 , c_2 in comparison with c_3

Consistency (internal coherence of judgements)

- **Consistent DM:** $a_{ij} = a_{ik} \cdot a_{kj}$
 - In this case each column of the matrix, after normalization, (dividing by the sum of the values of the column), gives the vector of the weights

- Non-consistent DM:
 - An ad hoc procedure of the matrix calculation is needed (calculation of eigenvalue-eigenvector) to obtain the w vector of the weights
- From the vector of the weights:
 - i) weighted sum of the columns of the evaluation matrix
 - ii) calculation of utility u_i (j=1,2,...,r) and ranking of alternatives

Phase 3 – Subjectivity (the wife decision)

- Another possible Decision Maker \rightarrow the wife
- Her structure of preferences

The wifes gives much more importance to the life quality (and much less importance to the university prestige)

• Wife weighted sum and ranking

the choice of the wife would be for Roma

• Conclusion:

Though the use of the same data (evaluation matrix)

different DM can make different choice \rightarrow it depends on the structure of preference (vectors of weight)

The dominated alternatives cannot win given any preference structure

0.4

0.1

0.5

Dependance by weights

The last row (overall utility of each alternative) determine the ranking: the best alternative is A2 (utility = 84/100), followed by A3 and then by A1.

How the final choice depend on the weights ? (i.e. if w₃ changes ...)

Sensitivity

The result depend on the weights w_i (and on something else ...) \rightarrow

$$\max_{j} \mathbf{f}_{i} = \sum_{i=1}^{p} \mathbf{w}_{i} \mathbf{z}_{ij}$$

w
.20
.20

$$3.50 \rightarrow .52 \rightarrow ...$$

 $3.49 \rightarrow .48 \rightarrow ...$

Changing the w_3 value:

$$.50$$
 → $.51$... → $.55$ 79 88 88 if $w_3 > 0.55$ the best is A3
 $.50$ → $.49$... → $.10$ 52 52 43 if $w_3 < 0.10$ the best is A1

Sensitivity and RR (Rank Reversal)

- Goal:
 - To find the variations w_k^+ (increasing) e w_k^- (decreasing) of the weight of the kth criteria w_k within which the choice doesn't change (cioè l'alternativa in 1^a posizione)
- Method:
 - keep all the weights w_i (i=1,...,m; i≠k) except w_k with the values given by the DM and calculate the overall utilities of the alternatives as functions of w_k
 - calculate the values of w_k given which the alternative ranked first keep having the higher utility
- Result:
 - "narrow" range, little changes in the weight w_k

would cause a different choice of the alternative

- "wide" range, big changes in the weight w_k

wouldn't cause a different choice of the alternative

An example of sensitivity

• Does the choice of the professor change, if the weight w_1 change?

 \mathbf{W}_1

0.6 0.1

- Vector of weights (non-normalized)
- Comparison of the utility when w₁ changes

 - − The choice (B) doesn't change for \rightarrow w₁ ≤ 0.967
- Result
 - To modify the final choice, the weight of the reward should be bigger then triple

 W_1

Summary

□ We discussed the decisional problem in a more general frame

□ We saw the **three phases** needed to solve a multi-objectives or a multi-criteria problem, analyzing their own aspects

 ❑ We obtained a different result depending on the DM (the professor or his wife) → subjective evaluation

MultiCriteria Decision Making (MCDM)

Relevant characters of a MCDM problem:

- analyze the model of the specific application as a multi criteria analysis problem
- build utility functions (asking to the DM)
- build the vector of the weights (asking to the DM)
- document the subjectivity in the choice (it can not be removed, only documented);
- be supported by specific software

Test-1

In a multi objectives (criteria) problem:

• the 2 phase is the only one not dependent on the DM true / false

What does it mean to pass from indicators to objectives?

- to correct the results of the measurements
 true / false
- to modify the values of the indicators so that the maximum value
 become 1 and the minimum become 0
 true / false
- to modify the indicators in utility value, in a conventional scale,

i.e. from 0 (worst case) to 1 (best case) true / false

Test-2: sabbatical year

A inequality shows that the utility of Berlin is higher than the one of Genève: which one ?

1
$$7w_1 + 5.8 \ge 2w_1 + 3.9$$

2 $7w_1 + 5.8 \ge 10w_1 + 2.9$
3 $7w_1 + 5.8 \ge 7w_1 + 3.3$

Test-3: Pair comparison

The following matrix of pair comparisons is consistent.

 $\begin{pmatrix} 1 & 2 & 5 \\ 1/2 & 1 & 4 \\ 1/5 & 1/4 & 1 \end{pmatrix}$ true / false

Test-4: Sensitivity

The sensitivity analysis consists in changing simultaneously all the weights in a multi criteria problem to check if some dominated solutions become efficient.

true / false