

Methods and Models for Decision Making

Alberto Colorni – Dipartimento INDACO, Politecnico di Milano Alessandro Lué – Consorzio Poliedra, Politecnico di Milano

MMDM – Lesson 7

God in 7 steps:

- Rating problems: a logical path
- Def. of indicators, weights, categories, profiles
- Comparison between objects and profiles
- Outranking (when K s Pij) & thresolds
- Examples of rating
- Winning coalitions

Index:

- (1a) Introduction
- (2a) Mental models
- (3a) Classification
- (4) Ranking-2, multicriteria
- (6a) Rating problems
- (7a) Group decision
- (7c) Conclusions

- (1b) Tools & frame
- (2b) Design & decision
- (3b) Ranking-1, risk analysis
- (5) A tentative case
- (6b) Seminar M. Henig
- (7b) Research topics

Summary

- 1. Uninominal voting vs voting-by-ranking
- 2. The Arrow's theorem
- 3. Problems of the uninominal voting
- 4. Two voting-by-ranking systems: Condorcet and Borda
- 5. The Colorni award with your rankings
- 6. A general framework for negotiation: Maastricht & Distillation approaches
- 7. Possible research topics
- 8. Conclusions of the course

The frame

- N decision makers, each with his/her ranking
- The "social" choice \rightarrow a shared (collective) decision
- Two general ways:
 - > (i) uninominal voting
 - > (ii) voting-by-ranking
 - Non-existence of a "sure" method (Arrow's theorem)
 - Ranking \rightarrow pro and con of Condorcet
 - Ranking \rightarrow pro and con of Borda

Arrow's impossibility theorem (1)

We consider 5 properties that we assume to be <u>reasonable requirements</u> of a fair voting method:

•Anonymity \rightarrow No voter should be favored to others; if two voters switch their ranking, the collective ranking should remain the same.

- •Neutrality \rightarrow No candidate should be favored to others; if two candidates switch their positions (name), they should switch positions also in the ranking.
- •Monotonicity \rightarrow If the ranking of a candidate is improved by a voter, its position in the collective ranking can only improve.

•Consistency \rightarrow If voters are split into two disjoint sets, S and T, and both the aggregation of voters in S and the aggregation of voters in T prefer a to b, also the aggregation of all voters should prefer a to b.

•Sincerity \rightarrow Voters vote for the candidates they prefer; there are not strategic behaviors of the voters.

If the decision-making body has at least two voters (decision-makers) and at least three alternatives (candidates or options) to decide among,

then

it is impossible to design a social welfare function (that is a collective ranking) that satisfies all these properties at once

Kenneth Arrow (1972 Nobel Prize in Economics)

Uninominal voting

Voto uninominale : gli inconvenienti . Dittatura d. maggioranza (51 voti con at b> ... tort & sarebbe più 19 voti con 21 b> ... tort & accettabile b (compromesso ?) · Non rispetto d. maggioranza (10 voti con 2 > b > c | la maggioranza ritiene 6 voti con 6 > c > a | che a sia il peggiore 5 voti con C > b > a | (ballottaggio?)

Voting-by-ranking systems: an example

- 5 decision-makers
- 4 alternatives \rightarrow A, B, C, D

Condorcet (1)

- Each decision-maker expresses her own ranking of the alternatives
- The alternatives are pairwise compared considering the number of decisionmakers that prefer one alternative over another
- The alternative that prevails in all the comparisons is chosen

Condorcet (2)

N° of decision-makers that prefers the alternative in the row in respect to the alternative on the column _____

Condorcet (3)

N° of decision-makers that prefers the alternative in the row in respect to the alternative on the column _____

Condorcet (4)

Condorcet (5)

- 3 decision-makers
- 4 alternatives: A, B, C e D

Rankings:

- Two DMs: B A C D
- One DM: A C D B

	Α	В	С	D
A	-	1	3	3
В	2	-	2	2
С	0	1	-	3
D	0	1	0	-

The method is not compensatory

B is chosen, although is really a bad alternative for one decision-maker

Borda (1)

- Each decision-maker expresses her ranking of the alternatives
- How many times (decision-makers) each alternative takes a particular position ?
- A score is assigned to each position
- For each alternative, the scores are summed
- The alternative with the overall "best" score is chosen

Borda (2)

N° of decision-makers for which the alternative (row) is in the ranking position (column)

Borda (2)

N° of decision-makers for which the alternative (row) is in the ranking position (column)

From the ranking position to the score a subjective scale score = position score = position 2 other scales ... 3th pos. \Rightarrow 3 points 3th pos. \Rightarrow 9 points

Borda (4)

POLITECNICO DI MILANO

Borda (5): independence of irrelevant alternatives

	Α	В	С	D
Voter 1	1°	2°	3°	4°
Voter 2	4°	1°	2°	3'
Voter 3	3°	4°	1°	22
Voter 4	1°	2°	3°	2.0
Voter 5	4°	1°	2°	B°
Voter 6	3°	4°	1°	2
Voter 7	1°	2°	3°	4°

4 candidates (A, B, C e D)

Score = inverse of the position

 $(1^{\circ} \rightarrow 4 \text{ points}, 2^{\circ} \rightarrow 3 \text{ points}, 3^{\circ} \rightarrow 2 \text{ points}, 4^{\circ} \rightarrow 1 \text{ points})$

Vatan 1	
voter 1	
Voter 2	
Voter 3	
Voter 4	
Voter 5	
Voter 6	
Voter 7	

Α	В	C	D
4	3	2	1
1	4	3	2
2	1	4	3
4	3	2	1
1	4	3	2
2	1	4	3
4	3	2	1

Total score

Borda (5): independence of irrelevant alternatives

	A	В	С
Voter 1	1°	2°	3°
Voter 2	3°	1°	2°
Voter 3	2°	3°	1°
Voter 4	1°	2°	3°
Voter 5	3°	1°	2°
Voter 6	2°	3°	1°
Voter 7	1°	2°	3°

3 candidati (A, B, e C) Score = inverse of the position $(1^{\circ} \rightarrow 3 \text{ points}, 2^{\circ} \rightarrow 2 \text{ points} 3^{\circ} \rightarrow 1 \text{ points})$

Voter 1
Voter 2
Voter 3
Voter 4
Voter 5
Voter 6
Voter 7

Α	В	С	
3	2	1	
1	3	2	
2	1	3	
3	2	1	
1	3	2	
2	1	3	
3	2	1	

Total score

Borda or Condorcet?

Borda or Condorcet?

© Alberto Colorni

From $M_3(m,n,k)$ to $M_1(n)$: two ways

23

The "Maastricht procedure" for the MAUT

C possible conflict

The "Distillation procedure" for the MAUT

C possible conflict

Research topics

- How to decide **collectively how to structure** the problem (identification of the criteria, alternatives, ...)
- The identification of a **reasonable** number of alternatives as a combination of several actions
- The **uncertainty** in a group multicriteria problem
- Application of a group multicritieria analysis to a real case study regarding the field you are studying
- You propose ...