

Alberto Colorni - Dipartimento INDACO, Politecnico di Milano
Alessandro Lué - Consorzio Poliedra, Politecnico di Milano

God in 7 steps:

- Rating problems: a logical path
- Def. of indicators, weights, categories, profiles
- Comparison between objects and profiles
- Outranking (when K s Pij) \& thresolds
- Examples of rating
- Winning coalitions

Index:

- (1a) Introduction
- (2a) Mental models
- (3a) Classification
- (4) Ranking-2, multicriteria
- (6a) Rating problems
- (7a) Group decision
- (7c) Conclusions
(1b) Tools \& frame
(2b) Design \& decision
(3b) Ranking-1, risk analysis
(5) A tentative case
(6b) Seminar M. Henig
(7b) Research topics

Summary

1. Uninominal voting vs voting-by-ranking
2. The Arrow's theorem
3. Problems of the uninominal voting
4. Two voting-by-ranking systems: Condorcet and Borda
5. The Colorni award with your rankings
6. A general framework for negotiation:

Maastricht \& Distillation approaches
7. Possible research topics
8. Conclusions of the course

The frame

- N decision makers, each with his/her ranking
- The "social" choice \rightarrow a shared (collective) decision
- Two general ways:
$>$ (i) uninominal voting
$>$ (ii) voting-by-ranking
- Non-existence of a "sure" method (Arrow's theorem)
- Ranking \rightarrow pro and con of Condorcet
- Ranking \rightarrow pro and con of Borda

Arrow's impossibility theorem (1)

We consider 5 properties that we assume to be reasonable requirements of a fair voting method:
-Anonymity \rightarrow No voter should be favored to others; if two voters switch their ranking, the collective ranking should remain the same.
-Neutrality \rightarrow No candidate should be favored to others; if two candidates switch their positions (name), they should switch positions also in the ranking.
-Monotonicity \rightarrow If the ranking of a candidate is improved by a voter, its position in the collective ranking can only improve.
-Consistency \rightarrow If voters are split into two disjoint sets, S and T, and both the aggregation of voters in S and the aggregation of voters in T prefer a to b, also the aggregation of all voters should prefer a to b.
-Sincerity \rightarrow Voters vote for the candidates they prefer; there are not strategic behaviors of the voters.

Arrow's impossibility theorem (2)

If the decision-making body has at least two voters (decision-makers) and at least three alternatives (candidates or options) to decide among, then
it is impossible to design a social welfare function (that is a collective ranking) that satisfies all these properties at once

Kenneth Arrow (1972 Nobel Prize in Economics)

Voto uninominale: gli inconvenientí

- Dittatura d. magpiopanza
sarebbe biac
2ceetribile b
(compromesso?)
- Non rispetto d.maggioranza

$$
\rightarrow\left\{\begin{array}{llll}
10 & \text { vali con } & {[2]} & b>c \\
6 & \text { voli } & \text { con } & {[B] c+2} \\
5 & \text { voli } & \text { con } & {[c] b>2}
\end{array}\right\}
$$

12 maggioranaz rifieme che a sid il peqgiore (ballatraggio?)

- Manipolazione per separabilita

in una инiea eifcoseriz.
a sareble eliminato !! (eoerenza?)

Voting-by-ranking systems: an example

- 5 decision-makers
- 4 alternatives \rightarrow A, B, C, D

	1° pos	2° pos	3° pos	4° pos
	DM	D	C	B
	A			
	D	C	A	B
	C	A	B	D

Condorcet (1)

- Each decision-maker expresses her own ranking of the alternatives
- The alternatives are pairwise compared considering the number of decisionmakers that prefer one alternative over another
- The alternative that prevails in all the comparisons is chosen

Condorcet (2)

N° of decision-makers that prefers the alternative in the row in respect to the alternative on the column

Condorcet (3)

N° of decision-makers that prefers the alternative in the row in respect to the alternative on the column \qquad
\qquad

Condorcet (4)

In red: the alternatives that prevails in the single pairwise comparisons

Condorcet (5)

- 3 decision-makers
- 4 alternatives: A, B, C e D

Rankings:

- Two DMs: B A C D
- One DM: ACDB

	A	B	C	D
A	-	1	3	3
B	2	-	2	2
C	0	1	-	3
D	0	1	0	-

The method is not compensatory
B is chosen, although is really
a bad alternative for one decision-maker

Borda (1)

- Each decision-maker expresses her ranking of the alternatives
- How many times (decision-makers) each alternative takes a particular position?
- A score is assigned to each position
- For each alternative, the scores are summed
- The alternative with the overall "best" score is chosen

Borda (2)

N° of decision-makers for which the alternative (row) is in the ranking position (column)

Borda (2)

N° of decision-makers for which the alternative (row) is in the ranking position (column)

	1°	2°	3°	4°
A		1	2	2
B			3	2
C	1	4		
D	4			1

Borda (3)

From the ranking position to the score

a subjective scale

score $=$ position
3th pos. $\Rightarrow 3$ points

score $=$ position ${ }^{2}$
3th pos. $\Rightarrow 9$ points
other scales ...

Borda (4)

Borda (5): independence of irrelevant alternatives

	A	B	C	D
Voter 1	1°	2°	3°	4°
Voter 2	4°	1°	2°	3
Voter 3	3°	4°	1°	
Voter 4	1°	2°	3°	
Voter 5	4°	1°	2°	
Voter 6	3°	4°	1°	2
Voter 7	1°	2°	3°	4°

4 candidates (A, B, C e D)
Score $=$ inverse of the position
($1^{\circ} \rightarrow 4$ points, $2^{\circ} \rightarrow 3$ points, $3^{\circ} \rightarrow 2$ points, $4^{\circ} \rightarrow 1$ points)

	A	B	C	D
Voter 1	4	3	2	1
Voter 2	1	4	3	2
Voter 3	2	1	4	3
Voter 4	4	3	2	1
Voter 5	1	4	3	2
Voter 6	2	1	4	3
Voter 7	4	3	2	1
Total score	18	19	20	13

Borda (5): independence of irrelevant alternatives

	A	B	C
Voter 1	1°	2°	3°
Voter 2	3°	1°	2°
Voter 3	2°	3°	1°
Voter 4	1°	2°	3°
Voter 5	3°	1°	2°
Voter 6	2°	3°	1°
Voter 7	1°	2°	3°

3 candidati (A, B, e C)
Score $=$ inverse of the position
($1^{\circ} \rightarrow 3$ points, $2^{\circ} \rightarrow 2$ points $3^{\circ} \rightarrow 1$ points)

	A	B	C	
Voter 1	3	2	1	
Voter 2	1	3	2	
Voter 3	2	1	3	
Voter 4	3	2	1	
Voter 5	1	3	2	
Voter 6	2	1	3	
Voter 7	3	2	1	

Borda or Condorcet?

Borda or Condorcet?

From $M_{3}(m, n, k)$ to $M_{1}(n)$: two ways
$m \rightarrow$ criteria
$\mathrm{n} \rightarrow$ alternatives
$\mathrm{k} \rightarrow$ dec. makers
$M_{2}^{\prime}(m, n)$

The "Maastricht procedure" for the MAUT

C possible conflict

The "Distillation procedure" for the MAUT

Research topics

- How to decide collectively how to structure the problem (identification of the criteria, alternatives, ...)
- The identification of a reasonable number of alternatives as a combination of several actions
- The uncertainty in a group multicriteria problem
- Application of a group multicritieria analysis to a real case study regarding the field you are studying
- You propose ...

