International Doctoral School Algorithmic Decision Theory: MCDA and MOO

Lecture 2: Multiobjective Linear Programming

Matthias Ehrgott

Department of Engineering Science, The University of Auckland, New Zealand Laboratoire d'Informatique de Nantes Atlantique, CNRS, Université de Nantes, France

MCDA and MOO, Han sur Lesse, September 17 - 21 2007

Overview

- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

Overview

- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- 2 Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- 3 Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

- Variables $x \in \mathbb{R}^n$
- Objective function Cx where $C \in \mathbb{R}^{p \times n}$
- Constraints Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min \left\{ Cx : Ax = b, x \ge 0 \right\} \tag{1}$$

$$X = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$$

$$Y = \{Cx : x \in X\}$$

- Variables $x \in \mathbb{R}^n$
- Objective function Cx where $C \in \mathbb{R}^{p \times n}$
- Constraints Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min\left\{Cx:Ax=b,x\geqq0\right\}\tag{1}$$

$$X = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$$

$$Y = \{Cx : x \in X\}$$

- Variables $x \in \mathbb{R}^n$
- Objective function Cx where $C \in \mathbb{R}^{p \times n}$
- Constraints Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min \left\{ Cx : Ax = b, x \ge 0 \right\} \tag{1}$$

$$X = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$$

$$Y = \{Cx : x \in X\}$$

- Variables $x \in \mathbb{R}^n$
- Objective function Cx where $C \in \mathbb{R}^{p \times n}$
- Constraints Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$\min \left\{ Cx : Ax = b, x \ge 0 \right\} \tag{1}$$

$$X = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$$

$$Y = \{Cx : x \in X\}$$

Example

$$\min \begin{pmatrix} 3x_1 + x_2 \\ -x_1 - 2x_2 \end{pmatrix}$$
subject to $x_2 \leq 3$

$$3x_1 - x_2 \leq 6$$

$$x \geq 0$$

$$C = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \quad A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

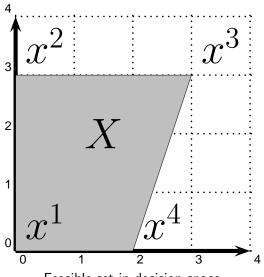
Example

$$\min \begin{pmatrix} 3x_1 + x_2 \\ -x_1 - 2x_2 \end{pmatrix}$$
subject to $x_2 \leq 3$

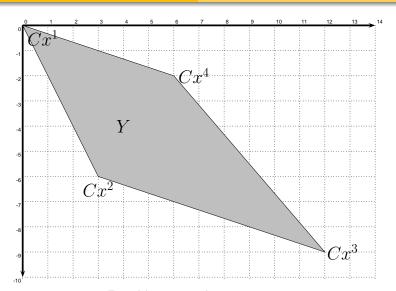
$$3x_1 - x_2 \leq 6$$

$$x \geq 0$$

$$C = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \quad A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$



Feasible set in decision space



Feasible set in objective space

- \hat{x} is called weakly efficient if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called weakly nondominated.
- \hat{x} is called efficient if there is no $x \in X$ such that $Cx \le C\hat{x}$; $\hat{y} = C\hat{x}$ is called nondominated.
- \hat{x} is called properly efficient if it is efficient and if there exists a real number M>0 such that for all i and x with $c_i^Tx< c_i^T\hat{x}$ there is an index j and M>0 such that $c_j^Tx> c_j^T\hat{x}$ and

$$\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \le M.$$

- \hat{x} is called weakly efficient if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called weakly nondominated.
- \hat{x} is called efficient if there is no $x \in X$ such that $Cx \le C\hat{x}$; $\hat{y} = C\hat{x}$ is called nondominated.
- \hat{x} is called properly efficient if it is efficient and if there exists a real number M>0 such that for all i and x with $c_i^Tx< c_i^T\hat{x}$ there is an index j and M>0 such that $c_j^Tx> c_j^T\hat{x}$ and

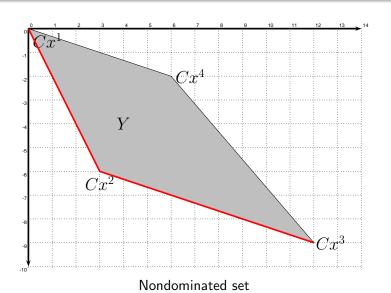
$$\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \le M.$$

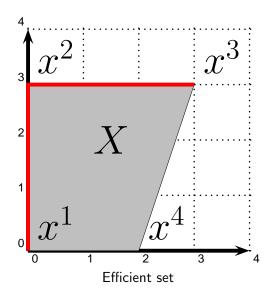
- \hat{x} is called weakly efficient if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called weakly nondominated.
- \hat{x} is called efficient if there is no $x \in X$ such that $Cx \le C\hat{x}$; $\hat{y} = C\hat{x}$ is called nondominated.
- \hat{x} is called properly efficient if it is efficient and if there exists a real number M>0 such that for all i and x with $c_i^Tx< c_i^T\hat{x}$ there is an index j and M>0 such that $c_i^Tx>c_j^T\hat{x}$ and

$$\frac{c_i^T \hat{x} - c_i^T x}{c_j^T x - c_j^T \hat{x}} \le M.$$

- \hat{x} is called weakly efficient if there is no $x \in X$ such that $Cx < C\hat{x}$; $\hat{y} = C\hat{x}$ is called weakly nondominated.
- \hat{x} is called efficient if there is no $x \in X$ such that $Cx \le C\hat{x}$; $\hat{y} = C\hat{x}$ is called nondominated.
- \hat{x} is called properly efficient if it is efficient and if there exists a real number M>0 such that for all i and x with $c_i^Tx< c_i^T\hat{x}$ there is an index j and M>0 such that $c_j^Tx>c_j^T\hat{x}$ and

$$\frac{c_i^T \hat{x} - c_i^T x}{c_i^T x - c_i^T \hat{x}} \le M.$$





Overview

- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- 2 Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- 3 Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

$$LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$
 subject to $Ax = b$ $x \ge 0$

- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method
- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient
- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient
- Converse also true, because Y convex

$$LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$

$$\text{subject to } Ax = b$$

$$x \ge 0$$

- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method
- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient
- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient
- Converse also true, because Y convex

$$LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$

$$\text{subject to } Ax = b$$

$$x \ge 0$$

- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method
- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient
- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient
- Converse also true, because Y convex

$$LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$

$$\text{subject to } Ax = b$$

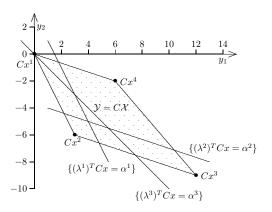
$$x \ge 0$$

- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method
- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient
- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient
- Converse also true, because Y convex

$$LP(\lambda) \quad \min \sum_{k=1}^{p} \lambda_k c_k^T x = \min \lambda^T C x$$
 subject to $Ax = b$ $x \ge 0$

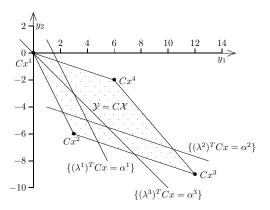
- $LP(\lambda)$ is a linear programme that can be solved by the Simplex method
- If $\lambda > 0$ then optimal solution of $LP(\lambda)$ is properly efficient
- If $\lambda \geq 0$ then optimal solution of $LP(\lambda)$ is weakly efficient
- Converse also true, because Y convex

Illustration in objective space



$$\lambda^1 = (2,1), \lambda^2 = (1,3), \lambda^3 = (1,1)$$

Illustration in objective space



$$\lambda^1 = (2,1), \lambda^2 = (1,3), \lambda^3 = (1,1)$$

- $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
- Since y = Cx and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
- When the line only touches Y nondominated points are found
- Nondominated points Y_N are on the boundary of Y
- Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ

- $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
- Since y = Cx and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
- When the line only touches Y nondominated points are found
- Nondominated points Y_N are on the boundary of Y
- Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ

- $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
- Since y = Cx and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
- When the line only touches Y nondominated points are found
- Nondominated points Y_N are on the boundary of Y
- Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ

- $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
- Since y = Cx and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
- When the line only touches Y nondominated points are found
- Nondominated points Y_N are on the boundary of Y
- Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ

- $y \in \mathbb{R}^p$ satisfying $\lambda^T y = \alpha$ define a straight line (hyperplane)
- Since y = Cx and $\lambda^T Cx$ is minimised, we push the line towards the origin (left and down)
- When the line only touches Y nondominated points are found
- Nondominated points Y_N are on the boundary of Y
- Y is convex polyhedron and has finite number of facets. Y_N consists of finitely many facets of Y. The normal of the facet can serve as weight vector λ

Question: Can all efficient solutions be found using weighted sums?

If $\hat{x} \in X$ is efficient, does there exist $\lambda > 0$ such that \hat{x} is optimal solution to

$$\min\{\lambda^T Cx : Ax = b, x \ge 0\}?$$

Lemma

A feasible solution $x^0 \in X$ is efficient if and only if the linear programme

max
$$e'z$$

subject to $Ax = b$
 $Cx + Iz = Cx^0$
 $x, z \ge 0$, (2)

where $e^T = (1, ..., 1) \in \mathbb{R}^p$ and I is the $p \times p$ identity matrix, has an optimal solution (\hat{x}, \hat{z}) with $\hat{z} = 0$.

Question: Can all efficient solutions be found using weighted sums? If $\hat{x} \in X$ is efficient, does there exist $\lambda > 0$ such that \hat{x} is optimal solution to

$$\min\{\lambda^T Cx : Ax = b, x \ge 0\}?$$

Lemma

A feasible solution $x^0 \in X$ is efficient if and only if the linear programme

max
$$e'z$$

subject to $Ax = b$
 $Cx + Iz = Cx^0$
 $x, z \ge 0$, (2)

where $e^T = (1, ..., 1) \in \mathbb{R}^p$ and I is the $p \times p$ identity matrix, has an optimal solution (\hat{x}, \hat{z}) with $\hat{z} = 0$.

Question: Can all efficient solutions be found using weighted sums? If $\hat{x} \in X$ is efficient, does there exist $\lambda > 0$ such that \hat{x} is optimal solution to

$$\min\{\lambda^T Cx : Ax = b, x \ge 0\}?$$

Lemma

A feasible solution $x^0 \in X$ is efficient if and only if the linear programme

max
$$e^{T}z$$

subject to $Ax = b$
 $Cx + Iz = Cx^{0}$
 $x, z \ge 0$, (2)

where $e^T = (1, ..., 1) \in \mathbb{R}^p$ and I is the $p \times p$ identity matrix, has an optimal solution (\hat{x}, \hat{z}) with $\hat{z} = 0$.

Proof.

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

Proof.

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

Proof.

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

- LP is always feasible with $x = x^0, z = 0$ (and value 0)
- Let (\hat{x}, \hat{z}) be optimal solution
- If $\hat{z} = 0$ then $\hat{z} = Cx^0 C\hat{x} = 0 \Rightarrow Cx^0 = C\hat{x}$
- There is no $x \in X$ such that $Cx \le Cx^0$ because $(x, Cx^0 Cx)$ would be better solution $\Rightarrow x^0$ efficient
- If \hat{x}^0 efficient there is no $x \in X$ with $Cx \le Cx^0$
- \Rightarrow there is no z with $z = Cx^0 Cx \ge 0$
- $\bullet \Rightarrow \max e^T z \leq 0 \Rightarrow \max e^T z = 0$

Lemma

A feasible solution $x^0 \in X$ is efficient if and only if the linear programme

min
$$u^{T}b + w^{T}Cx^{0}$$

subject to $u^{T}A + w^{T}C \ge 0$
 $w \ge e$
 $u \in \mathbb{R}^{m}$

$$(3)$$

has an optimal solution (\hat{u}, \hat{w}) with $\hat{u}^T b + \hat{w}^T C x^0 = 0$.

Proof

The LP (3) is the dual of the LP (2)

Lemma

A feasible solution $x^0 \in X$ is efficient if and only if the linear programme

min
$$u^{T}b + w^{T}Cx^{0}$$

subject to $u^{T}A + w^{T}C \ge 0$
 $w \ge e$
 $u \in \mathbb{R}^{m}$

$$(3)$$

has an optimal solution (\hat{u}, \hat{w}) with $\hat{u}^T b + \hat{w}^T C x^0 = 0$.

Proof.

The LP (3) is the dual of the LP (2)

Theorem

A feasible solution $x^0 \in X$ is an efficient solution of the MOLP (1) if and only if there exists a $\lambda \in \mathbb{R}^p_>$ such that

$$\lambda^T C x^0 \le \lambda^T C x \tag{4}$$

for all $x \in X$.

Note: We already know that optimal solutions of weighted sum problems are efficient

Theorem

A feasible solution $x^0 \in X$ is an efficient solution of the MOLP (1) if and only if there exists a $\lambda \in \mathbb{R}^p_>$ such that

$$\lambda^T C x^0 \le \lambda^T C x \tag{4}$$

for all $x \in X$.

Note: We already know that optimal solutions of weighted sum problems are efficient

- Let $x^0 \in X_E$
- By Lemma 4 LP (3) has an optimal solution (\hat{u}, \hat{w}) such that

$$\hat{u}^T b = -\hat{w}^T C x^0 \tag{5}$$

• \hat{u} is also an optimal solution of the LP

$$\min\left\{u^{T}b: u^{T}A \geqq -\hat{w}^{T}C\right\},\tag{6}$$

which is (3) with $w = \hat{w}$ fixed

 \bullet \Rightarrow There is an optimal solution of the dual of (6)

$$\max\left\{-\hat{w}^{T}Cx:Ax=b,\ x\geqq0\right\} \tag{7}$$

- Let $x^0 \in X_E$
- By Lemma 4 LP (3) has an optimal solution (\hat{u}, \hat{w}) such that

$$\hat{u}^T b = -\hat{w}^T C x^0 \tag{5}$$

• \hat{u} is also an optimal solution of the LP

$$\min\left\{u^{T}b: u^{T}A \geqq -\hat{w}^{T}C\right\},\tag{6}$$

which is (3) with $w = \hat{w}$ fixed

 \bullet \Rightarrow There is an optimal solution of the dual of (6)

$$\max\left\{-\hat{w}^T Cx : Ax = b, \ x \ge 0\right\} \tag{7}$$

- Let $x^0 \in X_E$
- By Lemma 4 LP (3) has an optimal solution (\hat{u}, \hat{w}) such that

$$\hat{u}^T b = -\hat{w}^T C x^0 \tag{5}$$

• \hat{u} is also an optimal solution of the LP

$$\min\left\{u^Tb:u^TA \ge -\hat{w}^TC\right\},\tag{6}$$

which is (3) with $w = \hat{w}$ fixed

ullet \Rightarrow There is an optimal solution of the dual of (6)

$$\max\left\{-\hat{w}^T Cx : Ax = b, \ x \ge 0\right\} \tag{7}$$

- Let $x^0 \in X_E$
- By Lemma 4 LP (3) has an optimal solution (\hat{u}, \hat{w}) such that

$$\hat{u}^T b = -\hat{w}^T C x^0 \tag{5}$$

• \hat{u} is also an optimal solution of the LP

$$\min\left\{u^Tb:u^TA \ge -\hat{w}^TC\right\},\tag{6}$$

which is (3) with $w = \hat{w}$ fixed

 \bullet \Rightarrow There is an optimal solution of the dual of (6)

$$\max\left\{-\hat{w}^T Cx : Ax = b, \ x \ge 0\right\} \tag{7}$$

- By weak duality $u^T b \ge -\hat{w}^T Cx$ for all feasible solutions u of (6) and for all feasible solutions x of (7)
- We already know that $\hat{u}^T b = -\hat{w}^T C x^0$ from (5)
- $\Rightarrow x^0$ is an optimal solution of (7)
- Note that (7) is equivalent to

$$\min \left\{ \hat{w}^T Cx : Ax = b, \ x \ge 0 \right\}$$

- By weak duality $u^T b \ge -\hat{w}^T Cx$ for all feasible solutions u of (6) and for all feasible solutions x of (7)
- We already know that $\hat{u}^T b = -\hat{w}^T C x^0$ from (5)
- $\Rightarrow x^0$ is an optimal solution of (7)
- Note that (7) is equivalent to

$$\min\left\{\hat{w}^T Cx : Ax = b, \ x \ge 0\right\}$$

- By weak duality $u^T b \ge -\hat{w}^T Cx$ for all feasible solutions u of (6) and for all feasible solutions x of (7)
- We already know that $\hat{u}^T b = -\hat{w}^T C x^0$ from (5)
- $\Rightarrow x^0$ is an optimal solution of (7)
- Note that (7) is equivalent to

$$\min\left\{\hat{w}^T Cx : Ax = b, \ x \ge 0\right\}$$

- By weak duality $u^T b \ge -\hat{w}^T Cx$ for all feasible solutions u of (6) and for all feasible solutions x of (7)
- We already know that $\hat{u}^T b = -\hat{w}^T C x^0$ from (5)
- $\Rightarrow x^0$ is an optimal solution of (7)
- Note that (7) is equivalent to

$$\min \left\{ \hat{w}^T Cx : Ax = b, \ x \ge 0 \right\}$$

Overview

- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- 3 Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

Modification of the Simplex algorithm for LPs with two objectives

min
$$((c^1)^T x, (c^2)^T x)$$

subject to $Ax = b$
 $x \ge 0$ (8)

We can find all efficient solutions by solving the parametric LP

$$\min \left\{ \lambda_1(c^1)^T x + \lambda_2(c^2)^T x : Ax = b, x \ge 0 \right\}$$

Modification of the Simplex algorithm for LPs with two objectives

min
$$((c^1)^T x, (c^2)^T x)$$

subject to $Ax = b$
 $x \ge 0$ (8)

We can find all efficient solutions by solving the parametric LP

$$\min \left\{ \lambda_1(c^1)^T x + \lambda_2(c^2)^T x : Ax = b, x \ge 0 \right\}$$

for all
$$\lambda = (\lambda_1, \lambda_2) > 0$$

• We can divide the objective by $\lambda_1+\lambda_2$ without changing the optima, i.e. $\lambda_1'=\lambda_1/(\lambda_1+\lambda_2)$, $\lambda_2'=\lambda_2/(\lambda_1+\lambda_2)$ and $\lambda_1'+\lambda_2'=1$ or

$$\lambda_2' = 1 - \lambda_1'$$

• LPs with one parameter $0 \le \lambda \le 1$ and parametric objective

$$c(\lambda) := \lambda c^{1} + (1 - \lambda)c^{2}$$

$$\min \left\{ c(\lambda)^{T} x : Ax = b, x \ge 0 \right\}$$
(9)

• We can divide the objective by $\lambda_1+\lambda_2$ without changing the optima, i.e. $\lambda_1'=\lambda_1/(\lambda_1+\lambda_2)$, $\lambda_2'=\lambda_2/(\lambda_1+\lambda_2)$ and $\lambda_1'+\lambda_2'=1$ or

$$\lambda_2' = 1 - \lambda_1'$$

ullet LPs with one parameter $0 \le \lambda \le 1$ and parametric objective

$$c(\lambda) := \lambda c^{1} + (1 - \lambda)c^{2}$$

$$\min \left\{ c(\lambda)^{T} x : Ax = b, x \ge 0 \right\}$$
(9)

\bullet Let \mathcal{B} be a feasible basis

- Recall reduced cost $\bar{c}_{\mathcal{N}} = c_{\mathcal{N}} c_{\mathcal{B}}^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda)\bar{c}^2 \tag{10}$$

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$

- ullet Let ${\cal B}$ be a feasible basis
- Recall reduced cost $\bar{c}_{\mathcal{N}} = c_{\mathcal{N}} c_{\mathcal{B}}^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda)\bar{c}^2$$
(10)

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$

- \bullet Let \mathcal{B} be a feasible basis
- Recall reduced cost $\bar{c}_{\mathcal{N}} = c_{\mathcal{N}} c_{\mathcal{B}}^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda)\bar{c}^2 \tag{10}$$

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$

- \bullet Let \mathcal{B} be a feasible basis
- Recall reduced cost $\bar{c}_{\mathcal{N}} = c_{\mathcal{N}} c_{\mathcal{B}}^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda)\bar{c}^2 \tag{10}$$

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$

- Let \mathcal{B} be a feasible basis
- Recall reduced cost $\bar{c}_{\mathcal{N}} = c_{\mathcal{N}} c_{\mathcal{B}}^T B^{-1} N$
- Reduced cost for the parametric LP

$$\bar{c}(\lambda) = \lambda \bar{c}^1 + (1 - \lambda)\bar{c}^2 \tag{10}$$

- Suppose $\hat{\mathcal{B}}$ is an optimal basis of (9) for some $\hat{\lambda}$
- $\bar{c}(\hat{\lambda}) \geq 0$

Case 1: $\bar{c}^2 \ge 0$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1:
$$\bar{c}^2 \ge 0$$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

Case 2: There is at least one $i \in \mathcal{N}$ with $\bar{c}_i^2 < 0$

$$ullet$$
 \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$

•
$$\lambda \bar{c}_i^1 + (1 - \lambda)\bar{c}_i^2 = 0$$

•
$$\lambda(\bar{c}_i^1 - \bar{c}_i^2) + \bar{c}_i^2 = 0$$

• Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1:
$$\bar{c}^2 \ge 0$$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- ullet $\hat{\mathcal{B}}$ is optimal basis for all $0 \leq \lambda \leq \hat{\lambda}$

- ullet \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1: $\bar{c}^2 \ge 0$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- \Rightarrow there is $\lambda < \hat{\lambda}$ such that $\bar{c}(\lambda)_i = 0$
- $\lambda \bar{c}_i^1 + (1 \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1: $\bar{c}^2 \ge 0$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- ullet \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- ullet Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1:
$$\bar{c}^2 \ge 0$$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- ullet \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$
- $\bullet \ \lambda \bar{c}_i^1 + (1 \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1: $\bar{c}^2 \ge 0$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- ullet \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$
- $\bullet \ \lambda \bar{c}_i^1 + (1 \lambda)\bar{c}_i^2 = 0$

- Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1:
$$\bar{c}^2 \ge 0$$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- ullet \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$
- $\bullet \ \lambda \bar{c}_i^1 + (1-\lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 \bar{c}_i^2}$
- Below this value $\hat{\mathcal{B}}$ is not optimal

Case 1: $\bar{c}^2 \ge 0$

- From (10) $\bar{c}(\lambda) \ge 0$ for all $\lambda < \hat{\lambda}$
- $\hat{\mathcal{B}}$ is optimal basis for all $0 \le \lambda \le \hat{\lambda}$

- ullet \Rightarrow there is $\lambda < \hat{\lambda}$ such that $ar{c}(\lambda)_i = 0$
- $\bullet \ \lambda \bar{c}_i^1 + (1 \lambda)\bar{c}_i^2 = 0$
- $\lambda(\bar{c}_i^1 \bar{c}_i^2) + \bar{c}_i^2 = 0$
- $\lambda = \frac{-\bar{c}_i^2}{\bar{c}_i^1 \bar{c}_i^2}$
- ullet Below this value $\hat{\mathcal{B}}$ is not optimal

$$\bullet \ \mathcal{I} = \{i \in \mathcal{N} : \overline{c}_i^2 < 0, \overline{c}_i^1 \geqq 0\}$$

$$\lambda' := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \tag{11}$$

- $\hat{\mathcal{B}}$ is optimal for all $\lambda \in [\lambda', \hat{\lambda}]$
- As soon as $\lambda < \lambda'$ new bases become optimal
- Entering variable x_s has to be chosen where the maximum in (11) is attained for i = s

$$\bullet \ \mathcal{I} = \{i \in \mathcal{N} : \overline{c}_i^2 < 0, \overline{c}_i^1 \geqq 0\}$$

۰

$$\lambda' := \max_{i \in \mathcal{I}} \frac{-\overline{c}_i^2}{\overline{c}_i^1 - \overline{c}_i^2}.\tag{11}$$

- $\hat{\mathcal{B}}$ is optimal for all $\lambda \in [\lambda', \hat{\lambda}]$
- As soon as $\lambda < \lambda'$ new bases become optimal
- Entering variable x_s has to be chosen where the maximum in (11) is attained for i = s

$$\bullet \ \mathcal{I} = \{i \in \mathcal{N} : \overline{c}_i^2 < 0, \overline{c}_i^1 \geqq 0\}$$

•

$$\lambda' := \max_{i \in \mathcal{I}} \frac{-\overline{c}_i^2}{\overline{c}_i^1 - \overline{c}_i^2}. \tag{11}$$

- $\hat{\mathcal{B}}$ is optimal for all $\lambda \in [\lambda', \hat{\lambda}]$
- As soon as $\lambda < \lambda'$ new bases become optimal
- Entering variable x_s has to be chosen where the maximum in (11) is attained for i = s

•
$$\mathcal{I} = \{ i \in \mathcal{N} : \bar{c}_i^2 < 0, \bar{c}_i^1 \ge 0 \}$$

۰

$$\lambda' := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \tag{11}$$

- $\hat{\mathcal{B}}$ is optimal for all $\lambda \in [\lambda', \hat{\lambda}]$
- ullet As soon as $\lambda < \lambda'$ new bases become optimal
- Entering variable x_s has to be chosen where the maximum in (11) is attained for i = s

$$\bullet \ \mathcal{I} = \{i \in \mathcal{N} : \overline{c}_i^2 < 0, \overline{c}_i^1 \geqq 0\}$$

•

$$\lambda' := \max_{i \in \mathcal{I}} \frac{-\overline{c}_i^2}{\overline{c}_i^1 - \overline{c}_i^2}. \tag{11}$$

- $\hat{\mathcal{B}}$ is optimal for all $\lambda \in [\lambda', \hat{\lambda}]$
- ullet As soon as $\lambda < \lambda'$ new bases become optimal
- Entering variable x_s has to be chosen where the maximum in (11) is attained for i = s

Algorithm (Parametric Simplex for biobjective LPs)

Input: Data A, b, C for a biobjective LP.

Phase I: Solve the auxiliary LP for Phase I using the Simplex algorithm. If the optimal value is positive, STOP, $X = \emptyset$. Otherwise let $\mathcal B$ be an optimal basis.

Phase II: Solve the LP (9) for $\lambda=1$ starting from basis $\mathcal B$ found in Phase I yielding an optimal basis $\hat{\mathcal B}$. Compute \tilde{A} and \tilde{b} .

Phase III: While
$$\mathcal{I} = \{i \in \mathcal{N} : \overline{c}_i^2 < 0, \overline{c}_i^1 \ge 0\} \neq \emptyset$$
.

$$\begin{split} \lambda := \max_{i \in \mathcal{I}} \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2}. \\ s \in \operatorname{argmax} \left\{ i \in \mathcal{I} : \frac{-\bar{c}_i^2}{\bar{c}_i^1 - \bar{c}_i^2} \right\}. \\ r \in \operatorname{argmin} \left\{ j \in \mathcal{B} : \frac{\bar{b}_j}{\bar{A}_{js}}, \tilde{A}_{js} > 0 \right\}. \\ \operatorname{Let} \mathcal{B} := \left(\mathcal{B} \setminus \{r\} \right) \cup \{s\} \text{ and update } \tilde{A} \text{ and } \tilde{b}. \end{split}$$

End while.

Output: Sequence of λ -values and sequence of optimal BFSs.

Overview

- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- 3 Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

min
$$\begin{pmatrix} 3x_1 + x_2 \\ -x_1 - 2x_2 \end{pmatrix}$$
subject to
$$\begin{aligned} x_2 & \leq 3 \\ 3x_1 - x_2 & \leq 6 \\ x & \geq 0 \end{aligned}$$

 $LP(\lambda)$

- ullet Use Simplex tableaus showing reduced cost vectors $ar{c}^1$ and $ar{c}^2$
- Optimal basis for $\lambda=1$ is $\mathcal{B}=\{3,4\}$, optimal basic feasible solution x=(0,0,3,6)
- Start with Phase 3

- Use Simplex tableaus showing reduced cost vectors \bar{c}^1 and \bar{c}^2
- Optimal basis for $\lambda = 1$ is $\mathcal{B} = \{3,4\}$, optimal basic feasible solution x = (0,0,3,6)
- Start with Phase 3

- ullet Use Simplex tableaus showing reduced cost vectors $ar{c}^1$ and $ar{c}^2$
- Optimal basis for $\lambda = 1$ is $\mathcal{B} = \{3,4\}$, optimal basic feasible solution x = (0,0,3,6)
- Start with Phase 3

Iteration 1:

\bar{c}^1	3	1	0	0	0
\bar{c}^2	-1	-2	0	0	0
<i>X</i> 3	0	1	1	0	3
<i>x</i> ₄	3	-1	0	1	6

$$\lambda = 1, \bar{c}(\lambda) = (3, 1, 0, 0), \ \mathcal{B}^1 = \{3, 4\}, \ x^1 = (0, 0, 3, 6)$$
 $\mathcal{I} = \{1, 2\}, \ \lambda' = \max\left\{\frac{1}{3+1}, \frac{2}{1+2}\right\} = \frac{2}{3}$
 $s = 2, \ r = 3$

Iteration 2

\bar{c}^1	3	0	-1	0	-3
\bar{c}^2	-1	0	2	0	6
<i>x</i> ₂	0	1	1	0	3
<i>x</i> ₄	3	0	1	1	9

$$\lambda = 2/3, \bar{c}(\lambda) = (5/3, 0, 0, 0), \ \mathcal{B}^2 = \{2, 4\}, \ x^2 = (0, 3, 0, 9)$$
 $\mathcal{I} = \{1\}, \ \lambda' = \max\left\{\frac{1}{3+1}\right\} = \frac{1}{4}$
 $s = 1, \ r = 4$

Iteration 3

\bar{c}^1	0	0	-2	-1	-12
\bar{c}^2	0	0	7/3	1/3	9
<i>x</i> ₂	0	1	1	0	3
<i>x</i> ₁	1	0	1/3	1/3	3

$$\lambda = 1/4, \overline{c}(\lambda) = (0, 0, 5/4, 0), \ \mathcal{B}^3 = \{1, 2\}, \ x^3 = (3, 3, 0, 0)$$
 $\mathcal{I} = \emptyset$

- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1 = (3,4)$ and BFS $x^1 = (0,0,3,6)$ are optimal for $\lambda \in [2/3,1]$.
- Basis $\mathcal{B}^2 = (2,4)$ and BFS $x^2 = (0,3,0,9)$ are optimal for $\lambda \in [1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1 = (3,4)$ and BFS $x^1 = (0,0,3,6)$ are optimal for $\lambda \in [2/3,1]$.
- Basis $\mathcal{B}^2 = (2,4)$ and BFS $x^2 = (0,3,0,9)$ are optimal for $\lambda \in [1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1=(3,4)$ and BFS $x^1=(0,0,3,6)$ are optimal for $\lambda\in[2/3,1].$
- Basis $\mathcal{B}^2=(2,4)$ and BFS $x^2=(0,3,0,9)$ are optimal for $\lambda\in[1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1=(3,4)$ and BFS $x^1=(0,0,3,6)$ are optimal for $\lambda \in [2/3,1].$
- Basis $\mathcal{B}^2=(2,4)$ and BFS $x^2=(0,3,0,9)$ are optimal for $\lambda\in[1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1=(3,4)$ and BFS $x^1=(0,0,3,6)$ are optimal for $\lambda \in [2/3,1].$
- Basis $\mathcal{B}^2=(2,4)$ and BFS $x^2=(0,3,0,9)$ are optimal for $\lambda\in[1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

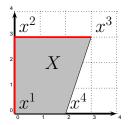
- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1=(3,4)$ and BFS $x^1=(0,0,3,6)$ are optimal for $\lambda \in [2/3,1].$
- Basis $\mathcal{B}^2=(2,4)$ and BFS $x^2=(0,3,0,9)$ are optimal for $\lambda\in[1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

- Weight values $\lambda^1 = 1, \lambda^2 = 2/3, \lambda^3 = 1/4, \lambda^4 = 0$
- Basic feasible solutions x^1, x^2, x^3
- In each iteration $\bar{c}(\lambda)$ can be calculated with the previous and current \bar{c}^1 and \bar{c}^2 .
- Basis $\mathcal{B}^1=(3,4)$ and BFS $x^1=(0,0,3,6)$ are optimal for $\lambda \in [2/3,1].$
- Basis $\mathcal{B}^2=(2,4)$ and BFS $x^2=(0,3,0,9)$ are optimal for $\lambda\in[1/4,2/3]$, and
- Basis $\mathcal{B}^3 = (1,2)$ and BFS $x^3 = (3,3,0,0)$ are optimal for $\lambda \in [0,1/4]$.
- Objective vectors for basic feasible solutions: $Cx^1 = (0,0)$, $Cx^2 = (3,-6)$, and $Cx^3 = (12,-9)$

- Values $\lambda=2/3$ and $\lambda=1/4$ correspond to weight vectors (2/3,1/3) and (1/4,3/4)
- Contour lines for weighted sum objectives in decision are parallel to efficient edges

$$\frac{2}{3}(3x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) = \frac{5}{3}x_1$$

$$\frac{1}{4}(3x_1 + x_2) + \frac{3}{4}(-x_1 - 2x_2) = -\frac{5}{4}x_2$$

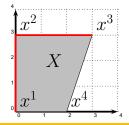


Feasible set in decision space and efficient set

- Values $\lambda=2/3$ and $\lambda=1/4$ correspond to weight vectors (2/3,1/3) and (1/4,3/4)
- Contour lines for weighted sum objectives in decision are parallel to efficient edges

$$\frac{2}{3}(3x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) = \frac{5}{3}x_1$$

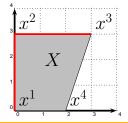
$$\frac{1}{4}(3x_1 + x_2) + \frac{3}{4}(-x_1 - 2x_2) = -\frac{5}{4}x_2$$



Feasible set in decision space and efficient set

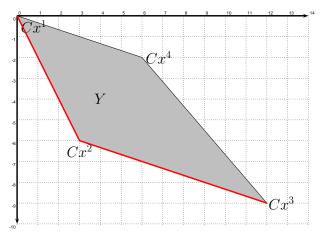
- Values $\lambda=2/3$ and $\lambda=1/4$ correspond to weight vectors (2/3,1/3) and (1/4,3/4)
- Contour lines for weighted sum objectives in decision are parallel to efficient edges

$$\frac{2}{3}(3x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) = \frac{5}{3}x_1$$
$$\frac{1}{4}(3x_1 + x_2) + \frac{3}{4}(-x_1 - 2x_2) = -\frac{5}{4}x_2$$



Feasible set in decision space and efficient set

• Weight vectors (2/3, 1/3) and (1/4, 3/4) are normal to nondominated edges



Objective space and nondominated set

- Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those
- Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP

min
$$(x_1, x_2)^T$$

subject to $0 \le x_i \le 1$ $i = 1, 2, 3$

Efficient set:
$$\{x \in \mathbb{R}^3 : x_1 = x_2 = 0, 0 \le x_3 \le 1\}$$

- Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those
- Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP

min
$$(x_1, x_2)^T$$

subject to $0 \le x_i \le 1$ $i = 1, 2, 3$

Efficient set:
$$\{x \in \mathbb{R}^3 : x_1 = x_2 = 0, 0 \le x_3 \le 1\}$$

- Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those
- Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP

min
$$(x_1, x_2)^T$$

subject to $0 \le x_i \le 1$ $i = 1, 2, 3$

Efficient set:
$$\{x \in \mathbb{R}^3 : x_1 = x_2 = 0, 0 \le x_3 \le 1\}$$

Overview

- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- 2 Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

- $\min\{Cx : Ax = b, x \ge 0\}$
- Let $\mathcal B$ be a basis and $\bar C = C C_{\mathcal B}A_{\mathcal B}^{-1}A$ and $R = \bar C_{\mathcal N}$
- How to calculate "critical" λ if p > 2?
- At $\mathcal{B}_1: \bar{C}_{\mathcal{N}} = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}, \lambda' = 2/3, \lambda = (2/3, 1/3)^T$ and $\lambda^T \bar{C}_{\mathcal{N}} = (5/3, 0)^T$
- At $\mathcal{B}_2: \bar{C}_{\mathcal{N}} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}, \lambda' = 1/4, \lambda = (1/4, 3/4)^T$ and $\lambda^T \bar{C}_{\mathcal{N}} = (0, 5/4)^T$
- Find $\lambda \in \mathbb{R}^p$, $\lambda > 0$ such that $\lambda^T R \ge 0$ (optimality) and $\lambda^T r^j = 0$ (alternative optimum) for some column r^j of R^j

- $\min\{Cx : Ax = b, x \ge 0\}$
- Let ${\cal B}$ be a basis and $\bar{C}=C-C_{\cal B}A_{\cal B}^{-1}A$ and $R=\bar{C}_{\cal N}$
- How to calculate "critical" λ if p > 2?
- At $\mathcal{B}_1: \bar{C}_{\mathcal{N}} = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}, \lambda' = 2/3, \lambda = (2/3, 1/3)^T$ and $\lambda^T \bar{C}_{\mathcal{N}} = (5/3, 0)^T$
- At \mathcal{B}_2 : $\bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$, $\lambda' = 1/4$, $\lambda = (1/4, 3/4)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (0, 5/4)^T$
- Find $\lambda \in \mathbb{R}^p$, $\lambda > 0$ such that $\lambda^T R \ge 0$ (optimality) and $\lambda^T r^j = 0$ (alternative optimum) for some column r^j of R^j

- $\bullet \ \min\{Cx: Ax = b, x \ge 0\}$
- Let $\mathcal B$ be a basis and $\bar{\mathcal C}=\mathcal C-\mathcal C_{\mathcal B}\mathcal A_{\mathcal B}^{-1}\mathcal A$ and $\mathcal R=\bar{\mathcal C}_{\mathcal N}$
- How to calculate "critical" λ if p > 2?
- At $\mathcal{B}_1: \bar{C}_{\mathcal{N}} = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}, \lambda' = 2/3, \lambda = (2/3, 1/3)^T$ and $\lambda^T \bar{C}_{\mathcal{N}} = (5/3, 0)^T$
- At \mathcal{B}_2 : $\bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$, $\lambda' = 1/4$, $\lambda = (1/4, 3/4)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (0, 5/4)^T$
- Find $\lambda \in \mathbb{R}^p$, $\lambda > 0$ such that $\lambda^T R \ge 0$ (optimality) and $\lambda^T r^j = 0$ (alternative optimum) for some column r^j of R^j

- $\bullet \ \min\{Cx: Ax = b, x \ge 0\}$
- Let $\mathcal B$ be a basis and $\bar{\mathcal C}=\mathcal C-\mathcal C_{\mathcal B}\mathcal A_{\mathcal B}^{-1}\mathcal A$ and $\mathcal R=\bar{\mathcal C}_{\mathcal N}$
- How to calculate "critical" λ if p > 2?
- At \mathcal{B}_1 : $\bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}$, $\lambda' = 2/3$, $\lambda = (2/3, 1/3)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (5/3, 0)^T$
- At $\mathcal{B}_2: \bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}, \lambda' = 1/4, \lambda = (1/4, 3/4)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (0, 5/4)^T$
- Find $\lambda \in \mathbb{R}^p$, $\lambda > 0$ such that $\lambda^T R \ge 0$ (optimality) and $\lambda^T r^j = 0$ (alternative optimum) for some column r^j of R^j

- $\bullet \ \min\{Cx: Ax = b, x \ge 0\}$
- Let $\mathcal B$ be a basis and $\bar{\mathcal C}=\mathcal C-\mathcal C_{\mathcal B}\mathcal A_{\mathcal B}^{-1}\mathcal A$ and $\mathcal R=\bar{\mathcal C}_{\mathcal N}$
- How to calculate "critical" λ if p > 2?
- At $\mathcal{B}_1: \bar{C}_{\mathcal{N}} = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}, \lambda' = 2/3, \lambda = (2/3, 1/3)^T$ and $\lambda^T \bar{C}_{\mathcal{N}} = (5/3, 0)^T$
- At \mathcal{B}_2 : $\bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$, $\lambda' = 1/4$, $\lambda = (1/4, 3/4)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (0, 5/4)^T$
- Find $\lambda \in \mathbb{R}^p$, $\lambda > 0$ such that $\lambda^T R \ge 0$ (optimality) and $\lambda^T r^j = 0$ (alternative optimum) for some column r^j of R

- $\bullet \ \min\{Cx: Ax = b, x \ge 0\}$
- Let $\mathcal B$ be a basis and $\bar{\mathcal C}=\mathcal C-\mathcal C_{\mathcal B}\mathcal A_{\mathcal B}^{-1}\mathcal A$ and $\mathcal R=\bar{\mathcal C}_{\mathcal N}$
- How to calculate "critical" λ if p > 2?
- At $\mathcal{B}_1: \bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}, \lambda' = 2/3, \lambda = (2/3, 1/3)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (5/3, 0)^T$
- At \mathcal{B}_2 : $\bar{\mathcal{C}}_{\mathcal{N}} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$, $\lambda' = 1/4$, $\lambda = (1/4, 3/4)^T$ and $\lambda^T \bar{\mathcal{C}}_{\mathcal{N}} = (0, 5/4)^T$
- Find $\lambda \in \mathbb{R}^p$, $\lambda > 0$ such that $\lambda^T R \ge 0$ (optimality) and $\lambda^T r^j = 0$ (alternative optimum) for some column r^j of R

Lemma

If $\mathcal{X}_{\mathsf{E}} \neq \emptyset$ then \mathcal{X} has an efficient basic feasible solution.

Proof.

- There is some $\lambda > 0$ such that $\min_{x \in \mathcal{X}} \lambda^T Cx$ has an optimal solution
- Thus $LP(\lambda)$ has an optimal basic feasible solution solution, which is an efficient solution of the MOLP

Lemma

If $\mathcal{X}_E \neq \emptyset$ then \mathcal{X} has an efficient basic feasible solution.

Proof.

- There is some $\lambda > 0$ such that $\min_{x \in \mathcal{X}} \lambda^T Cx$ has an optimal solution
- Thus $LP(\lambda)$ has an optimal basic feasible solution solution, which is an efficient solution of the MOLP

If $\mathcal{X}_E \neq \emptyset$ then \mathcal{X} has an efficient basic feasible solution.

- There is some $\lambda > 0$ such that $\min_{x \in \mathcal{X}} \lambda^T Cx$ has an optimal solution
- Thus $LP(\lambda)$ has an optimal basic feasible solution solution, which is an efficient solution of the MOLP

- A feasible basis \mathcal{B} is called efficient basis if \mathcal{B} is an optimal basis of LP(λ) for some $\lambda \in \mathbb{R}^p$.
- ② Two bases \mathcal{B} and $\hat{\mathcal{B}}$ are called adjacent if one can be obtained from the other by a single pivot step.
- ⓐ Let \mathcal{B} be an efficient basis. Variable $x_j, j \in \mathcal{N}$ is called efficient nonbasic variable at \mathcal{B} if there exists a $\lambda \in \mathbb{R}^p_>$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j .
- ① Let \mathcal{B} be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from \mathcal{B} with x_j entering the basis (even with negative pivot element) is called an efficient pivot with respect to \mathcal{B} and x_j

- A feasible basis \mathcal{B} is called efficient basis if \mathcal{B} is an optimal basis of LP(λ) for some $\lambda \in \mathbb{R}^p_{>}$.
- ② Two bases \mathcal{B} and $\hat{\mathcal{B}}$ are called adjacent if one can be obtained from the other by a single pivot step.
- ③ Let \mathcal{B} be an efficient basis. Variable $x_j, j \in \mathcal{N}$ is called efficient nonbasic variable at \mathcal{B} if there exists a $\lambda \in \mathbb{R}^p_>$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j .
- ① Let \mathcal{B} be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from \mathcal{B} with x_j entering the basis (even with negative pivot element) is called an efficient pivot with respect to \mathcal{B} and x_j

- A feasible basis \mathcal{B} is called efficient basis if \mathcal{B} is an optimal basis of LP(λ) for some $\lambda \in \mathbb{R}^p$.
- ② Two bases \mathcal{B} and $\hat{\mathcal{B}}$ are called adjacent if one can be obtained from the other by a single pivot step.
- **③** Let \mathcal{B} be an efficient basis. Variable $x_j, j \in \mathcal{N}$ is called efficient nonbasic variable at \mathcal{B} if there exists a $\lambda \in \mathbb{R}^p_>$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j .
- ① Let \mathcal{B} be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from \mathcal{B} with x_j entering the basis (even with negative pivot element) is called an efficient pivot with respect to \mathcal{B} and x_j

- A feasible basis \mathcal{B} is called efficient basis if \mathcal{B} is an optimal basis of LP(λ) for some $\lambda \in \mathbb{R}^p_{>}$.
- ② Two bases \mathcal{B} and $\hat{\mathcal{B}}$ are called adjacent if one can be obtained from the other by a single pivot step.
- **③** Let \mathcal{B} be an efficient basis. Variable $x_j, j \in \mathcal{N}$ is called efficient nonbasic variable at \mathcal{B} if there exists a $\lambda \in \mathbb{R}^p_>$ such that $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$, where r^j is the column of R corresponding to variable x_j .
- Let \mathcal{B} be an efficient basis and let x_j be an efficient nonbasic variable. Then a feasible pivot from \mathcal{B} with x_j entering the basis (even with negative pivot element) is called an efficient pivot with respect to \mathcal{B} and x_j

- No efficient basis is optimal for all p objectives at the same time
- Therefore R always contains positive and negative entries

Proposition

Let $\mathcal B$ be an efficient basis. There exists an efficient nonbasic variable at $\mathcal B$.

- No efficient basis is optimal for all p objectives at the same time
- Therefore R always contains positive and negative entries

Proposition

Let $\mathcal B$ be an efficient basis. There exists an efficient nonbasic variable at $\mathcal B$.

- No efficient basis is optimal for all p objectives at the same time
- Therefore R always contains positive and negative entries

Proposition

Let $\mathcal B$ be an efficient basis. There exists an efficient nonbasic variable at $\mathcal B$.

It is not possible to define efficient nonbasic variables by the existence of a column in R with positive and negative entries

Example

$$R = \left(\begin{array}{cc} 3 & -2 \\ -2 & 1 \end{array}\right)$$

- $\lambda^T r^2 = 0$ requires $\lambda_2 = 2\lambda_1$
- $\lambda^T r^1 \ge 0$ requires $-\lambda_1 \ge 0$, an impossibility for $\lambda > 0$

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- ullet x_j efficient entering variable at basis ${\cal B}$
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_i$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- ullet x_j efficient entering variable at basis ${\cal B}$
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- ullet x_j efficient entering variable at basis ${\cal B}$
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_i$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- ullet x_j efficient entering variable at basis ${\cal B}$
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_i$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- ullet x_j efficient entering variable at basis ${\cal B}$
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_i$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_i entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- ullet x_j efficient entering variable at basis ${\cal B}$
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_j$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

Let $\mathcal B$ be an efficient basis and x_j be an efficient nonbasic variable. Then any efficient pivot from $\mathcal B$ leads to an adjacent efficient basis $\hat{\mathcal B}$.

- x_j efficient entering variable at basis \mathcal{B}
- \Rightarrow there is $\lambda \in \mathbb{R}^p_>$ with $\lambda^T R \geq 0$ and $\lambda^T r^j = 0$
- $\Rightarrow x_i$ is nonbasic variable with reduced cost 0 in LP(λ)
- Reduced costs of LP(λ) do not change after a pivot with x_j entering
- ullet Let $\hat{\mathcal{B}}$ be the resulting basis with feasible pivot and x_j entering
- Because $\lambda^T R \ge 0$ and $\lambda^T r^j = 0$ at $\hat{\mathcal{B}}$, $\hat{\mathcal{B}}$ is an optimal basis for LP(λ) and therefore an adjacent efficient basis

How to identify efficient nonbasic variables?

Theorem

Let \mathcal{B} be an efficient basis and let x_j be a nonbasic variable. Variable x_j is an efficient nonbasic variable if and only if the LP

max
$$e^{t}v$$

subject to $Rz - r^{j}\delta + Iv = 0$
 $z, \delta, v \ge 0$ (12)

has an optimal value of 0.

(12) is always feasible with $(z, \delta, v) = 0$

How to identify efficient nonbasic variables?

Theorem

Let \mathcal{B} be an efficient basis and let x_j be a nonbasic variable. Variable x_j is an efficient nonbasic variable if and only if the LP

max
$$e^{t}v$$

subject to $Rz - r^{j}\delta + Iv = 0$
 $z, \delta, v \ge 0$ (12)

has an optimal value of 0.

(12) is always feasible with $(z, \delta, v) = 0$

• By definition x_i is an efficient nonbasic variable if the LP

min
$$0^T \lambda = 0$$

subject to $R^T \lambda \ge 0$
 $(r^j)^T \lambda = 0$
 $1\lambda \ge e$ (13)

has an optimal objective value of 0, i.e. if it is feasible

• (13) is equivalent to

min
$$0^T \lambda = 0$$

subject to $R^T \lambda \ge 0$
 $-(r^j)^T \lambda \ge 0$
 $1\lambda \ge e$ (14)

• By definition x_i is an efficient nonbasic variable if the LP

min
$$0^{T}\lambda = 0$$

subject to $R^{T}\lambda \geq 0$
 $(r^{j})^{T}\lambda = 0$
 $1\lambda \geq e$ (13)

has an optimal objective value of 0, i.e. if it is feasible

• (13) is equivalent to

min
$$0^T \lambda = 0$$

subject to $R^T \lambda \geq 0$
 $-(r^j)^T \lambda \geq 0$
 $1\lambda \geq e$ (14)

• The dual of (14) is

max
$$e^{T}v$$
 subject to $Rz - r^{j}\delta + Iv = 0$ $z, \delta, v \ge 0$. (15)

Need to show: ALL efficient bases can be reached by efficient pivots

Definition

Two efficient bases \mathcal{B} and $\hat{\mathcal{B}}$ are called connected if one can be obtained from the other by performing only efficient pivots.

Theorem

All efficient bases are connected.

Need to show: ALL efficient bases can be reached by efficient pivots

Definition

Two efficient bases \mathcal{B} and $\hat{\mathcal{B}}$ are called connected if one can be obtained from the other by performing only efficient pivots.

Theorem

All efficient bases are connected.

Need to show: ALL efficient bases can be reached by efficient pivots

Definition

Two efficient bases \mathcal{B} and $\hat{\mathcal{B}}$ are called connected if one can be obtained from the other by performing only efficient pivots.

Theorem

All efficient bases are connected.

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for $\mathsf{LP}(\lambda)$ and $\mathsf{LP}(\hat{\lambda})$
- \bullet Parametric LP $\left(\Phi \in [0,1]\right)$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- ullet After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_>$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_>$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\tilde{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_>$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_>$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\tilde{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_{>}$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_{>}$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\hat{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\hat{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_>$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_>$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\hat{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi) \lambda \in \mathbb{R}^p_{>}$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_{>}$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\hat{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_>$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_>$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\tilde{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_>$ for all $\Phi \in [0, 1]$ all bases are optimal for $LP(\lambda^*)$ for some $\lambda^* \in \mathbb{R}^p_>$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\hat{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

- ullet \mathcal{B} and $\hat{\mathcal{B}}$ two efficient bases
- $\lambda, \hat{\lambda} \in \mathbb{R}^p_>$ such that \mathcal{B} and $\hat{\mathcal{B}}$ are optimal bases for LP(λ) and LP($\hat{\lambda}$)
- ullet Parametric LP $(\Phi \in [0,1])$ with objective function

$$c(\Phi) = \Phi \hat{\lambda}^T C + (1 - \Phi) \lambda^T C \tag{16}$$

- Assume \hat{B} is first basis (for $\Phi = 1$)
- After several pivots get an optimal basis $\tilde{\mathcal{B}}$ for LP(λ)
- Since $\lambda^* = \Phi \hat{\lambda} + (1 \Phi)\lambda \in \mathbb{R}^p_{>}$ for all $\Phi \in [0, 1]$ all bases are optimal for LP(λ^*) for some $\lambda^* \in \mathbb{R}^p_{>}$, i.e. efficient
- If $\tilde{\mathcal{B}} = \mathcal{B}$, done
- Otherwise obtain $\mathcal B$ from $\widetilde{\mathcal B}$ by efficient pivots: they are alternative optima for $LP(\lambda)$

• 3 cases

- $\mathcal{X} = \emptyset$, infeasibility
- $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_{E} = \emptyset$, no efficient solutions
- $\mathcal{X} \neq \emptyset, \mathcal{X}_{E} \neq \emptyset$

- Phase I: Solve $\min\{e^Tz: Ax + Iz = b, x \ge 0, z \ge 0\}$ If optimal value is nonzero, $X = \emptyset$ Otherwise find bfs of $Ax = b, x \ge 0$ from optimal solut
- Phase II: Find efficient bfs by solving appropriate $LP(\lambda)$ Note: $LP(\lambda)$ can be unbounded even if $X_E \neq \emptyset$ Solve $\min\{u^Tb + w^TCx^0 : u^TA + w^TC \ge 0, w \ge e\}$ If unbounded then $X_E = \emptyset$ Otherwise find optimal \hat{w} and solve $\min\{\hat{w}Cx : Ax = b, x \ge 0\}$ Optimal bfs x^1 exists and is efficient bfs for MOLP.
- Phase III: Starting from x^1 find all efficient bfs by efficient pivots, even with negative pivot elements

- 3 cases
 - $\mathcal{X} = \emptyset$, infeasibility
 - $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_E = \emptyset$, no efficient solutions
 - $\mathcal{X} \neq \emptyset, \mathcal{X}_{E} \neq \emptyset$

- Phase I: Solve $\min\{e^Tz: Ax + Iz = b, x \ge 0, z \ge 0\}$ If optimal value is nonzero, $X = \emptyset$ Otherwise find bfs of $Ax = b, x \ge 0$ from optimal solution
- Phase II: Find efficient bfs by solving appropriate $LP(\lambda)$ Note: $LP(\lambda)$ can be unbounded even if $X_E \neq \emptyset$ Solve $\min\{u^Tb + w^TCx^0 : u^TA + w^TC \geq 0, w \geq e\}$ If unbounded then $X_E = \emptyset$ Otherwise find optimal \hat{w} and solve $\min\{\hat{w}Cx : Ax = b, x \geq 0\}$ Optimal bfs x^1 exists and is efficient bfs for MOLP
- Phase III: Starting from x^1 find all efficient bfs by efficient pivots, even with negative pivot elements

- 3 cases
 - $\mathcal{X} = \emptyset$, infeasibility
 - $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_F = \emptyset$, no efficient solutions
 - $\mathcal{X} \neq \emptyset, \mathcal{X}_{F} \neq \emptyset$

- Phase I: Solve min $\{e^Tz: Ax + Iz = b, x \ge 0, z \ge 0\}$ If optimal value is nonzero, $X = \emptyset$ Otherwise find bfs of $Ax = b, x \ge 0$ from optimal solution
- Phase II: Find efficient bfs by solving appropriate $LP(\lambda)$ Note: $LP(\lambda)$ can be unbounded even if $X_F \neq \emptyset$ Solve min{ $u^Tb + w^TCx^0 : u^TA + w^TC \ge 0, w \ge e$ } If unbounded then $X_F = \emptyset$ Otherwise find optimal \hat{w} and solve $\min\{\hat{w}Cx: Ax = b, x \geq 0\}$ Optimal bfs x^1 exists and is efficient bfs for MOLP
- Phase III: Starting from x^1 find all efficient bfs by efficient

- 3 cases
 - $\mathcal{X} = \emptyset$, infeasibility
 - $\mathcal{X} \neq \emptyset$ but $\mathcal{X}_{E} = \emptyset$, no efficient solutions
 - $\mathcal{X} \neq \emptyset, \mathcal{X}_{E} \neq \emptyset$

- Phase I: Solve $\min\{e^Tz: Ax + Iz = b, x \ge 0, z \ge 0\}$ If optimal value is nonzero, $X = \emptyset$ Otherwise find bfs of $Ax = b, x \ge 0$ from optimal solution
- Phase II: Find efficient bfs by solving appropriate $LP(\lambda)$ Note: $LP(\lambda)$ can be unbounded even if $X_E \neq \emptyset$ Solve $\min\{u^Tb + w^TCx^0 : u^TA + w^TC \geq 0, w \geq e\}$ If unbounded then $X_E = \emptyset$ Otherwise find optimal \hat{w} and solve $\min\{\hat{w}Cx : Ax = b, x \geq 0\}$ Optimal bfs x^1 exists and is efficient bfs for MOLP
- Phase III: Starting from x^1 find all efficient bfs by efficient pivots, even with negative pivot elements

Algorithm (Multicriteria Simplex Algorithm.)

Input: Data A, b, C of an MOLP.

Initialization: Set $\mathcal{L}_1 := \emptyset$, $\mathcal{L}_2 := \emptyset$.

Phase I: Solve the LP min{ $e^Tz : Ax + Iz = b, x, z \ge 0$ }.

If the optimal value of this LP is nonzero, STOP, $\mathcal{X} = \emptyset$.

Otherwise let x^0 be a basic feasible solution of the MOLP.

Phase II: Solve the LP

 $\min\{u^T b + w^T C x^0 : u^T A + w^T C \ge 0, w \ge e\}.$

If the problem is infeasible, STOP, $\mathcal{X}_E = \emptyset$.

Otherwise let (\hat{u}, \hat{w}) be an optimal solution.

Find an optimal basis \mathcal{B} of the LP min $\{\hat{w}^T Cx : Ax = b, x \ge 0\}$.

 $\mathcal{L}_1 := \{\mathcal{B}\}, \ \mathcal{L}_2 := \emptyset.$

Algorithm

Output:

```
Phase III:
       While \mathcal{L}_1 \neq \emptyset
              Choose \mathcal{B} in \mathcal{L}_1, set \mathcal{L}_1 := \mathcal{L}_1 \setminus \{\mathcal{B}\}, \mathcal{L}_2 := \mathcal{L}_2 \cup \{\mathcal{B}\}.
              Compute \tilde{A}, \tilde{b}, and R according to \mathcal{B}.
              \mathcal{E}\mathcal{N} := \mathcal{N}.
              For all i \in \mathcal{N}.
                     Solve the LP max{e^T v : Ry - r^j \delta + Iv = 0; y, \delta, v \ge 0}.
                     If this LP is unbounded \mathcal{EN} := \mathcal{EN} \setminus \{j\}.
              End for
              For all i \in \mathcal{EN}.
                     For all i \in \mathcal{B}.
                            If \mathcal{B}' = (\mathcal{B} \setminus \{i\}) \cup \{j\} is feasible and \mathcal{B}' \notin \mathcal{L}_1 \cup \mathcal{L}_2
                            then \mathcal{L}_1 := \mathcal{L}_1 \cup \mathcal{B}'.
                     End for.
              Fnd for
       End while.
```

• There can be exponentially many efficient bfs

(

min
$$x_i$$
 $i = 1, ..., n$
min $-x_i$ $i = 1, ..., n$
subject to $x_i \leq 1$ $i = 1, ..., n$
 $-x_i \leq 1$ $i = 1, ..., n$

- n variables, m = 2n constraints, p = 2n objective functions
- all 2ⁿ extreme points of the feasible set are efficient

• There can be exponentially many efficient bfs

•

$$\begin{array}{lll} \min & x_i & i=1,\ldots,n \\ \min & -x_i & i=1,\ldots,n \\ \text{subject to} & x_i & \leqq & 1 & i=1,\ldots,n \\ -x_i & \leqq & 1 & i=1,\ldots,n. \end{array}$$

- n variables, m = 2n constraints, p = 2n objective functions
- all 2ⁿ extreme points of the feasible set are efficient

• There can be exponentially many efficient bfs

.

$$\begin{array}{lll} \min & x_i & i=1,\ldots,n \\ \min & -x_i & i=1,\ldots,n \\ \text{subject to} & x_i & \leqq & 1 & i=1,\ldots,n \\ -x_i & \leqq & 1 & i=1,\ldots,n. \end{array}$$

- n variables, m = 2n constraints, p = 2n objective functions
- all 2ⁿ extreme points of the feasible set are efficient

There can be exponentially many efficient bfs

.

$$\begin{array}{lll} \min & x_i & i=1,\ldots,n \\ \min & -x_i & i=1,\ldots,n \\ \text{subject to} & x_i & \leqq & 1 & i=1,\ldots,n \\ -x_i & \leqq & 1 & i=1,\ldots,n. \end{array}$$

- n variables, m = 2n constraints, p = 2n objective functions
- all 2ⁿ extreme points of the feasible set are efficient

Overview

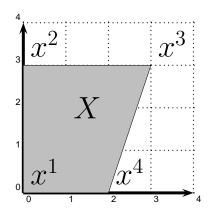
- Multiobjective Linear Programming
 - Formulation and Example
 - Solving MOLPs by Weighted Sums
- 2 Biobjective LPs and Parametric Simplex
 - The Parametric Simplex Algorithm
 - Biobjective Linear Programmes: Example
- Multiobjective Simplex Method
 - A Multiobjective Simplex Algorithm
 - Multiobjective Simplex: Examples

min
$$\begin{pmatrix} 3x_1 + x_2 \\ -x_1 - 2x_2 \end{pmatrix}$$
subject to
$$\begin{aligned} x_2 & \leq 3 \\ 3x_1 - x_2 & \leq 6 \\ x & \geq 0 \end{aligned}$$

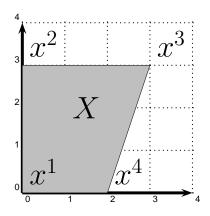
$LP(\lambda)$

min
$$(4\lambda-1)x_1 + (3\lambda-2)x_2$$
 subject to $x_2 + x_3 = 3$ $3x_1 - x_2 + x_4 = 6$ $x \geq 0$.

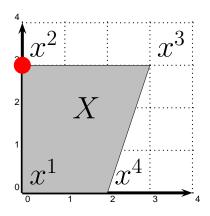
- Phase I: MOLP is feasible $x^0 = (0,0)$
- Phase II: Optimal weight $\hat{w} = (1, 1)$
- Phase II: First efficient solution $x^2 = (0,3)$
- Phase III: Efficient entering variables s^1, x^2
- Phase III: Efficient solutions $x^1 = (0,0), x^3 = (3,3)$
- Phase III: No more efficient entering variables



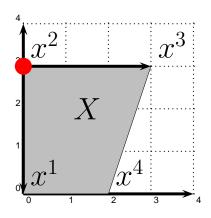
- Phase I: MOLP is feasible $x^0 = (0,0)$
- Phase II: Optimal weight $\hat{w} = (1, 1)$
- Phase II: First efficient solution $x^2 = (0,3)$
- Phase III: Efficient entering variables s^1, x^2
- Phase III: Efficient solutions $x^1 = (0,0), x^3 = (3,3)$
- Phase III: No more efficient entering variables



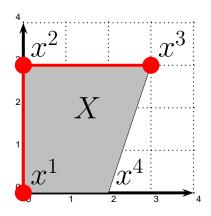
- Phase I: MOLP is feasible $x^0 = (0,0)$
- Phase II: Optimal weight $\hat{w} = (1, 1)$
- Phase II: First efficient solution $x^2 = (0,3)$
- Phase III: Efficient entering variables s^1, x^2
- Phase III: Efficient solutions $x^1 = (0,0), x^3 = (3,3)$
- Phase III: No more efficient entering variables



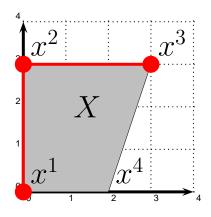
- Phase I: MOLP is feasible $x^0 = (0,0)$
- Phase II: Optimal weight $\hat{w} = (1, 1)$
- Phase II: First efficient solution $x^2 = (0,3)$
- Phase III: Efficient entering variables s^1, x^2
- Phase III: Efficient solutions $x^1 = (0,0), x^3 = (3,3)$
- Phase III: No more efficient entering variables



- Phase I: MOLP is feasible $x^0 = (0,0)$
- Phase II: Optimal weight $\hat{w} = (1, 1)$
- Phase II: First efficient solution $x^2 = (0,3)$
- Phase III: Efficient entering variables s^1, x^2
- Phase III: Efficient solutions $x^1 = (0,0), x^3 = (3,3)$
- Phase III: No more efficient entering variables



- Phase I: MOLP is feasible $x^0 = (0,0)$
- Phase II: Optimal weight $\hat{w} = (1, 1)$
- Phase II: First efficient solution $x^2 = (0,3)$
- Phase III: Efficient entering variables s^1, x^2
- Phase III: Efficient solutions $x^1 = (0,0), x^3 = (3,3)$
- Phase III: No more efficient entering variables



Slack variables x_4, x_5, x_6 introduced to write the constraints in equality form Ax = b

- Phase I: $\mathcal{B} = \{4, 5, 6\}$ is a basis with bfs $x^0 = (0, 0, 0, 1, 2, 4)$
- Phase II:

$$\hat{w} = (1, 1, 1)$$

$$\min\{-x_1 - 2x_2 + x_3 : Ax = b, x \ge 0\}$$

$$\mathcal{B}^1 = \{2, 5, 6\}, x^1 = (0, 1, 0, 0, 1, 3) \text{ is efficient bfs.}$$

$$\mathcal{L}_1 = \{\{2, 5, 6\}\}$$

- Phase I: $\mathcal{B} = \{4, 5, 6\}$ is a basis with bfs $x^0 = (0, 0, 0, 1, 2, 4)$
- Phase II:

$$\begin{split} \hat{w} &= (1,1,1) \\ \min\{-x_1 - 2x_2 + x_3 : Ax = b, x \ge 0\} \\ \mathcal{B}^1 &= \{2,5,6\}, \ x^1 = (0,1,0,0,1,3) \text{ is efficient bfs,} \\ \mathcal{L}_1 &= \{\{2,5,6\}\} \end{split}$$

Phase III

Iteration 1:

$$\mathcal{B}^1 = \{2, 5, 6\}$$
, $\mathcal{L}_1 = \emptyset$, $\mathcal{L}_2 = \{\{2, 5, 6\}\}$

\bar{c}^1	1	0	0	2	0	0	2
\bar{c}^2	-1	0	2	0	0	0	0
<i>c</i> ³	1	0	-1	0	0	0	0
<i>x</i> ₂	1	1	0	1	0	0	1
<i>X</i> 5	-1	0	0	-1	1	0	1
<i>x</i> ₆	2	0	1	1	0	1	5

$$\mathcal{EN} := \{1, 3, 4\}$$

1	1	2	-1	0	0	0	0
1	0	2	-1	1	0	0	0
-1	2	0	1	0	1	0	0
1	-1	0	-1	0	0	1	0

LP has optimal solution, x_1 is efficient

• Check x_3

1		2		1			
-1	2		-2		1		
1	-1		1			1	

LP has optimal solution, x_3 is efficien:

1	1	2	-1	0	0	0	0
1	0	2	-1	1	0	0	0
-1	2	0	1	0	1	0	0
1	-1	0	-1	0	0	1	0

LP has optimal solution, x_1 is efficient

• Check x₃

1	1	2	-1	0	0	0	0
1	0	2	0	1	0	0	0
-1	2	0	-2	0	1	0	0
1	-1	0	1	0	0	1	0

LP has optimal solution, x_3 is efficient

1	1	2	-2	0	0	0	0
1	0	2	-2	1	0	0	0
-1	2	0	0	0	1	0	0
1	-1	0	0	0	0	1	0

LP is unbounded, x_4 is not efficient

•
$$\mathcal{EN} = \{1, 3\}$$

Feasible pivot x_1 enters and x_2 leaves: basis $\mathcal{B}^2 = \{1, 5, 6\}$ Feasible pivot x_3 enters and x_6 leaves: basis $\mathcal{B}^3 = \{2, 3, 5\}$ $\mathcal{L}_1 := \{\{1, 5, 6\}, \{2, 3, 5\}\}$

Check x₄

1	1	2	-2	0	0	0	0
1	0	2	-2	1	0	0	0
-1	2	0	0	0	1	0	0
1	-1	0	0	0	0	1	0

LP is unbounded, x_4 is not efficient

•
$$\mathcal{EN} = \{1, 3\}$$

Feasible pivot x_1 enters and x_2 leaves: basis $\mathcal{B}^2 = \{1,5,6\}$ Feasible pivot x_3 enters and x_6 leaves: basis $\mathcal{B}^3 = \{2,3,5\}$ $\mathcal{L}_1 := \{\{1,5,6\},\{2,3,5\}\}$

Iteration 2:

$$\mathcal{B}^2 = \{1, 5, 6\}$$
 with BFS $x^2 = (1, 0, 0, 0, 2, 3)$
 $\mathcal{L}_1 = \{\{2, 3, 5\}\}, \ \mathcal{L}_2 = \{\{2, 5, 6\}, \{2, 3, 5\}\}$

\bar{c}^1	0	-1	0	1	0	0	1
\bar{c}^2	0	1	2	1	0	0	1
<i>c</i> ³	0	-1	-1	-1	0	0	-1
<i>x</i> ₂	1	1	0	1	0	0	1
<i>X</i> 5	0	1	0	0	1	0	2
<i>x</i> ₆	0	-2	1	-1	0	1	3

$$\mathcal{EN} = \{2,3,4\}$$

A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

• Check x_2 : Leads back to $\mathcal{B}^1 = (2,5,6)$

• Check *x*₃:

-1	1	1	-1				
-1		1		1			
1	2	1	-2		1		
-1	-1	-1	1			1	

x₃ not efficient

• Check x₄

-1	1	1	-1				
-1		1	-1	1			
1	2	1	-1		1		
-1	-1	-1	1			1	

 x_4 not efficient

•
$$\mathcal{E}\mathcal{N} = \emptyset$$

- Check x_2 : Leads back to $\mathcal{B}^1 = (2,5,6)$
- Check *x*₃:

-1	1	1	-1	0	0	0	0
-1	0	1	0	1	0	0	0
1	2	1	-2	0	1	0	0
-1	-1	-1	1	0	0	1	0

x₃ not efficient

• Check x_4

-1	1	1	-1				
-1		1	-1	1			
1	2	1	-1		1		
-1	-1	-1	1			1	

 x_4 not efficient

•
$$\mathcal{EN} = \emptyset$$

- Check x_2 : Leads back to $\mathcal{B}^1 = (2,5,6)$
- Check *x*₃:

-1	1	1	-1	0	0	0	0
-1	0	1	0	1	0	0	0
1	2	1	-2	0	1	0	0
-1	-1	-1	1	0	0	1	0

x₃ not efficient

• Check x₄

-1	1	1	-1	0	0	0	0
-1	0	1	-1	1	0	0	0
1	2	1	-1	0	1	0	0
-1	-1	-1	1	0	0	1	0

x₄ not efficient

•
$$\mathcal{E}\mathcal{N} = \emptyset$$

A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

- Check x_2 : Leads back to $\mathcal{B}^1 = (2,5,6)$
- Check *x*₃:

-1	1	1	-1	0	0	0	0
-1	0	1	0	1	0	0	0
1	2	1	-2	0	1	0	0
-1	-1	-1	1	0	0	1	0

x₃ not efficient

• Check x₄

1					0	0	0
-1	0	1	-1	1	0	0	0
1	2	1	-1	0	1	0	0
-1	-1	-1	1	0	0	1	0

 x_4 not efficient

•
$$\mathcal{EN} = \emptyset$$

Iteration 3

$$\begin{split} \mathcal{B}^3 &= \{2,3,5\} \text{ with bfs } x^3 = (0,1,5,0,1,0) \\ \mathcal{L}_1 &= \emptyset, \ \mathcal{L}_2 = \{\{2,5,6\},\{1,5,6\},\{2,3,5\}\} \end{split}$$

\bar{c}^1	1	0	0	2	0	0	2
\bar{c}^2	-5	0	0	-2	0	-2	-10
\bar{c}^3	3	0	0	1	0	1	5
<i>x</i> ₂	1	1	0	1	0	0	1
<i>X</i> 5	-1	0	0	-1	1	0	1
<i>x</i> ₃	2	0	1	1	0	1	5

$$\mathcal{EN} = \{1, 4, 6\}$$

-1	1	-1	1	0	0	0	0
1	2	0	-1	1	0	0	0
-5	-2	-2	5	0	1	0	0
3	1	1	-3	0	0	1	0

x₄ is not efficient

• Check x₄

-1	1	-1	-1				
1	2		-2	1			
-5	-2	-2	2		1		
3	1	1	-1			1	

x₄ is not efficient

• Check x_6 : Leads back to \mathcal{B}^1

-1	1	-1	1	0	0	0	0
1	2	0	-1	1	0	0	0
-5	-2	-2	5	0	1	0	0
3	1	1	-3	0	0	1	0

x₄ is not efficient

• Check x₄

-1	1	-1	-1	0	0	0	0
1	2	0	-2	1	0	0	0
-5	-2	-2	2	0	1	0	0
3	1	1	-1	0	0	1	0

x4 is not efficient

• Check x_6 : Leads back to \mathcal{B}^1

-1	1	-1	1	0	0	0	0
1	2	0	-1	1	0	0	0
-5	-2	-2	5	0	1	0	0
3	1	1	-3	0	0	1	0

x4 is not efficient

• Check x₄

-1	1	-1	-1	0	0	0	0
1	2	0	-2	1	0	0	0
-5	-2	-2	2	0	1	0	0
3	1	1	-1	0	0	1	0

x₄ is not efficient

• Check x_6 : Leads back to \mathcal{B}^1

Iteration 4: $\mathcal{L}_1 = \emptyset$, STOP Output: List of efficient bases $\mathcal{B}^1 = \{2,5,6\}, \mathcal{B}^2 = \{1,5,6\}, \mathcal{B}^3 = \{2,3,5\}$

