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min{Cx : Ax = b, x = 0}

X = {x ∈ Rn : Ax = b}
Y = {Cx ∈ Rp : x ∈ X}
x̂ ∈ X is (weakly) efficient if there is no x ∈ X with Cx ≤ Cx̂
(Cx < Cx̂)

If x̂ is (weakly) efficient then Cx̂ is (weakly) non-dominated
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Theorem

x̂ ∈ X is (weakly) efficient if and only if there exists (λ ≥ 0) λ > 0
such that x̂ is an optimal solution of

min{λT x : Ax = b, x = 0}. P(λ)
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Dual of weighted sum problem:

max{uTb : uTA 5 λTC} D(λ)

Theorem

x̂ ∈ X is (weakly) efficient if and only if there exists (λ ≥ 0) λ > 0
and u with uTA 5 λTC such that

(uTA− λTC )x = 0.
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Feasibility of Dual

Lemma

D(λ) is feasible for all λ ≥ 0 if min{cT x : x ∈ X} is bounded
for all c ∈ cone (C ), the cone generated by the rows of C.

Let c̄k := min{c i
k : i = 1, . . . , p}. D(λ) is feasible for all

λ = 0 if min{c̄T x : Ax = b, x = 0} is bounded.

D(λ) is feasible for all λ ≥ 0 if ckj = 0 for all k , j .
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Assume uΛ̄ feasible for D(λ) for all λ ∈ Λ̄ ⊂ Rp
=

Define Q(λ) = {j : uT
Λ̄

aj = cj(λ)}

Λ̂ ⊂ Λ̄ is maximal with respect to Q(λ) if for some λ̂ ∈ Λ̂

Q(λ̂) = Q(λ) for all λ ∈ Λ̂
Q(λ̂) 6= Q(λ) for all λ ∈ Λ̄ \ Λ̂

Q(Λ̂) := Q(λ̂) for some λ ∈ Λ̂

uΛ̂(λ) = uΛ̂ for all λ ∈ Λ̂
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Restricted primal for Λ̂:

min{eT y : Ax + y = b, xi = 0 for i 6∈ Q(Λ̂), x , y = o}

If optimal value is 0 then optimal solution x̂ is optimal for
P(λ) for all λ ∈ Λ̂

Otherwise improve dual solution
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Restricted dual for Λ̂:

max{uTb : wTaj 5 0 for j ∈ Q(Λ̂),w 5 e}

ŵ(Λ̂) optimal solution

If there is no j /∈ Q(Λ̂) such that ŵ(Λ̂) > 0 then P(λ)
infeasible for all λ ∈ Λ̂, i.e. MOLP infeasible

Otherwise

ε̂(λ) = min
j

{
cj(λ)− (uΛ̂(λ))Taj

ŵ(Λ̂)Taj

: ŵ(Λ̂)Taj > 0

}
Λ∗ ⊂ Λ maximal with repect to ε if the same for all λ ∈ Λ∗

and different for all other Λ: ε̂Λ∗(λ)

uΛ∗(λ) = uΛ̂(λ) + ε̂Λ∗(λ)ŵ(Λ̂)
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Matthias Ehrgott MOLP Extensions



Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming

Benson’s (Approximation) Algorithm in Objective Space
Geometric Duality

A Dual (Approximation) Variant of Benson’s Algorithm
Numerical Results

References

Restricted dual for Λ̂:

max{uTb : wTaj 5 0 for j ∈ Q(Λ̂),w 5 e}
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ŵ(Λ̂)Taj
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Algorithm

1 Dual feasible uΛ̄ for all λ ∈ Λ̄, partition {Λ̂i : i ∈ I0} of Λ̄.

2 For i ∈ I0 find Q(Λ̂i ), uΛ̂i
(λ) := uΛ̄, L = L ∪ {(Λ̂i , uΛ̂i

(λ)}.

3 While L 6= ∅, choose (Λ̂, uΛ̂(λ)) ∈ L and solve RP(Λ̂).

If optimal value is 0: An optimal solution of P(λ) for all λ ∈ Λ̂
is found. L := L \ {(Λ̂, uΛ̂(λ))}.
Otherwise solve DRP(Λ̂) and let ŵ(Λ̂) be an optimal solution.

If there is no j 6∈ Q(Λ̂) such that ŵ(Λ̂)Taj > 0: P(λ) is
infeasible for all λ ∈ Λ̂ and MOLP is infeasible.
Otherwise compute the partition {Λ∗l : l ∈ I ∗} of Λ̂ where
each Λ∗l is maximal. For each l ∈ I ∗ compute ε̂Λ∗

l
(λ) and

update uΛ∗
l
(λ). Compute Q(Λ∗l ) and set

L = L ∪ {(Λ∗l , uΛ∗
l
(λ))}. Set L = L \ {(Λ̂, uΛ̂(λ))}.
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min (−x1,−x2,−x3)
s.t x1 + x2 + x3 + s1 = 5

x1 + 3x2 + x3 + s2 = 9
3x1 + 4x2 + s3 = 16
x1, x2, x3, s1, s2 ≥ 0

b

b

b

b

b

b

b

xΛ1

xΛ3

xΛ7

xΛ8

xΛ9

xΛ5

xΛ6

x1

x3

x2
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Λ0

Q(Λ0) = {5, 6}

Λ1

Q(Λ1) = {1, 5, 6}
xΛ1 = (5, 0, 0)

Λ2

Q(Λ2) = {2, 5, 6}
Λ3

Q(Λ3) = {3, 5, 6}
xΛ3 = (0, 0, 5)

Λ4

Q(Λ4) = {1, 2, 6}
Λ5

Q(Λ5) = {2, 3, 6}
xΛ5 = (2, 3, 0)

Λ6

Q(Λ6) = {2, 4, 6}
xΛ6 = (0, 3, 0)

Λ7

Q(Λ7) = {1, 2, 3}
xΛ7 = (8/3, 2, 1/3)

Λ8

Q(Λ8) = {1, 2, 4}
xΛ8 = (11/5, 12/5, 0)

Λ9

Q(Λ9) = {1, 2, 5}
xΛ9 = (4, 1, 0)
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Theorem

Let the MOLP be nondegenerate. Then Algorithm 3.1 is finite and
at termination the output gives an optimal solution of P(λ) for
each λ ∈ Λ.

Matthias Ehrgott MOLP Extensions



Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming

Benson’s (Approximation) Algorithm in Objective Space
Geometric Duality

A Dual (Approximation) Variant of Benson’s Algorithm
Numerical Results

References

Overview

1 Primal-Dual Simplex Algorithm

2 Radiotherapy and Multiobjective Linear Programming

3 Benson’s (Approximation) Algorithm in Objective Space

4 Geometric Duality

5 A Dual (Approximation) Variant of Benson’s Algorithm

6 Numerical Results

Matthias Ehrgott MOLP Extensions



Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming

Benson’s (Approximation) Algorithm in Objective Space
Geometric Duality

A Dual (Approximation) Variant of Benson’s Algorithm
Numerical Results

References

Delivery of Radiotherapy

Matthias Ehrgott MOLP Extensions



Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming

Benson’s (Approximation) Algorithm in Objective Space
Geometric Duality

A Dual (Approximation) Variant of Benson’s Algorithm
Numerical Results

References

Intensity Modulation by Multileaf Collimator

Matthias Ehrgott MOLP Extensions



Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming

Benson’s (Approximation) Algorithm in Objective Space
Geometric Duality

A Dual (Approximation) Variant of Benson’s Algorithm
Numerical Results

References

Task: Find Intensity (Fluence) Map
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Modelling Intensity Optimization

Many different (LP, NLP, MIP) models (Shao, 2005)

Given: a beam directions, dose deposition matrix A ∈ Rm×n

with aji dose delivered to voxel j at unit intensity of bixel i

Wanted: x = (xi : i = 1, . . . , n) intensity profiles for all beams
such that dose d = Ax satisfies the treatment goals

Goal 1: Destroy the tumour, physician prescribes lower and
upper bound lT and uT for dose in tumour

Goal 2: Avoid damage to healthy tissue, physician prescribes
upper bounds uC for critical organs and uN for other normal
tissue
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min (yT , yC , yN)
s.t. AT x + yT e = lT

AT x 5 uT

ACx − yCe 5 uC

ANx − yNe 5 uN

yT 5 α
yC = −uC

yC 5 β
yN 5 γ

x , yT , yN = 0

(1)

Multiobjcetive version of elastic LP model of (Holder, 2003)

Always feasible if α, β, γ are not too small
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Multiobjective Linear Programming

min{Cx : Ax = b, x ∈ Rn} (2)

X = {x ∈ Rn : Ax = b} is compact

Y = {Cx ∈ Rp : x ∈ X}
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Benson’s Algorithm

(Benson, 1998): Solve MOLP in objective space

Y ′ :=
(
Y + Rp

=

)
∩
(
y ′ − Rp

=

)
dim Y ′ = p and Y ′N = YN

P1(y) min{z : Ax = b,Cx − ez 5 y}
D1(y) max{bTu − yTw : ATu − CTw = 0, eTw = 1, u,w = 0}
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Algorithm (Benson’s Algorithm)

Init: Compute p̄ ∈ int Y ′
Construct p-dimensional simplex S0 ⊃ Y ′
Store vertex set vert(S0)
Set k = 0 and go to It k1

It k1: If vert(Sk) ⊂ Y ′ go to It k5: Y ′ = Sk

Otherwise choose yk ∈ vert(Sk) \ Y ′
It k2: Find 0 < αk < 1 such that αkyk + (1− αk)p̄ ∈ bd Y ′

Set qk = αkyk + (1− αk)p̄
It k3: Set Sk+1 = Sk ∩ {y ∈ Rp : 〈wk , y〉 = 〈b, uk〉}

(ukT
,wkT

) is optimal solution to D1(q
k)

It k4: Find vert(Sk+1), set k = k + 1 and go to It k1
It k5: YNE = Y ′NE = {y ∈ vert(SK ) : y < y ′}
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Approximating the Nondominated Set (Shao and Ehrgott,
2007a)

If d(yk , qk) < ε do not construct hyperplane

Keep yk ∈ O and qk ∈ I for outer and inner approximation

Algorithm (Approximation Algorithm)

It k1: If vert(Sk) ⊂ Y ′ ∪ O go to It k5
Otherwise choose any yk ∈ vert(Sk) \ (O ∪ Y ′)

It k3: If d(yk , qk) 5 ε add yk to O, add qk to I, go to It k1
Otherwise Sk+1 = Sk ∩ {y ∈ Rp : 〈wk , y〉 = 〈b, uk〉}
(ukT

,wkT
) is optimal solution to D(qk)

It k5: Vo(SK ) = vert(SK ), Vi (SK ) = (vert(SK ) \ O) ∪ I
Y ′i = conv(Vi (SK )), Y ′o = conv(Vo(SK ))
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ε = 2.0

Two cuts as before

d(y1, q1) = 1.366,
d(y2, q2) = 1.973

Vo(S2) = {(13,1),
(0,1),(0,-3),(6,-
9),(13,-9)}
Vi (S2) = {(13,1),
(0,1),(1.316,-
2.632),(7.114,-
7.371),(13,-9)}
define inner and outer
approximation
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Proposition

1 |Vo(SK )| = |Vi (SK )|
2 Vi (SK ) ⊂ bd(Y ′)
3 For y ∈ Vo(SK ) it holds y /∈ bd(Y ′) if and only if y /∈ Vi (SK )

4 If yov ∈ Vo(SK ) there exists yiv ∈ Vi (S
K ) with d(yov , yiv ) 5 ε

and vice versa

5 Y ′iN + Rp
= ⊆ Y ′N + Rp

= ⊆ Y ′oN + Rp
=
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Proposition

If yo ∈ Y ′oWN there exists yi ∈ Y ′iWN such that d(yo , yi ) 5 ε.

x̂ ∈ X is (weakly) ε-efficient if there is no x ∈ X with
Cx ≤ (<)Cx̂ − ε.

Cx̂ is (weakly) ε-nondominated

Theorem

Let ε = εe, where e = (1, . . . , 1) ∈ Rp. Then Y ′iN is a set of weakly
ε-nondominated points for Y ′.
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The Geometric Dual Heyde and Löhne (2006)

Primal MOLP:

min{Cx : x ∈ Rn,Ax = b}

K := R=ep = {y ∈ Rp : y1 = · · · = yp−1 = 0, yp = 0}
Dual MOLP:

maxK{D(u, λ) : (u, λ) ∈ Rm×Rp, (u, λ) = 0,ATu = CTλ, eTλ = 1}

D(u, λ) := (λ1, ..., λp−1, b
Tu)T =

(
0 Ip−1 0

bT 0 0

)(
u
λ

)
P := C (X ) + Rp

=

D := D(U)−K
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ϕ(y , v) :=

p−1∑
i=1

yivi + yp

(
1−

p−1∑
i=1

vi

)
− vp

For x ∈ X and (u, λ) ∈ U : ϕ(Cx ,D(u, λ)) = λTPx − bTu

λ(v) :=

(
v1, . . . , vp−1, 1−

p−1∑
i=1

vi

)T

λ∗(y) := (y1 − yp, . . . , yp−1 − yp,−1)T

H(v) :=
{

y ∈ Rp : λ(v)T y = vp

}
H∗(y) :=

{
v ∈ Rp : λ∗(y)T v = −yp

}
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For F∗ ⊂ Rp define Ψ(F∗) :=
⋂

v∈F∗ H(v) ∩ P

Theorem (Heyde and Löhne (2006))

Ψ is an inclusion reversing one-to-one map between the set of all
proper K-maximal faces of D and the set of all proper weakly
nondominated faces of P and the inverse map is given by

Ψ−1(F) =
⋂
y∈F

H∗(y) ∩ D.

Moreover, for every proper K-maximal face F∗ of D it holds

dimF∗ + dim Ψ(F∗) = p − 1
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A Dual Algorithm (Ehrgott et al., 2007)

P2(v) min
{
λ(v)TCx : x ∈ Rn,Ax = b

}
D2(v) max

{
bTu : u ∈ Rm, u = 0,ATu = CTλ(v)

}
Algorithm

Init: For d̂ ∈ int D find optimal solution x0 of P2(d̂)
Set S0 := {v ∈ Rp : λ(v) = 0, ϕ(Cx0, v) = 0}; k := 1

It k1 : If vert(Sk−1) ⊂ D stop
otherwise choose sk ∈ vert(Sk−1) \ D

It k2 : Find αk with vk := αksk + (1− αk)d̂ ∈ maxKD
It k3 : Compute an optimal solution xk of P2(v

k)
It k4 : Set Sk := Sk−1 ∩ {v ∈ Rp : ϕ(Cxk , v) = 0}
It k5 : Set k := k + 1 and go to It k1
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Let S ⊂ Rp be a polyhdron with S = S − K and
projRp−1(S) = {t ∈ Rp−1 : t = 0,

∑p−1
i=1 ti 5 1}

D(S) = {y ∈ Rp : ϕ(y , v) = 0, for all v ∈ vert(S)}

Proposition

1 D(S) = D(S) + Rp
=

2 Theorem 6 holds for D = S and P = D(S)

3 If S1 ⊂ S0 then D(S1) ⊃ D(S0)
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Dual Approximation (Shao and Ehrgott, 2007b)

If vert(Sk) ⊂ D + εep do not construct hyperplane

If vp − f 5 ε then v ∈ D + εep where f is optimum of D2(v)

Do := Sk−1 ⊃ D is outer approximation of D

P i := D(Do) ⊂ D(D) = P

is inner approximation of P

Theorem

Let ε = εe, then the nondominated set of P i is a set of
ε-nondominated points of P.
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Case AN P PL

Tumour voxels 9 22 67
Critical organ voxels 47 89 91
Normal tissue voxels 999 1182 986
Bixels 594 821 1140

uT 87.55 90.64 90.64
lT 82.45 85.36 85.36
uC 60/45 60/45 60/45
uN 0.00 0.00 0.00
α 16.49 42.68 17.07
β 12.00 30.00 12.00
γ 87.55 100.64 90.64
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min (yT , yC , yN)
s.t. AT x + yT e = lT

AT x 5 uT

ACx − yCe 5 uC

ANx − yNe 5 uN

yT 5 α
yC = −uC

yC 5 β
yN 5 γ

x , yT , yN = 0

(3)
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ε Solving the dual Solving the primal
Time Vert. Cuts Time Vert. Cuts

AC 0.1 1.484 17 8 5.938 27 21
0.01 3.078 33 18 8.703 47 44

0 8.864 85 55 13.984 55 85
PR 0.1 4.422 39 19 14.781 56 42

0.01 18.454 157 78 64.954 296 184
0 792.390 3280 3165 995.050 3165 3280

PL 0.1 58.263 85 44 164.360 152 90
0.01 401.934 582 298 1184.950 1097 586

0.005 734.784 1058 539 2147.530 1989 1041
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