International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 3: MOLP Extensions

Matthias Ehrgott

Department of Engineering Science, The University of Auckland, New Zealand Laboratoire d'Informatique de Nantes Atlantique, CNRS, Université de Nantes, France

MCDA and MOO, Han sur Lesse, September 17 - 21 2007

• □ ▶ • □ ▶ • □ ▶

Primal-Dual Simplex Algorithm Radiotherapy and Multiobjective Linear Programming A Dual (Approximation) Variant of Benson's Algorithm Numerical Results References

Overview

Primal-Dual Simplex Algorithm

A A B

- 2 Radiotherapy and Multiobjective Linear Programming
- 3 Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

- 2 Radiotherapy and Multiobjective Linear Programming
- Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 6 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

• □ ▶ • □ ▶ • □ ▶ •

- 2 Radiotherapy and Multiobjective Linear Programming
- Benson's (Approximation) Algorithm in Objective Space
- Geometric Duality
- 6 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

• □ ▶ • □ ▶ • □ ▶ •

- 2 Radiotherapy and Multiobjective Linear Programming
- Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

• □ ▶ < □ ▶ < □ ▶ < </p>

3.5

- 2 Radiotherapy and Multiobjective Linear Programming
- Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

イロト イポト イラト イラト

Primal-Dual Simplex Algorithm Radiotherapy and Multiobjective Linear Programming A Dual (Approximation) Variant of Benson's Algorithm Numerical Results References

Primal-Dual Simplex Algorithm

< - 12 ▶

$\min\{Cx: Ax = b, x \ge 0\}$

- $X = \{x \in \mathbb{R}^n : Ax \ge b\}$
- $Y = \{Cx \in \mathbb{R}^p : x \in \mathcal{X}\}$
- $\hat{x} \in X$ is (weakly) efficient if there is no $x \in X$ with $Cx \leq C\hat{x}$ ($Cx < C\hat{x}$)
- If \hat{x} is (weakly) efficient then $C\hat{x}$ is (weakly) non-dominated

▲□ ► ▲ □ ► ▲

$\min\{Cx: Ax = b, x \ge 0\}$

• $X = \{x \in \mathbb{R}^n : Ax \ge b\}$

- $Y = \{Cx \in \mathbb{R}^p : x \in \mathcal{X}\}$
- $\hat{x} \in X$ is (weakly) efficient if there is no $x \in X$ with $Cx \leq C\hat{x}$ ($Cx < C\hat{x}$)
- If \hat{x} is (weakly) efficient then $C\hat{x}$ is (weakly) non-dominated

(日)

$\min\{Cx: Ax = b, x \ge 0\}$

- $X = \{x \in \mathbb{R}^n : Ax \ge b\}$
- $Y = \{Cx \in \mathbb{R}^p : x \in \mathcal{X}\}$
- $\hat{x} \in X$ is (weakly) efficient if there is no $x \in X$ with $Cx \le C\hat{x}$ ($Cx < C\hat{x}$)
- If \hat{x} is (weakly) efficient then $C\hat{x}$ is (weakly) non-dominated

$$\min\{Cx: Ax = b, x \ge 0\}$$

•
$$X = \{x \in \mathbb{R}^n : Ax \ge b\}$$

•
$$Y = \{Cx \in \mathbb{R}^p : x \in \mathcal{X}\}$$

- x̂ ∈ X is (weakly) efficient if there is no x ∈ X with Cx ≤ Cx̂ (Cx < Cx̂)
- If \hat{x} is (weakly) efficient then $C\hat{x}$ is (weakly) non-dominated

(日)

3.5

$$\min\{Cx: Ax = b, x \ge 0\}$$

•
$$X = \{x \in \mathbb{R}^n : Ax \ge b\}$$

•
$$Y = \{Cx \in \mathbb{R}^p : x \in \mathcal{X}\}$$

- x̂ ∈ X is (weakly) efficient if there is no x ∈ X with Cx ≤ Cx̂ (Cx < Cx̂)
- If \hat{x} is (weakly) efficient then $C\hat{x}$ is (weakly) non-dominated

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

Theorem

 $\hat{x} \in X$ is (weakly) efficient if and only if there exists ($\lambda \ge 0$) $\lambda > 0$ such that \hat{x} is an optimal solution of

$$\min\{\lambda^T x : Ax = b, x \ge 0\}. \qquad P(\lambda)$$

Dual of weighted sum problem:

$$\max\{u^{\mathsf{T}}b: u^{\mathsf{T}}A \leq \lambda^{\mathsf{T}}C\} \qquad D(\lambda)$$

Theorem

 $\hat{x} \in X$ is (weakly) efficient if and only if there exists ($\lambda \ge 0$) $\lambda > 0$ and u with $u^T A \le \lambda^T C$ such that

$$(u^T A - \lambda^T C)x = 0.$$

▲ □ ► ▲ □

Dual of weighted sum problem:

$$\max\{u^T b: u^T A \leq \lambda^T C\} \qquad D(\lambda)$$

Theorem

 $\hat{x} \in X$ is (weakly) efficient if and only if there exists ($\lambda \ge 0$) $\lambda > 0$ and u with $u^T A \le \lambda^T C$ such that

$$(u^T A - \lambda^T C)x = 0.$$

I D > I A B > I B

Radiotherapy and Multiobjective Linear Programming Benson's (Approximation) Algorithm in Objective Space Geometric Duality A Dual (Approximation) Variant of Benson's Algorithm Numerical Results References

Feasibility of Dual

Lemma

- D(λ) is feasible for all λ ≥ 0 if min{c^Tx : x ∈ X} is bounded for all c ∈ cone (C), the cone generated by the rows of C.
- Let $\overline{c}_k := \min\{c_k^i : i = 1, ..., p\}$. $D(\lambda)$ is feasible for all $\lambda \ge 0$ if $\min\{\overline{c}^T x : Ax = b, x \ge 0\}$ is bounded.

• $D(\lambda)$ is feasible for all $\lambda \ge 0$ if $c_{kj} \ge 0$ for all k, j.

(日)

Radiotherapy and Multiobjective Linear Programming Benson's (Approximation) Algorithm in Objective Space Geometric Duality A Dual (Approximation) Variant of Benson's Algorithm Numerical Results References

Feasibility of Dual

Lemma

- D(λ) is feasible for all λ ≥ 0 if min{c^Tx : x ∈ X} is bounded for all c ∈ cone (C), the cone generated by the rows of C.
- Let $\bar{c}_k := \min\{c_k^i : i = 1, ..., p\}$. $D(\lambda)$ is feasible for all $\lambda \ge 0$ if $\min\{\bar{c}^T x : Ax = b, x \ge 0\}$ is bounded.

• $D(\lambda)$ is feasible for all $\lambda \ge 0$ if $c_{ki} \ge 0$ for all k, j.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Radiotherapy and Multiobjective Linear Programming Benson's (Approximation) Algorithm in Objective Space Geometric Duality A Dual (Approximation) Variant of Benson's Algorithm Numerical Results References

Feasibility of Dual

Lemma

- D(λ) is feasible for all λ ≥ 0 if min{c^Tx : x ∈ X} is bounded for all c ∈ cone (C), the cone generated by the rows of C.
- Let $\bar{c}_k := \min\{c_k^i : i = 1, ..., p\}$. $D(\lambda)$ is feasible for all $\lambda \ge 0$ if $\min\{\bar{c}^T x : Ax = b, x \ge 0\}$ is bounded.
- $D(\lambda)$ is feasible for all $\lambda \ge 0$ if $c_{kj} \ge 0$ for all k, j.

< ロ > < 同 > < 回 > < 回 >

• Assume $u_{\bar{\Lambda}}$ feasible for $D(\lambda)$ for all $\lambda \in \bar{\Lambda} \subset \mathbb{R}^p_{>}$

• Define $Q(\lambda) = \{j : u_{\overline{\Lambda}}^T a_j = c_j(\lambda)\}$

- $\hat{\Lambda} \subset \bar{\Lambda}$ is maximal with respect to $Q(\lambda)$ if for some $\hat{\lambda} \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) = Q(\lambda)$ for all $\lambda \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) \neq Q(\lambda)$ for all $\lambda \in \overline{\Lambda} \setminus \hat{\Lambda}$
- $\mathcal{Q}(\hat{\Lambda}) := Q(\hat{\lambda})$ for some $\lambda \in \hat{\Lambda}$
- $u_{\hat{\Lambda}}(\lambda) = u_{\hat{\Lambda}}$ for all $\lambda \in \hat{\Lambda}$

< A > < B

- Assume $u_{\bar{\Lambda}}$ feasible for $D(\lambda)$ for all $\lambda \in \bar{\Lambda} \subset \mathbb{R}^p_{>}$
- Define $Q(\lambda) = \{j : u_{\overline{\Lambda}}^T a_j = c_j(\lambda)\}$
- ⊂ Ā is maximal with respect to Q(λ) if for some λ̂ ∈ Λ̂
 Q(λ̂) = Q(λ) for all λ ∈ Λ̂
 Q(λ̂) ≠ Q(λ) for all λ ∈ Λ \ Λ̂
 Q(Λ̂) := Q(λ̂) for some λ ∈ Λ̂
- $u_{\hat{\Lambda}}(\lambda) = u_{\hat{\Lambda}}$ for all $\lambda \in \hat{\Lambda}$

< A > < B

- Assume $u_{\bar{\Lambda}}$ feasible for $D(\lambda)$ for all $\lambda \in \bar{\Lambda} \subset \mathbb{R}^p_{\geq}$
- Define $Q(\lambda) = \{j : u_{\overline{\Lambda}}^T a_j = c_j(\lambda)\}$
- $\hat{\Lambda} \subset \bar{\Lambda}$ is maximal with respect to $Q(\lambda)$ if for some $\hat{\lambda} \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) = Q(\lambda)$ for all $\lambda \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) \neq Q(\hat{\lambda})$ for all $\lambda \in \overline{\Lambda} \setminus \hat{\Lambda}$
- $\mathcal{Q}(\hat{\Lambda}) := \mathcal{Q}(\hat{\lambda})$ for some $\lambda \in \hat{\Lambda}$
- $u_{\hat{\Lambda}}(\lambda) = u_{\hat{\Lambda}}$ for all $\lambda \in \hat{\Lambda}$

Image: A = A = A

- Assume $u_{\bar{\Lambda}}$ feasible for $D(\lambda)$ for all $\lambda \in \bar{\Lambda} \subset \mathbb{R}^{p}_{\geq}$
- Define $Q(\lambda) = \{j : u_{\overline{\Lambda}}^T a_j = c_j(\lambda)\}$
- $\hat{\Lambda} \subset \bar{\Lambda}$ is maximal with respect to $Q(\lambda)$ if for some $\hat{\lambda} \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) = Q(\lambda)$ for all $\lambda \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) \neq Q(\hat{\lambda})$ for all $\lambda \in \overline{\Lambda} \setminus \hat{\Lambda}$
- $\mathcal{Q}(\hat{\Lambda}) := Q(\hat{\lambda})$ for some $\lambda \in \hat{\Lambda}$
- $u_{\hat{\Lambda}}(\lambda) = u_{\hat{\Lambda}}$ for all $\lambda \in \hat{\Lambda}$

- 4 同 ト - 4 三 ト - 4

- Assume $u_{\bar{\Lambda}}$ feasible for $D(\lambda)$ for all $\lambda \in \bar{\Lambda} \subset \mathbb{R}^{p}_{\geq}$
- Define $Q(\lambda) = \{j : u_{\overline{\Lambda}}^T a_j = c_j(\lambda)\}$
- $\hat{\Lambda} \subset \bar{\Lambda}$ is maximal with respect to $Q(\lambda)$ if for some $\hat{\lambda} \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) = Q(\lambda)$ for all $\lambda \in \hat{\Lambda}$
 - $Q(\hat{\lambda}) \neq Q(\lambda)$ for all $\lambda \in \overline{\Lambda} \setminus \hat{\Lambda}$
- $\mathcal{Q}(\hat{\Lambda}) := Q(\hat{\lambda})$ for some $\lambda \in \hat{\Lambda}$
- $u_{\hat{\Lambda}}(\lambda) = u_{\hat{\Lambda}}$ for all $\lambda \in \hat{\Lambda}$

Primal-I	Dual Simplex Algorithm
Radiotherapy and Multiobjecti	ve Linear Programming
Benson's (Approximation) Algori	thm in Objective Space
	Geometric Duality
A Dual (Approximation) Variant	of Benson's Algorithm
	Numerical Results
	References

Restricted primal for $\hat{\Lambda}$:

$$\min\{e^{\mathsf{T}}y: Ax + y = b, x_i = 0 \text{ for } i \notin \mathcal{Q}(\hat{\Lambda}), x, y \ge o\}$$

- If optimal value is 0 then optimal solution \hat{x} is optimal for $P(\lambda)$ for all $\lambda \in \hat{\Lambda}$
- Otherwise improve dual solution

▲ 同 ▶ ▲ 国 ▶ ▲

B b

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

Restricted primal for $\hat{\Lambda}$:

$$\min\{e^T y : Ax + y = b, x_i = 0 \text{ for } i \notin \mathcal{Q}(\hat{\Lambda}), x, y \ge o\}$$

• If optimal value is 0 then optimal solution \hat{x} is optimal for $P(\lambda)$ for all $\lambda \in \hat{\Lambda}$

• Otherwise improve dual solution

A (1) > A (2) > A

B b

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

Restricted primal for $\hat{\Lambda}$:

$$\min\{e^T y : Ax + y = b, x_i = 0 \text{ for } i \notin \mathcal{Q}(\hat{\Lambda}), x, y \ge o\}$$

- If optimal value is 0 then optimal solution \hat{x} is optimal for $P(\lambda)$ for all $\lambda \in \hat{\Lambda}$
- Otherwise improve dual solution

- 4 同 1 - 4 回 1 - 4 回 1 - 4

Restricted dual for $\hat{\Lambda}$:

$$\max\{u^{\mathsf{T}}b:w^{\mathsf{T}}a_j \leq 0 ext{ for } j \in \mathcal{Q}(\hat{\Lambda}), w \leq e\}$$

• $\hat{w}(\hat{\Lambda})$ optimal solution

If there is no j ∉ Q(Â) such that ŵ(Â) > 0 then P(λ) infeasible for all λ ∈ Â, i.e. MOLP infeasible

• Otherwise

$$\hat{\varepsilon}(\lambda) = \min_{j} \left\{ \frac{c_{j}(\lambda) - (u_{\hat{\Lambda}}(\lambda))^{T} a_{j}}{\hat{w}(\hat{\Lambda})^{T} a_{j}} : \hat{w}(\hat{\Lambda})^{T} a_{j} > 0 \right\}$$

- Λ^{*} ⊂ Λ maximal with repect to ε if the same for all λ ∈ Λ^{*} and different for all other Λ: ε̂_{Λ*}(λ)
- $u_{\Lambda^*}(\lambda) = u_{\hat{\Lambda}}(\lambda) + \hat{\varepsilon}_{\Lambda^*}(\lambda)\hat{w}(\hat{\Lambda})$

< A >

Restricted dual for $\hat{\Lambda}$:

$$\max\{u^{\mathsf{T}}b:w^{\mathsf{T}}a_j \leq 0 ext{ for } j \in \mathcal{Q}(\hat{\Lambda}), w \leq e\}$$

- $\hat{w}(\hat{\Lambda})$ optimal solution
- If there is no j ∉ Q(Â) such that ŵ(Â) > 0 then P(λ) infeasible for all λ ∈ Â, i.e. MOLP infeasible

• Otherwise

$$\hat{\varepsilon}(\lambda) = \min_{j} \left\{ \frac{c_{j}(\lambda) - (u_{\hat{\lambda}}(\lambda))^{T} a_{j}}{\hat{w}(\hat{\lambda})^{T} a_{j}} : \hat{w}(\hat{\lambda})^{T} a_{j} > 0 \right\}$$

- Λ^{*} ⊂ Λ maximal with repect to ε if the same for all λ ∈ Λ^{*} and different for all other Λ: ε̂_{Λ*}(λ)
- $u_{\Lambda^*}(\lambda) = u_{\hat{\Lambda}}(\lambda) + \hat{\varepsilon}_{\Lambda^*}(\lambda)\hat{w}(\hat{\Lambda})$

Restricted dual for $\hat{\Lambda}$:

$$\max\{u^{\mathsf{T}}b:w^{\mathsf{T}}a_j \leq 0 ext{ for } j \in \mathcal{Q}(\hat{\Lambda}), w \leq e\}$$

- $\hat{w}(\hat{\Lambda})$ optimal solution
- If there is no j ∉ Q(Â) such that ŵ(Â) > 0 then P(λ) infeasible for all λ ∈ Â, i.e. MOLP infeasible
- Otherwise

$$\hat{\varepsilon}(\lambda) = \min_{j} \left\{ \frac{c_{j}(\lambda) - (u_{\hat{\lambda}}(\lambda))^{T} a_{j}}{\hat{w}(\hat{\lambda})^{T} a_{j}} : \hat{w}(\hat{\lambda})^{T} a_{j} > 0 \right\}$$

- Λ^{*} ⊂ Λ maximal with repect to ε if the same for all λ ∈ Λ^{*} and different for all other Λ: ε̂_{Λ*}(λ)
- $u_{\Lambda^*}(\lambda) = u_{\hat{\Lambda}}(\lambda) + \hat{\varepsilon}_{\Lambda^*}(\lambda)\hat{w}(\hat{\Lambda})$

Restricted dual for $\hat{\Lambda}$:

$$\max\{u^{\mathsf{T}}b:w^{\mathsf{T}}a_j \leq 0 ext{ for } j \in \mathcal{Q}(\hat{\Lambda}), w \leq e\}$$

- $\hat{w}(\hat{\Lambda})$ optimal solution
- If there is no j ∉ Q(Â) such that ŵ(Â) > 0 then P(λ) infeasible for all λ ∈ Â, i.e. MOLP infeasible
- Otherwise

$$\hat{\varepsilon}(\lambda) = \min_{j} \left\{ \frac{c_{j}(\lambda) - (u_{\hat{\lambda}}(\lambda))^{T} a_{j}}{\hat{w}(\hat{\lambda})^{T} a_{j}} : \hat{w}(\hat{\lambda})^{T} a_{j} > 0 \right\}$$

- Λ^{*} ⊂ Λ maximal with repect to ε if the same for all λ ∈ Λ^{*} and different for all other Λ: ε̂_{Λ*}(λ)
- $u_{\Lambda^*}(\lambda) = u_{\hat{\Lambda}}(\lambda) + \hat{\varepsilon}_{\Lambda^*}(\lambda)\hat{w}(\hat{\Lambda})$

Image: 1 million of the second sec

Restricted dual for $\hat{\Lambda}$:

$$\max\{u^{\mathsf{T}}b:w^{\mathsf{T}}a_j \leq 0 ext{ for } j \in \mathcal{Q}(\hat{\Lambda}), w \leq e\}$$

- $\hat{w}(\hat{\Lambda})$ optimal solution
- If there is no j ∉ Q(Â) such that ŵ(Â) > 0 then P(λ) infeasible for all λ ∈ Â, i.e. MOLP infeasible
- Otherwise

$$\hat{\varepsilon}(\lambda) = \min_{j} \left\{ \frac{c_{j}(\lambda) - (u_{\hat{\lambda}}(\lambda))^{T} a_{j}}{\hat{w}(\hat{\lambda})^{T} a_{j}} : \hat{w}(\hat{\lambda})^{T} a_{j} > 0 \right\}$$

 Λ^{*} ⊂ Λ maximal with repect to ε if the same for all λ ∈ Λ^{*} and different for all other Λ: ε̂_{Λ*}(λ)

•
$$u_{\Lambda^*}(\lambda) = u_{\hat{\Lambda}}(\lambda) + \hat{\varepsilon}_{\Lambda^*}(\lambda)\hat{w}(\hat{\Lambda})$$

Algorithm

- Dual feasible $u_{\bar{\Lambda}}$ for all $\lambda \in \bar{\Lambda}$, partition $\{\hat{\Lambda}_i : i \in I_0\}$ of $\bar{\Lambda}$.
- So While $\mathcal{L} \neq \emptyset$, choose $(\hat{\Lambda}, u_{\hat{\Lambda}}(\lambda)) \in \mathcal{L}$ and solve $RP(\hat{\Lambda})$.
 - If optimal value is 0: An optimal solution of P(λ) for all λ ∈ Λ
 is found. L := L \ {(Λ, u_Λ(λ))}.
 - Otherwise solve $DRP(\hat{\Lambda})$ and let $\hat{w}(\hat{\Lambda})$ be an optimal solution.
 - If there is no j ∉ Q(Â) such that ŵ(Â)^Ta_j > 0: P(λ) is infeasible for all λ ∈ Â and MOLP is infeasible.
 - Otherwise compute the partition $\{\Lambda_l^* : l \in l^*\}$ of $\hat{\Lambda}$ where each Λ_l^* is maximal. For each $l \in l^*$ compute $\hat{\varepsilon}_{\Lambda_l^*}(\lambda)$ and update $u_{\Lambda_l^*}(\lambda)$. Compute $\mathcal{Q}(\Lambda_l^*)$ and set

< 111 P

$$\mathcal{L} = \mathcal{L} \cup \{(\Lambda_I^*, u_{\Lambda_I^*}(\lambda))\}.$$
 Set $\mathcal{L} = \mathcal{L} \setminus \{(\hat{\Lambda}, u_{\hat{\Lambda}}(\lambda))\}$

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Radiotherapy and Multiobjective Linear Programming Benson's (Approximation) Algorithm in Objective Space Geometric Duality A Dual (Approximation) Variant of Benson's Algorithm Numerical Results References

Matthias Ehrgott

MOLP Extensions

Э

	Primal-Dual Simplex Algorithm
	Radiotherapy and Multiobjective Linear Programming
B	Benson's (Approximation) Algorithm in Objective Space
	Geometric Duality
A	A Dual (Approximation) Variant of Benson's Algorithm
	Numerical Results
	References

Theorem

Let the MOLP be nondegenerate. Then Algorithm 3.1 is finite and at termination the output gives an optimal solution of $P(\lambda)$ for each $\lambda \in \Lambda$.

- 2 Radiotherapy and Multiobjective Linear Programming
- 3 Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

Delivery of Radiotherapy

・ロト ・ 同ト ・ ヨト ・

э

DQC

Intensity Modulation by Multileaf Collimator

Matthias Ehrgott MOLP Extensions

Task: Find Intensity (Fluence) Map

DQC

that Produces Desired Dose Distribution

Matthias Ehrgott

э

Modelling Intensity Optimization

- Many different (LP, NLP, MIP) models (Shao, 2005)
- Given: a beam directions, dose deposition matrix $A \in \mathbb{R}^{m \times n}$ with a_{ji} dose delivered to voxel j at unit intensity of bixel i
- Wanted: $x = (x_i : i = 1, ..., n)$ intensity profiles for all beams such that dose d = Ax satisfies the treatment goals
- Goal 1: Destroy the tumour, physician prescribes lower and upper bound I_T and u_T for dose in tumour
- Goal 2: Avoid damage to healthy tissue, physician prescribes upper bounds u_C for critical organs and u_N for other normal tissue

- 4 同 1 - 4 回 1 - 4 回 1

Modelling Intensity Optimization

- Many different (LP, NLP, MIP) models (Shao, 2005)
- Given: a beam directions, dose deposition matrix $A \in \mathbb{R}^{m \times n}$ with a_{ji} dose delivered to voxel j at unit intensity of bixel i
- Wanted: $x = (x_i : i = 1, ..., n)$ intensity profiles for all beams such that dose d = Ax satisfies the treatment goals
- Goal 1: Destroy the tumour, physician prescribes lower and upper bound I_T and u_T for dose in tumour
- Goal 2: Avoid damage to healthy tissue, physician prescribes upper bounds u_C for critical organs and u_N for other normal tissue

Modelling Intensity Optimization

- Many different (LP, NLP, MIP) models (Shao, 2005)
- Given: a beam directions, dose deposition matrix $A \in \mathbb{R}^{m \times n}$ with a_{ji} dose delivered to voxel j at unit intensity of bixel i
- Wanted: $x = (x_i : i = 1, ..., n)$ intensity profiles for all beams such that dose d = Ax satisfies the treatment goals
- Goal 1: Destroy the tumour, physician prescribes lower and upper bound I_T and u_T for dose in tumour
- Goal 2: Avoid damage to healthy tissue, physician prescribes upper bounds u_C for critical organs and u_N for other normal tissue

Modelling Intensity Optimization

- Many different (LP, NLP, MIP) models (Shao, 2005)
- Given: a beam directions, dose deposition matrix $A \in \mathbb{R}^{m \times n}$ with a_{ji} dose delivered to voxel j at unit intensity of bixel i
- Wanted: $x = (x_i : i = 1, ..., n)$ intensity profiles for all beams such that dose d = Ax satisfies the treatment goals
- Goal 1: Destroy the tumour, physician prescribes lower and upper bound I_T and u_T for dose in tumour
- Goal 2: Avoid damage to healthy tissue, physician prescribes upper bounds u_C for critical organs and u_N for other normal tissue

Modelling Intensity Optimization

- Many different (LP, NLP, MIP) models (Shao, 2005)
- Given: a beam directions, dose deposition matrix $A \in \mathbb{R}^{m \times n}$ with a_{ji} dose delivered to voxel j at unit intensity of bixel i
- Wanted: $x = (x_i : i = 1, ..., n)$ intensity profiles for all beams such that dose d = Ax satisfies the treatment goals
- Goal 1: Destroy the tumour, physician prescribes lower and upper bound I_T and u_T for dose in tumour
- Goal 2: Avoid damage to healthy tissue, physician prescribes upper bounds u_C for critical organs and u_N for other normal tissue

r

$$\begin{array}{rcl} \min & (y_T, y_C, y_N) \\ \text{s.t.} & A_T x + y_T e & \geqq & I_T \\ & A_T x & \leqq & u_T \\ & A_C x - y_C e & \leqq & u_C \\ & A_N x - y_N e & \leqq & u_N \\ & & y_T & \leqq & \alpha \\ & & y_C & \geqq & -u_C \\ & & y_C & \leqq & \beta \\ & & y_N & \leqq & \gamma \\ & & & x, y_T, y_N & \geqq & 0 \end{array}$$

(1)

nar

• Multiobjcetive version of elastic LP model of (Holder, 2003)

• Always feasible if α, β, γ are not too small

$$\begin{array}{rcl} \min & \left(y_T, y_C, y_N\right) \\ \text{s.t.} & A_T x + y_T e & \geqq & I_T \\ & A_T x & \leqq & u_T \\ & A_C x - y_C e & \leqq & u_C \\ & A_N x - y_N e & \leqq & u_N \\ & y_T & \leqq & \alpha \\ & y_C & \geqq & -u_C \\ & y_C & \leqq & \beta \\ & y_N & \leqq & \gamma \\ & x, y_T, y_N & \geqq & 0 \end{array}$$

(1)

MQ (P

• Multiobjcetive version of elastic LP model of (Holder, 2003)

• Always feasible if α, β, γ are not too small

$$\begin{array}{rcl} \min & (y_{T}, y_{C}, y_{N}) \\ \text{s.t.} & A_{T}x + y_{T}e & \geqq & I_{T} \\ & A_{T}x & \leqq & u_{T} \\ & A_{C}x - y_{C}e & \leqq & u_{C} \\ & A_{N}x - y_{N}e & \leqq & u_{N} \\ & y_{T} & \leqq & \alpha \\ & y_{C} & \geqq & -u_{C} \\ & y_{C} & \leqq & \beta \\ & y_{N} & \leqq & \gamma \\ & x, y_{T}, y_{N} & \geqq & 0 \end{array}$$
(1)

- Multiobjcetive version of elastic LP model of (Holder, 2003)
- Always feasible if α, β, γ are not too small

Overview

- Primal-Dual Simplex Algorithm
- 2 Radiotherapy and Multiobjective Linear Programming
- Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

Multiobjective Linear Programming

$$\min\{Cx: Ax \ge b, x \in \mathbb{R}^n\}$$
(2)

< □ > < 同 > < 三 >

3.5

X = {*x* ∈ ℝⁿ : *Ax* ≥ *b*} is compact *Y* = {*Cx* ∈ ℝ^p : *x* ∈ *X*}

Multiobjective Linear Programming

$$\min\{Cx: Ax \ge b, x \in \mathbb{R}^n\}$$
(2)

Image: A matrix and a matrix

DQ P

•
$$\mathcal{X} = \{x \in \mathbb{R}^n : Ax \ge b\}$$
 is compact
• $\mathcal{Y} = \{Cx \in \mathbb{R}^p : x \in \mathcal{X}\}$

Benson's Algorithm

• (Benson, 1998): Solve MOLP in objective space

•
$$\mathcal{Y}' := \left(\mathcal{Y} + \mathbb{R}^p_{\geq}\right) \cap \left(y' - \mathbb{R}^p_{\geq}\right)$$

• dim
$$\mathcal{Y}' = p$$
 and $\mathcal{Y}'_N = \mathcal{Y}_N$

 $P_1(y) \qquad \min\{z : Ax \ge b, Cx - ez \le y\} \\ D_1(y) \qquad \max\{b^T u - y^T w : A^T u - C^T w = 0, e^T w = 1, u, w \ge 0\}$

(日)

Benson's Algorithm

• (Benson, 1998): Solve MOLP in objective space

•
$$\mathcal{Y}' := \left(\mathcal{Y} + \mathbb{R}^p_{\geq}\right) \cap \left(y' - \mathbb{R}^p_{\geq}\right)$$

• dim $\mathcal{Y}' = p$ and $\mathcal{Y}'_N = \mathcal{Y}_N$

$$P_1(y) \qquad \min\{z : Ax \ge b, Cx - ez \le y\} \\ D_1(y) \quad \max\{b^T u - y^T w : A^T u - C^T w = 0, e^T w = 1, u, w \ge 0\}$$

(日) (同) (三) (

Benson's Algorithm

• (Benson, 1998): Solve MOLP in objective space

•
$$\mathcal{Y}' := \left(\mathcal{Y} + \mathbb{R}^p_{\geq}\right) \cap \left(y' - \mathbb{R}^p_{\geq}\right)$$

• dim
$$\mathcal{Y}' = p$$
 and $\mathcal{Y}'_N = \mathcal{Y}_N$

$$P_1(y) \qquad \min\{z : Ax \ge b, Cx - ez \le y\} \\ D_1(y) \quad \max\{b^T u - y^T w : A^T u - C^T w = 0, e^T w = 1, u, w \ge 0\}$$

< 17 ▶

nar

Benson's Algorithm

• (Benson, 1998): Solve MOLP in objective space

•
$$\mathcal{Y}' := \left(\mathcal{Y} + \mathbb{R}^p_{\geq}\right) \cap \left(\mathbf{y}' - \mathbb{R}^p_{\geq}\right)$$

• dim
$$\mathcal{Y}' = p$$
 and $\mathcal{Y}'_N = \mathcal{Y}_N$

$$\begin{array}{l} P_1(y) & \min\{z : Ax \ge b, Cx - ez \le y\} \\ D_1(y) & \max\{b^T u - y^T w : A^T u - C^T w = 0, e^T w = 1, u, w \ge 0\} \end{array}$$

< A >

Algorithm (Benson's Algorithm)

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Primal-Dual Simplex Algorithm Radiotherapy and Multiobjective Linear Programming Benson's (Approximation) Algorithm in Objective Space	
Geometric Duality A Dual (Approximation) Variant of Benson's Algorithm Numerical Results	
References	

$$C = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix} \\ A = \begin{pmatrix} 0 & -1 \\ -3 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \\ b = \begin{pmatrix} -3 \\ -6 \\ 0 \\ 0 \end{pmatrix}$$

◆□ > ◆□ > ◆ □ > ● □ >

・ロット 4 日マ 4 田マ 4

3

E

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

< 17 ▶

э

э

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

Approximating the Nondominated Set (Shao and Ehrgott, 2007a)

- If $d(y^k, q^k) < \epsilon$ do not construct hyperplane
- Keep $y^k \in \mathcal{O}$ and $q^k \in \mathcal{I}$ for outer and inner approximation

Algorithm (Approximation Algorithm)

It k1: If
$$vert(S^k) \subset \mathcal{Y}' \cup \mathcal{O}$$
 go to lt k5
Otherwise choose any $y^k \in vert(S^k) \setminus (\mathcal{O} \cup \mathcal{Y}')$
It k3: If $d(y^k, q^k) \leq \epsilon$ add y^k to \mathcal{O} , add q^k to \mathcal{I} , go to lt k1
Otherwise $S^{k+1} = S^k \cap \{y \in \mathbb{R}^p : \langle w^k, y \rangle \geq \langle b, u^k \rangle\}$
 (u^{k^T}, w^{k^T}) is optimal solution to $D(q^k)$
It k5: $\mathcal{V}_o(S^K) = vert(S^K), \mathcal{V}_i(S^K) = (vert(S^K) \setminus \mathcal{O}) \cup \mathcal{I}$
 $\mathcal{Y}^{i} = conv(\mathcal{V}_i(S^K)), \mathcal{Y}^{io} = conv(\mathcal{V}_o(S^K))$

Approximating the Nondominated Set (Shao and Ehrgott, 2007a)

- If $d(y^k, q^k) < \epsilon$ do not construct hyperplane
- Keep $y^k \in \mathcal{O}$ and $q^k \in \mathcal{I}$ for outer and inner approximation

Algorithm (Approximation Algorithm)

It k1: If
$$\operatorname{vert}(S^k) \subset \mathcal{Y}' \cup \mathcal{O}$$
 go to lt k5
Otherwise choose any $y^k \in \operatorname{vert}(S^k) \setminus (\mathcal{O} \cup \mathcal{Y}')$
It k3: If $d(y^k, q^k) \leq \epsilon$ add y^k to \mathcal{O} , add q^k to \mathcal{I} , go to lt k1
Otherwise $S^{k+1} = S^k \cap \{y \in \mathbb{R}^p : \langle w^k, y \rangle \geq \langle b, u^k \rangle\}$
 (u^{k^T}, w^{k^T}) is optimal solution to $D(q^k)$
It k5: $\mathcal{V}_o(S^K) = \operatorname{vert}(S^K), \mathcal{V}_i(S^K) = (\operatorname{vert}(S^K) \setminus \mathcal{O}) \cup \mathcal{I}$
 $\mathcal{Y}^{i} = \operatorname{conv}(\mathcal{V}_i(S^K)), \mathcal{Y}^{io} = \operatorname{conv}(\mathcal{V}_o(S^K))$

Approximating the Nondominated Set (Shao and Ehrgott, 2007a)

- If $d(y^k, q^k) < \epsilon$ do not construct hyperplane
- Keep $y^k \in \mathcal{O}$ and $q^k \in \mathcal{I}$ for outer and inner approximation

Algorithm (Approximation Algorithm)

It k1: If
$$vert(S^k) \subset \mathcal{Y}' \cup \mathcal{O}$$
 go to It k5
Otherwise choose any $y^k \in vert(S^k) \setminus (\mathcal{O} \cup \mathcal{Y}')$
It k3: If $d(y^k, q^k) \leq \epsilon$ add y^k to \mathcal{O} , add q^k to \mathcal{I} , go to It k1
Otherwise $S^{k+1} = S^k \cap \{y \in \mathbb{R}^p : \langle w^k, y \rangle \geq \langle b, u^k \rangle\}$
 (u^{k^T}, w^{k^T}) is optimal solution to $D(q^k)$
It k5: $\mathcal{V}_o(S^K) = vert(S^K), \mathcal{V}_i(S^K) = (vert(S^K) \setminus \mathcal{O}) \cup \mathcal{I}$
 $\mathcal{Y}'^i = conv(\mathcal{V}_i(S^K)), \mathcal{Y}'^o = conv(\mathcal{V}_o(S^K))$

Primal-Dual Simplex Algorithm Radiotherapy and Multiobjective Linear Programming Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

• $\epsilon = 2.0$

- Two cuts as before
- $d(y^1, q^1) = 1.366,$ $d(y^2, q^2) = 1.973$
- $\mathcal{V}_o(\mathcal{S}^2) = \{(13,1), (0,1), (0,-3), (6,-9), (13,-9)\}$
- $\mathcal{V}_i(\mathcal{S}^2) = \{(13,1), (0,1), (1.316, -2.632), (7.114, -7.371), (13, -9)\}$
- define inner and outer approximation

・ 戸 ト ・ ヨ ト ・ ヨ ト -

- $\epsilon = 2.0$
- Two cuts as before
- $d(y^1, q^1) = 1.366,$ $d(y^2, q^2) = 1.973$
- $\mathcal{V}_o(\mathcal{S}^2) = \{(13,1), (0,1), (0,-3), (6,-9), (13,-9)\}$
- $\mathcal{V}_i(S^2) = \{(13,1), (0,1), (1.316, -2.632), (7.114, -7.371), (13, -9)\}$
- define inner and outer approximation

- $\epsilon = 2.0$
- Two cuts as before
- $d(y^1, q^1) = 1.366,$ $d(y^2, q^2) = 1.973$
- $\mathcal{V}_o(\mathcal{S}^2) = \{(13,1), (0,1), (0,-3), (6,-9), (13,-9)\}$
- $\mathcal{V}_i(\mathcal{S}^2) = \{(13,1), (0,1), (1.316, -2.632), (7.114, -7.371), (13, -9)\}$
- define inner and outer approximation

Primal-Dual Simplex Algorithm Radiotherapy and Multiobjective Linear Programming Basson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
References

Proposition

 $|\mathcal{V}_o(\mathcal{S}^{\mathcal{K}})| = |\mathcal{V}_i(\mathcal{S}^{\mathcal{K}})|$

2
$$\mathcal{V}_i(\mathcal{S}^{\mathcal{K}}) \subset \mathit{bd}(\mathcal{Y}')$$

- For $y \in \mathcal{V}_o(\mathcal{S}^K)$ it holds $y \notin bd(\mathcal{Y}')$ if and only if $y \notin \mathcal{V}_i(\mathcal{S}^K)$
- If $y_{ov} \in \mathcal{V}_o(\mathcal{S}^K)$ there exists $y_{iv} \in \mathcal{V}_i(\mathcal{S}^K)$ with $d(y_{ov}, y_{iv}) \leq \epsilon$ and vice versa

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition

If $y_o \in \mathcal{Y}'_{WN}$ there exists $y_i \in \mathcal{Y}'_{WN}$ such that $d(y_o, y_i) \leq \epsilon$.

- $\hat{x} \in \mathcal{X}$ is (weakly) ε -efficient if there is no $x \in \mathcal{X}$ with $Cx \leq (\langle \rangle)C\hat{x} \varepsilon$.
- $C\hat{x}$ is (weakly) ε -nondominated

Theorem

Let $\varepsilon = \epsilon e$, where $e = (1, ..., 1) \in \mathbb{R}^p$. Then $\mathcal{Y}_N^{\prime i}$ is a set of weakly ε -nondominated points for \mathcal{Y}' .

◆ロ > ◆母 > ◆臣 > ◆臣 >
Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

Proposition

If
$$y_o \in \mathcal{Y}'_{WN}$$
 there exists $y_i \in \mathcal{Y}'_{WN}$ such that $d(y_o, y_i) \leq \epsilon$.

- $\hat{x} \in \mathcal{X}$ is (weakly) ε -efficient if there is no $x \in \mathcal{X}$ with $Cx \leq (\langle C\hat{x} \varepsilon)$.
- $C\hat{x}$ is (weakly) ε -nondominated

Theorem

Let $\varepsilon = \epsilon e$, where $e = (1, ..., 1) \in \mathbb{R}^p$. Then $\mathcal{Y}_N^{\prime i}$ is a set of weakly ε -nondominated points for \mathcal{Y}' .

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

Proposition

If
$$y_o \in \mathcal{Y}'^o_{WN}$$
 there exists $y_i \in \mathcal{Y}'^i_{WN}$ such that $d(y_o, y_i) \leq \epsilon$.

- $\hat{x} \in \mathcal{X}$ is (weakly) ε -efficient if there is no $x \in \mathcal{X}$ with $Cx \leq (\langle C\hat{x} \varepsilon)$.
- $C\hat{x}$ is (weakly) ε -nondominated

Theorem

Let $\varepsilon = \epsilon e$, where $e = (1, ..., 1) \in \mathbb{R}^p$. Then $\mathcal{Y}_N^{\prime i}$ is a set of weakly ε -nondominated points for \mathcal{Y}' .

イロト 人間ト イヨト イヨト

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

Proposition

If
$$y_o \in \mathcal{Y}'_{WN}$$
 there exists $y_i \in \mathcal{Y}'_{WN}$ such that $d(y_o, y_i) \leq \epsilon$.

- $\hat{x} \in \mathcal{X}$ is (weakly) ε -efficient if there is no $x \in \mathcal{X}$ with $Cx \leq (\langle C\hat{x} \varepsilon.$
- $C\hat{x}$ is (weakly) ε -nondominated

Theorem

Let $\varepsilon = \epsilon e$, where $e = (1, ..., 1) \in \mathbb{R}^p$. Then $\mathcal{Y}_N^{\prime i}$ is a set of weakly ε -nondominated points for \mathcal{Y}' .

・ロト ・同ト ・ヨト ・ヨト

Overview

- Primal-Dual Simplex Algorithm
- 2 Radiotherapy and Multiobjective Linear Programming
- 3 Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

< 67 ▶

The Geometric Dual Heyde and Löhne (2006)

• Primal MOLP:

 $\min\{Cx: x \in \mathbb{R}^n, Ax \ge b\}$

•
$$\mathcal{K} := \mathbb{R}_{\geq} e^{\rho} = \{ y \in \mathbb{R}^{\rho} : y_1 = \dots = y_{\rho-1} = 0, y_{\rho} \geq 0 \}$$

• Dual MOLP:

 $\max_{\mathcal{K}} \{ D(u,\lambda) : (u,\lambda) \in \mathbb{R}^m \times \mathbb{R}^p, (u,\lambda) \ge 0, A^T u = C^T \lambda, e^T \lambda = 1 \}$

$$D(u,\lambda) := (\lambda_1, ..., \lambda_{p-1}, b^T u)^T = \begin{pmatrix} 0 & l_{p-1} & 0 \\ b^T & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix}$$

- $\mathcal{P} := \mathcal{C}(\mathcal{X}) + \mathbb{R}^p_{\geq}$
- $\mathcal{D} := D(\mathcal{U}) \mathcal{K}$

The Geometric Dual Heyde and Löhne (2006)

• Primal MOLP:

$$\min\{Cx: x \in \mathbb{R}^n, Ax \ge b\}$$

•
$$\mathcal{K} := \mathbb{R}_{\geq} e^p = \{ y \in \mathbb{R}^p : y_1 = \cdots = y_{p-1} = 0, y_p \geq 0 \}$$

• Dual MOLP:

 $\max_{\mathcal{K}} \{ D(u,\lambda) : (u,\lambda) \in \mathbb{R}^m \times \mathbb{R}^p, (u,\lambda) \ge 0, A^T u = C^T \lambda, e^T \lambda = 1 \}$

$$D(u,\lambda) := (\lambda_1, ..., \lambda_{p-1}, b^T u)^T = \begin{pmatrix} 0 & l_{p-1} & 0 \\ b^T & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix}$$

- $\mathcal{P} := \mathcal{C}(\mathcal{X}) + \mathbb{R}^p_{\geq}$
- $\mathcal{D} := D(\mathcal{U}) \mathcal{K}$

The Geometric Dual Heyde and Löhne (2006)

• Primal MOLP:

$$\min\{Cx: x \in \mathbb{R}^n, Ax \ge b\}$$

•
$$\mathcal{K} := \mathbb{R}_{\geq} e^{\rho} = \{ y \in \mathbb{R}^{\rho} : y_1 = \cdots = y_{\rho-1} = 0, y_{\rho} \geq 0 \}$$

• Dual MOLP:

 $\max_{\mathcal{K}} \{ D(u,\lambda) : (u,\lambda) \in \mathbb{R}^m \times \mathbb{R}^p, (u,\lambda) \geqq 0, A^T u = C^T \lambda, e^T \lambda = 1 \}$

$$D(u,\lambda) := (\lambda_1, ..., \lambda_{p-1}, b^T u)^T = \begin{pmatrix} 0 & I_{p-1} & 0 \\ b^T & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix}$$

- 4 同 1 - 4 回 1 - 4 回 1

- $\mathcal{P} := \mathcal{C}(\mathcal{X}) + \mathbb{R}^p_{\geq}$
- $\mathcal{D} := D(\mathcal{U}) \mathcal{K}$

The Geometric Dual Heyde and Löhne (2006)

• Primal MOLP:

$$\min\{Cx: x \in \mathbb{R}^n, Ax \ge b\}$$

•
$$\mathcal{K} := \mathbb{R}_{\geq} e^{\rho} = \{ y \in \mathbb{R}^{\rho} : y_1 = \cdots = y_{\rho-1} = 0, y_{\rho} \geq 0 \}$$

• Dual MOLP:

 $\max_{\mathcal{K}} \{ D(u,\lambda) : (u,\lambda) \in \mathbb{R}^m \times \mathbb{R}^p, (u,\lambda) \geqq 0, A^T u = C^T \lambda, e^T \lambda = 1 \}$

$$D(u,\lambda) := (\lambda_1, ..., \lambda_{p-1}, b^T u)^T = \begin{pmatrix} 0 & I_{p-1} & 0 \\ b^T & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\mathcal{P} := \mathcal{C}(\mathcal{X}) + \mathbb{R}^{p}_{\geq}$
- $\mathcal{D} := D(\mathcal{U}) \mathcal{K}$

The Geometric Dual Heyde and Löhne (2006)

• Primal MOLP:

$$\min\{Cx:x\in\mathbb{R}^n,Ax\geq b\}$$

•
$$\mathcal{K} := \mathbb{R}_{\geq} e^{\rho} = \{ y \in \mathbb{R}^{\rho} : y_1 = \cdots = y_{\rho-1} = 0, y_{\rho} \geq 0 \}$$

• Dual MOLP:

 $\max_{\mathcal{K}} \{ D(u,\lambda) : (u,\lambda) \in \mathbb{R}^m \times \mathbb{R}^p, (u,\lambda) \geqq 0, A^T u = C^T \lambda, e^T \lambda = 1 \}$

$$D(u,\lambda) := (\lambda_1, ..., \lambda_{p-1}, b^T u)^T = \begin{pmatrix} 0 & I_{p-1} & 0 \\ b^T & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix}$$

- $\mathcal{P} := \mathcal{C}(\mathcal{X}) + \mathbb{R}^{p}_{\geq}$
- $\mathcal{D} := D(\mathcal{U}) \mathcal{K}$

Matthias Ehrgott

MOLP Extensions

SQA

$$\varphi(y,v) := \sum_{i=1}^{p-1} y_i v_i + y_p \left(1 - \sum_{i=1}^{p-1} v_i\right) - v_p$$

For $x \in \mathcal{X}$ and $(u, \lambda) \in \mathcal{U}$: $\varphi(Cx, D(u, \lambda)) = \lambda^T P x - b^T u$

$$\lambda(v) := \left(v_1, \dots, v_{p-1}, 1 - \sum_{i=1}^{p-1} v_i\right)^T$$

$$\lambda^*(y) := \left(y_1 - y_p, \dots, y_{p-1} - y_p, -1\right)^T$$

$$H(v) := \left\{y \in \mathbb{R}^p : \lambda(v)^T y = v_p\right\}$$

$$H^*(y) := \left\{v \in \mathbb{R}^p : \lambda^*(y)^T v = -y_p\right\}$$

イロト イヨト イヨト

DQ P

$$\varphi(\mathbf{y},\mathbf{v}) := \sum_{i=1}^{p-1} y_i \mathbf{v}_i + y_p \left(1 - \sum_{i=1}^{p-1} \mathbf{v}_i\right) - \mathbf{v}_p$$

For $x \in \mathcal{X}$ and $(u, \lambda) \in \mathcal{U} : \varphi(Cx, D(u, \lambda)) = \lambda^T P x - b^T u$

$$\lambda(v) := \left(v_1, \dots, v_{p-1}, 1 - \sum_{i=1}^{p-1} v_i\right)^T$$

$$\lambda^*(y) := \left(y_1 - y_p, \dots, y_{p-1} - y_p, -1\right)^T$$

$$H(v) := \left\{y \in \mathbb{R}^p : \lambda(v)^T y = v_p\right\}$$

$$H^*(y) := \left\{v \in \mathbb{R}^p : \lambda^*(y)^T v = -y_p\right\}$$

イロト イヨト イヨト

DQ P

$$\varphi(y,v) := \sum_{i=1}^{p-1} y_i v_i + y_p \left(1 - \sum_{i=1}^{p-1} v_i\right) - v_p$$

For $x \in \mathcal{X}$ and $(u, \lambda) \in \mathcal{U} : \varphi(Cx, D(u, \lambda)) = \lambda^T Px - b^T u$

$$\begin{split} \lambda(v) &:= \left(v_1, \dots, v_{p-1}, 1 - \sum_{i=1}^{p-1} v_i \right)^T \\ \lambda^*(y) &:= \left(y_1 - y_p, \dots, y_{p-1} - y_p, -1 \right)^T \\ H(v) &:= \left\{ y \in \mathbb{R}^p : \lambda(v)^T y = v_p \right\} \\ H^*(y) &:= \left\{ v \in \mathbb{R}^p : \lambda^*(y)^T v = -y_p \right\} \end{split}$$

イロト イヨト イヨト

1

DQ P

For
$$\mathcal{F}^* \subset \mathbb{R}^p$$
 define $\Psi(\mathcal{F}^*) := \bigcap_{v \in \mathcal{F}^*} H(v) \cap \mathcal{P}$

Theorem (Heyde and Löhne (2006))

 Ψ is an inclusion reversing one-to-one map between the set of all proper \mathcal{K} -maximal faces of \mathcal{D} and the set of all proper weakly nondominated faces of \mathcal{P} and the inverse map is given by

$$\Psi^{-1}(\mathcal{F}) = igcap_{y\in\mathcal{F}} H^*(y)\cap\mathcal{D}.$$

Moreover, for every proper \mathcal{K} -maximal face \mathcal{F}^* of \mathcal{D} it holds

$$\dim \mathcal{F}^* + \dim \Psi(\mathcal{F}^*) = p - 1$$

Overview

- Primal-Dual Simplex Algorithm
- 2 Radiotherapy and Multiobjective Linear Programming
- 3 Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

A Dual Algorithm (Ehrgott et al., 2007)

$$P_2(v) \qquad \min \left\{ \lambda(v)^T C x : x \in \mathbb{R}^n, Ax \ge b \right\} \\ D_2(v) \qquad \max \left\{ b^T u : u \in \mathbb{R}^m, u \ge 0, A^T u = C^T \lambda(v) \right\}$$

Algorithm

Init:	For $\hat{d} \in int \mathcal{D}$ find optimal solution x^0 of $P_2(\hat{d})$
	Set $S^0 := \{ v \in \mathbb{R}^p : \lambda(v) \ge 0, \varphi(Cx^0, v) \ge 0 \}$; $k := 1$
lt <i>k</i> 1 :	If $vert(\mathcal{S}^{k-1}) \subset \mathcal{D}$ stop
	otherwise choose $s^k \in \mathit{vert}(\mathcal{S}^{k-1}) \setminus \mathcal{D}$
It k2 :	Find $lpha^k$ with $m{v}^k := lpha^km{s}^k + (1-lpha^k)\hat{m{d}} \in {\sf max}_{\mathcal{K}}\mathcal{D}$
It <i>k</i> 3 :	Compute an optimal solution x^k of $P_2(v^k)$
lt <i>k</i> 4 :	Set $\mathcal{S}^k := \mathcal{S}^{k-1} \cap \{ v \in \mathbb{R}^p : \varphi(\mathcal{C}x^k, v) \ge 0 \}$
lt <i>k</i> 5 :	Set $k := k + 1$ and go to It $k1$

- First cut
- Second cut
- Third cut
- Fourth cut

Image: A matrix and a matrix

≣⇒

э

-

SQA

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

Image: A matrix and a matrix

≣⇒

Э

-

nar

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

Image: A matrix and a matrix

 $\exists \rightarrow$

Э

э

nar

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

Image: Image:

 $\exists \rightarrow$

э

SQA

- Initial cover and interior point
- First cut
- Second cut
- Third cut
- Fourth cut

Image: Image:

 $\exists \rightarrow$

э

SQA

• Let $S \subset \mathbb{R}^p$ be a polyhdron with $S = S - \mathcal{K}$ and $\operatorname{proj}_{\mathbb{R}^{p-1}}(S) = \{t \in \mathbb{R}^{p-1} : t \ge 0, \sum_{i=1}^{p-1} t_i \le 1\}$

• $\mathcal{D}(\mathcal{S}) = \{ y \in \mathbb{R}^p : \varphi(y, v) \ge 0, \text{ for all } v \in \text{vert}(\mathcal{S}) \}$

Proposition

- 2 Theorem 6 holds for $\mathcal{D} = S$ and $\mathcal{P} = \mathcal{D}(S)$
- 3 If $S^1 \subset S^0$ then $\mathcal{D}(S^1) \supset \mathcal{D}(S^0)$

< ロ > < 同 > < 回 > < 回 >

• Let $S \subset \mathbb{R}^p$ be a polyhdron with S = S - K and $\operatorname{proj}_{\mathbb{R}^{p-1}}(S) = \{t \in \mathbb{R}^{p-1} : t \ge 0, \sum_{i=1}^{p-1} t_i \le 1\}$

•
$$\mathcal{D}(\mathcal{S}) = \{ y \in \mathbb{R}^p : \varphi(y, v) \ge 0, \text{ for all } v \in \text{vert}(\mathcal{S}) \}$$

Proposition

- 2 Theorem 6 holds for $\mathcal{D} = S$ and $\mathcal{P} = \mathcal{D}(S)$
- 3 If $S^1 \subset S^0$ then $\mathcal{D}(S^1) \supset \mathcal{D}(S^0)$

< ロ > < 同 > < 回 > < 回 >

• Let
$$S \subset \mathbb{R}^p$$
 be a polyhdron with $S = S - K$ and $\operatorname{proj}_{\mathbb{R}^{p-1}}(S) = \{t \in \mathbb{R}^{p-1} : t \ge 0, \sum_{i=1}^{p-1} t_i \le 1\}$

•
$$\mathcal{D}(\mathcal{S}) = \{ y \in \mathbb{R}^p : \varphi(y, v) \geqq 0, \text{ for all } v \in \text{vert}(\mathcal{S}) \}$$

Proposition

- 2 Theorem 6 holds for $\mathcal{D} = \mathcal{S}$ and $\mathcal{P} = \mathcal{D}(\mathcal{S})$
- **3** If $S^1 \subset S^0$ then $\mathcal{D}(S^1) \supset \mathcal{D}(S^0)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロット 4 日マ 4 田マ 4

문 문 문

・ロット 4 日マ 4 田マ 4

문 🕨 🗉 문

・ロット 4 日マ 4 田マ 4

문 🕨 🗉 문

・ロット 4 日マ 4 田マ 4

문 🕨 🗉 문

・ロット 4 日マ 4 田マ 4

문 🕨 🗉 문

DQC

Primal-Dual Simplex Algorithm Radiotherapy and Multiobjective Linear Programming A Dual (Approximation) Variant of Benson's Algorithm Numerical Results

Dual Approximation (Shao and Ehrgott, 2007b)

- If $\operatorname{vert}(\mathcal{S}^k) \subset \mathcal{D} + \epsilon e^p$ do not construct hyperplane
- If $v_p f \leq \epsilon$ then $v \in \mathcal{D} + \epsilon e^p$ where f is optimum of $D_2(v)$

• $\mathcal{D}^{o} := \mathcal{S}^{k-1} \supset \mathcal{D}$ is outer approximation of \mathcal{D}

Dual Approximation (Shao and Ehrgott, 2007b)

- If $\operatorname{vert}(\mathcal{S}^k) \subset \mathcal{D} + \epsilon e^p$ do not construct hyperplane
- If $v_p f \leq \epsilon$ then $v \in \mathcal{D} + \epsilon e^p$ where f is optimum of $D_2(v)$

• $\mathcal{D}^{o} := \mathcal{S}^{k-1} \supset \mathcal{D}$ is outer approximation of \mathcal{D}

 $\mathcal{P}^i:=\mathcal{D}(\mathcal{D}^o)\subset\mathcal{D}(\mathcal{D})=\mathcal{P}$

is inner approximation of ${\cal P}$

Theorem

Let $\varepsilon = \epsilon e$, then the nondominated set of \mathcal{P}^i is a set of ε -nondominated points of \mathcal{P} .

Dual Approximation (Shao and Ehrgott, 2007b)

- If $\operatorname{vert}(\mathcal{S}^k) \subset \mathcal{D} + \epsilon e^p$ do not construct hyperplane
- If $v_p f \leq \epsilon$ then $v \in \mathcal{D} + \epsilon e^p$ where f is optimum of $D_2(v)$
- $\mathcal{D}^o := \mathcal{S}^{k-1} \supset \mathcal{D}$ is outer approximation of \mathcal{D}

 $\mathcal{P}^i:=\mathcal{D}(\mathcal{D}^o)\subset\mathcal{D}(\mathcal{D})=\mathcal{P}$

is inner approximation of ${\cal P}$

Theorem

Let $\varepsilon = \epsilon e$, then the nondominated set of \mathcal{P}^i is a set of ε -nondominated points of \mathcal{P} .

Dual Approximation (Shao and Ehrgott, 2007b)

- If $\operatorname{vert}(\mathcal{S}^k) \subset \mathcal{D} + \epsilon e^p$ do not construct hyperplane
- If $v_p f \leq \epsilon$ then $v \in \mathcal{D} + \epsilon e^p$ where f is optimum of $D_2(v)$
- $\mathcal{D}^o := \mathcal{S}^{k-1} \supset \mathcal{D}$ is outer approximation of \mathcal{D}

 $\mathcal{P}^i := \mathcal{D}(\mathcal{D}^o) \subset \mathcal{D}(\mathcal{D}) = \mathcal{P}$

is inner approximation of ${\mathcal P}$

Theorem

Let $\varepsilon = \epsilon e$, then the nondominated set of \mathcal{P}^i is a set of ε -nondominated points of \mathcal{P} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual Approximation (Shao and Ehrgott, 2007b)

- If $\operatorname{vert}(\mathcal{S}^k) \subset \mathcal{D} + \epsilon e^p$ do not construct hyperplane
- If $v_p f \leq \epsilon$ then $v \in \mathcal{D} + \epsilon e^p$ where f is optimum of $D_2(v)$
- $\mathcal{D}^o := \mathcal{S}^{k-1} \supset \mathcal{D}$ is outer approximation of \mathcal{D}

$$\mathcal{P}^i:=\mathcal{D}(\mathcal{D}^o)\subset\mathcal{D}(\mathcal{D})=\mathcal{P}$$

is inner approximation of ${\mathcal P}$

Theorem

۵

Let $\varepsilon = \epsilon e$, then the nondominated set of \mathcal{P}^i is a set of ε -nondominated points of \mathcal{P} .

- Two cuts as before
- $d(v^1, bd^1) = 1/8$, $d(v^2, bd^2) = 1/8$

•
$$\mathcal{D}^o = \mathcal{S}^2$$

• $\mathcal{P}^i = \mathcal{D}(\mathcal{D}^o)$

・ロト ・ 同ト ・ ヨト

SQA

- Two cuts as before
- $d(v^1, bd^1) = 1/8$, $d(v^2, bd^2) = 1/8$
- $\bullet \ \mathcal{D}^o = \mathcal{S}^2$
- $\mathcal{P}^i = \mathcal{D}(\mathcal{D}^o)$

Overview

- Primal-Dual Simplex Algorithm
- 2 Radiotherapy and Multiobjective Linear Programming
- 3 Benson's (Approximation) Algorithm in Objective Space
- 4 Geometric Duality
- 5 A Dual (Approximation) Variant of Benson's Algorithm
- 6 Numerical Results

< A > < 3

The Test Cases

Pancreatic Lesion

Image: A math a math

Acoustic Neuroma F

- Dose calculation inexact
- Inaccuracies during delivery
- Planning to small fraction of a Gy acceptable

The Test Cases

Pancreatic Lesion

Image: A math a math

Acoustic Neuroma Prostate

- Dose calculation inexact
- Inaccuracies during delivery
- Planning to small fraction of a Gy acceptable

Case	AN	Р	PL
Tumour voxels	9	22	67
Critical organ voxels	47	89	91
Normal tissue voxels	999	1182	986
Bixels	594	821	1140
u _T	87.55	90.64	90.64
l _T	82.45	85.36	85.36
u _C	60/45	60/45	60/45
u _N	0.00	0.00	0.00
α	16.49	42.68	17.07
eta	12.00	30.00	12.00
γ	87.55	100.64	90.64

Э

m

$$\begin{array}{rcl} \min & \left(y_T, y_C, y_N\right) \\ \text{s.t.} & A_T x + y_T e & \geqq & I_T \\ & A_T x & \leqq & u_T \\ & A_C x - y_C e & \leqq & u_C \\ & A_N x - y_N e & \leqq & u_N \\ & y_T & \leqq & \alpha \\ & y_C & \geqq & -u_C \\ & y_C & \leqq & \beta \\ & y_N & \leqq & \gamma \\ & x, y_T, y_N & \geqq & 0 \end{array}$$

(3)

E

990

Primal-Dual Simplex Algorithm
Radiotherapy and Multiobjective Linear Programming
Benson's (Approximation) Algorithm in Objective Space
Geometric Duality
A Dual (Approximation) Variant of Benson's Algorithm
Numerical Results
References

	ϵ	Solving the dual			Solving the primal		
		Time	Vert.	Cuts	Time Vert. Cuts		
AC	0.1	1.484	17	8	5.938 27 21		
	0.01	3.078	33	18	8.703 47 44		
	0	8.864	85	55	13.984 55 85		
PR	0.1	4.422	39	19	14.781 56 42		
	0.01	18.454	157	78	64.954 296 184		
	0	792.390	3280	3165	995.050 3165 3280		
PL	0.1	58.263	85	44	164.360 152 90		
	0.01	401.934	582	298	1184.950 1097 586		
	0.005	734.784	1058	539	2147.530 1989 1041		

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

<ロト <回ト < 回ト

Э

<ロト <回ト < 回ト

в

▲□▶ ▲□▶ ▲ 三▶ ▲

Э

- Benson, H. P. (1998). An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. *Journal of Global Optimization*, 13, 1–24.
- Ehrgott, M., Löhne, A., and Shao, L. (2007). A dual variant of Benson's outer approximation algorithm. Report 654, Department of Engineering Science, The University of Auckland.
- Heyde, F. and Löhne, A. (2006). Geometric duality in multi-objective linear programming. Reports on Optimization and Stochastics 06-15, Department of Mathematics and Computer Science, Martin-Luther-University Halle-Wittenberg.
- Holder, A. (2003). Designing radiotherapy plans with elastic constraints and interior point methods. Health Care Management Science, 6(1), 5–16.
- Shao, L. (2005). A survey of beam intensity optimization in IMRT. In T. Halliburton, editor, Proceedings of the 40th Annual Conference of the Operational Research Society of New Zealand, Wellington, 2-3 December 2005, pages 255–264.
- Shao, L. and Ehrgott, M. (2007a). Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. *Mathematical Methods of Operations Research*, To appear.
- Shao, L. and Ehrgott, M. (2007b). Approximating the nondominated set of an MOLP by approximately solving its dual problem. Report, Department of Engineering Science, The University of Auckland.

イロト イポト イヨト イヨト