International Doctoral School Algorithmic Decision Theory: MCDA and MOO

Lecture 4: Multiobjective Combinatorial Optimization

Matthias Ehrgott

Department of Engineering Science, The University of Auckland, New Zealand Laboratoire d'Informatique de Nantes Atlantique, CNRS, Université de Nantes, France

MCDA and MOO, Han sur Lesse, September 17 - 21 2007

イロト イヨト イラト イ

Overview

1 Formulation and Definitions of Optimality

2 Complexity

- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method

5 Scalarization

6 Branch and Bound

Conclusion

< 17 ▶

э

Overview

1 Formulation and Definitions of Optimality

2 Complexity

- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

< 17 ▶

э

- 1 Formulation and Definitions of Optimality
- 2 Complexity
- The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

▲ 同 ▶ ▲ 王

3.5

- 1 Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

▲□ ► < □ ► </p>

Overview

- 1 Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

< A > <

∃ ► < ∃ ►</p>

Overview

- 1 Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
 - Conclusion

▲□ ► < □ ► </p>

Overview

- 1 Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

- 4 同 ト 4 目 ト

1 Formulation and Definitions of Optimality

- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

1 →

Mathematical Formulation

 $\min z(x) = Cx$ subject to Ax = b $x \in \{0,1\}^n$

 $\begin{array}{rcl} x \in \{0,1\}^n & \longrightarrow & n \text{ variables, } i = 1, \dots, n \\ C \in \mathbb{Z}^{p \times n} & \longrightarrow & p \text{ objective functions, } k = 1, \dots, p \\ A \in \mathbb{Z}^{m \times n} & \longrightarrow & m \text{ constraints, } j = 1, \dots, m \end{array}$

Combinatorial structure: paths, trees, flows, tours, etc.

Mathematical Formulation

 $\min z(x) = Cx$ subject to Ax = b $x \in \{0,1\}^n$

 $\begin{array}{rcl} x \in \{0,1\}^n & \longrightarrow & n \text{ variables, } i = 1, \dots, n \\ C \in \mathbb{Z}^{p \times n} & \longrightarrow & p \text{ objective functions, } k = 1, \dots, p \\ A \in \mathbb{Z}^{m \times n} & \longrightarrow & m \text{ constraints, } j = 1, \dots, m \end{array}$

Combinatorial structure: paths, trees, flows, tours, etc.

Mathematical Formulation

$$min z(x) = Cx$$

subject to $Ax = b$
 $x \in \{0, 1\}^n$

$$\begin{array}{rcl} x \in \{0,1\}^n & \longrightarrow & n \text{ variables, } i = 1, \dots, n \\ C \in \mathbb{Z}^{p \times n} & \longrightarrow & p \text{ objective functions, } k = 1, \dots, p \\ A \in \mathbb{Z}^{m \times n} & \longrightarrow & m \text{ constraints, } j = 1, \dots, m \end{array}$$

Combinatorial structure: paths, trees, flows, tours, etc.

Mathematical Formulation

$$min z(x) = Cx$$

subject to $Ax = b$
 $x \in \{0, 1\}^n$

$$\begin{array}{rcl} x \in \{0,1\}^n & \longrightarrow & n \text{ variables, } i = 1, \dots, n \\ C \in \mathbb{Z}^{p \times n} & \longrightarrow & p \text{ objective functions, } k = 1, \dots, p \\ A \in \mathbb{Z}^{m \times n} & \longrightarrow & m \text{ constraints, } j = 1, \dots, m \end{array}$$

Combinatorial structure: paths, trees, flows, tours, etc.

nar

Feasible Sets

- $X = \{x \in \{0, 1\}^n : Ax = b\}$ feasible set in decision space
- Y = z(X) = {Cx : x ∈ X} feasible set in objective space
- $\operatorname{conv}(Y) + \mathbb{R}^p_{\geq}$

< □ > < 同 > <

Feasible Sets

- $X = \{x \in \{0, 1\}^n : Ax = b\}$ feasible set in decision space
- Y = z(X) = {Cx : x ∈ X} feasible set in objective space

• $\operatorname{conv}(Y) + \mathbb{R}^p_{\geq}$

Feasible Sets

- $X = \{x \in \{0, 1\}^n : Ax = b\}$ feasible set in decision space
- Y = z(X) = {Cx : x ∈ X} feasible set in objective space
- $\operatorname{conv}(Y) + \mathbb{R}^p_{\geq}$

Lexicographic Optimality

- Individual minima $z_k(\hat{x}) \leq z_k(x)$ for all $x \in X$
- Lexicographic optimality (1) $z(\hat{x}) \leq_{lex} z(x)$ for all $x \in X$
- Lexicographic optimality (2) $z^{\pi}(\hat{x}) \leq_{lex} z^{\pi}(x)$ for all $x \in X$ and some permutation z^{π} of (z_1, \dots, z_p)

Lexicographic Optimality

- Individual minima $z_k(\hat{x}) \leq z_k(x)$ for all $x \in X$
- Lexicographic optimality (1) $z(\hat{x}) \leq_{lex} z(x)$ for all $x \in X$
- Lexicographic optimality (2) $z^{\pi}(\hat{x}) \leq_{lex} z^{\pi}(x)$ for all $x \in X$ and some permutation z^{π} of (z_1, \dots, z_p)

< 同 → < 目

Lexicographic Optimality

- Individual minima $z_k(\hat{x}) \leq z_k(x)$ for all $x \in X$
- Lexicographic optimality (1) $z(\hat{x}) \leq_{lex} z(x)$ for all $x \in X$
- Lexicographic optimality (2) $z^{\pi}(\hat{x}) \leq_{lex} z^{\pi}(x)$ for all $x \in X$ and some permutation z^{π} of (z_1, \ldots, z_p)

Efficient Solutions

- Weakly efficient solutions X_{wE}: there is no x with z(x) < z(x̂) z(x̂) is weakly nondominated Y_{wN} := z(X_{wN})
- Efficient solutions X_E : there is no x with $z(x) \le z(\hat{x})$ $z(\hat{x})$ is nondominated $Y_N := z(X_E)$

Efficient Solutions

- Weakly efficient solutions X_{wE}: there is no x with z(x) < z(x̂) z(x̂) is weakly nondominated Y_{wN} := z(X_{wN})
- Efficient solutions X_E : there is no x with $z(x) \le z(\hat{x})$ $z(\hat{x})$ is nondominated $Y_N := z(X_E)$

Efficient Solutions

- Supported efficient solutions X_{SE} : There is $\lambda > 0$ with $\lambda^T C \hat{x} \leq \lambda^T C x$ for all $x \in X$
 - $C\hat{x}$ is extreme point of $\operatorname{conv}(Y) + \mathbb{R}^p_{\geq} \to X_{SE1}$
 - Cx̂ is in relative interior of face of conv(Y) + ℝ^p_> → X_{SE2}
- Nonsupported efficient solutions X_{NE} : $C\hat{x}$ is in interior of $\operatorname{conv}(Y) + \mathbb{R}^{p}_{\geq}$

Efficient Solutions

- Supported efficient solutions X_{SE} : There is $\lambda > 0$ with $\lambda^T C \hat{x} \leq \lambda^T C x$ for all $x \in X$
 - $C\hat{x}$ is extreme point of $\operatorname{conv}(Y) + \mathbb{R}^p_{>} \to X_{SE1}$
 - $C\hat{x}$ is in relative interior of face of $conv(Y) + \mathbb{R}^{p}_{\geq} \to X_{SE2}$
- Nonsupported efficient solutions X_{NE} : $C\hat{x}$ is in interior of $\operatorname{conv}(Y) + \mathbb{R}^{p}_{\geq}$

▲□ ► ▲ □ ► ▲

Efficient Solutions

- Supported efficient solutions X_{SE} : There is $\lambda > 0$ with $\lambda^T C \hat{x} \leq \lambda^T C x$ for all $x \in X$
 - $C\hat{x}$ is extreme point of $\operatorname{conv}(Y) + \mathbb{R}^p_{>} \to X_{SE1}$
 - Cx̂ is in relative interior of face of conv(Y) + ℝ^p_≥ → X_{SE2}
- Nonsupported efficient solutions X_{NE} : $C\hat{x}$ is in interior of $\operatorname{conv}(Y) + \mathbb{R}^{p}_{\geq}$

Image: A image: A

Efficient Solutions

- Supported efficient solutions X_{SE} : There is $\lambda > 0$ with $\lambda^T C \hat{x} \leq \lambda^T C x$ for all $x \in X$
 - $C\hat{x}$ is extreme point of $\operatorname{conv}(Y) + \mathbb{R}^p_{>} \to X_{SE1}$
 - Cx̂ is in relative interior of face of conv(Y) + ℝ^p_≥ → X_{SE2}
- Nonsupported efficient solutions X_{NE} : $C\hat{x}$ is in interior of $\operatorname{conv}(Y) + \mathbb{R}^{p}_{\geq}$

< □ > < □ >

Efficient Solutions

- Supported efficient solutions X_{SE} : There is $\lambda > 0$ with $\lambda^T C \hat{x} \leq \lambda^T C x$ for all $x \in X$
 - $C\hat{x}$ is extreme point of $\operatorname{conv}(Y) + \mathbb{R}^p_{>} \to X_{SE1}$
 - $C\hat{x}$ is in relative interior of face of $conv(Y) + \mathbb{R}^{p}_{>} \to X_{SE2}$
- Nonsupported efficient solutions
 X_{NE}: Cx̂ is in interior of
 conv(Y) + ℝ^p_≥

Efficient Solutions

- Supported efficient solutions X_{SE} : There is $\lambda > 0$ with $\lambda^T C \hat{x} \leq \lambda^T C x$ for all $x \in X$
 - $C\hat{x}$ is extreme point of $\operatorname{conv}(Y) + \mathbb{R}^p_{>} \to X_{SE1}$
 - $C\hat{x}$ is in relative interior of face of $conv(Y) + \mathbb{R}^{p}_{\geq} \rightarrow X_{SE2}$
- Nonsupported efficient solutions X_{NE} : $C\hat{x}$ is in interior of $\operatorname{conv}(Y) + \mathbb{R}^{p}_{\geq}$

< □ > <

Nonsupported Effcient Solutions

100

Classification of Efficient Sets

- $x^1, x^2 \in X_E$ are equivalent if $Cx^1 = Cx^2$
- Complete set: X̂ ⊂ X_E such that for all y ∈ Y_N there is x ∈ X̂ with z(x) = y
- Minimal complete set contains no equivalent solutions
- Maximal complete set contains all equivalent solutions

Classification of Efficient Sets

- $x^1, x^2 \in X_E$ are equivalent if $Cx^1 = Cx^2$
- Complete set: $\hat{X} \subset X_E$ such that for all $y \in Y_N$ there is $x \in \hat{X}$ with z(x) = y
- Minimal complete set contains no equivalent solutions
- Maximal complete set contains all equivalent solutions

Classification of Efficient Sets

- $x^1, x^2 \in X_E$ are equivalent if $Cx^1 = Cx^2$
- Complete set: $\hat{X} \subset X_E$ such that for all $y \in Y_N$ there is $x \in \hat{X}$ with z(x) = y
- Minimal complete set contains no equivalent solutions
- Maximal complete set contains all equivalent solutions

Classification of Efficient Sets

- $x^1, x^2 \in X_E$ are equivalent if $Cx^1 = Cx^2$
- Complete set: $\hat{X} \subset X_E$ such that for all $y \in Y_N$ there is $x \in \hat{X}$ with z(x) = y
- Minimal complete set contains no equivalent solutions
- Maximal complete set contains all equivalent solutions

Overview

1 Formulation and Definitions of Optimality

2 Complexity

- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

14 ₽

MOCO Problems Are Hard

- Decision problem: Given b ∈ Z^p: Does there exist x ∈ X such that Cx ≤ b?
- Counting problem: Given $b \in \mathbb{Z}^p$: How many $x \in X$ satisfy $Cx \leq b$?
- How many efficient solutions (nondominated points) do exist?
- KNAPSACK: Given $a^1, a^2 \in \mathbb{Z}^n$ and $b_1, b_2 \in \mathbb{Z}$, does there exist $x \in \{0, 1\}^n$ such that $(a^1)^T x \leq b_1$ and $(a^2)^T x \geq b_2$?
- KNAPSACK is NP-complete and #P-complete

▲□► ▲ □► ▲

MOCO Problems Are Hard

- Decision problem: Given b ∈ Z^p: Does there exist x ∈ X such that Cx ≤ b?
- Counting problem: Given $b \in \mathbb{Z}^p$: How many $x \in X$ satisfy $Cx \leq b$?
- How many efficient solutions (nondominated points) do exist?
- KNAPSACK: Given $a^1, a^2 \in \mathbb{Z}^n$ and $b_1, b_2 \in \mathbb{Z}$, does there exist $x \in \{0, 1\}^n$ such that $(a^1)^T x \leq b_1$ and $(a^2)^T x \geq b_2$?
- KNAPSACK is NP-complete and #P-complete

(日)

MOCO Problems Are Hard

- Decision problem: Given b ∈ Z^p: Does there exist x ∈ X such that Cx ≤ b?
- Counting problem: Given $b \in \mathbb{Z}^p$: How many $x \in X$ satisfy $Cx \leq b$?
- How many efficient solutions (nondominated points) do exist?
- KNAPSACK: Given $a^1, a^2 \in \mathbb{Z}^n$ and $b_1, b_2 \in \mathbb{Z}$, does there exist $x \in \{0, 1\}^n$ such that $(a^1)^T x \leq b_1$ and $(a^2)^T x \geq b_2$?
- KNAPSACK is NP-complete and #P-complete

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
MOCO Problems Are Hard

- Decision problem: Given b ∈ Z^p: Does there exist x ∈ X such that Cx ≤ b?
- Counting problem: Given $b \in \mathbb{Z}^p$: How many $x \in X$ satisfy $Cx \leq b$?
- How many efficient solutions (nondominated points) do exist?
- KNAPSACK: Given $a^1, a^2 \in \mathbb{Z}^n$ and $b_1, b_2 \in \mathbb{Z}$, does there exist $x \in \{0, 1\}^n$ such that $(a^1)^T x \leq b_1$ and $(a^2)^T x \geq b_2$?
- KNAPSACK is NP-complete and #P-complete

< ロ > < 同 > < 三 > < 三 >

MOCO Problems Are Hard

- Decision problem: Given b ∈ Z^p: Does there exist x ∈ X such that Cx ≤ b?
- Counting problem: Given $b \in \mathbb{Z}^p$: How many $x \in X$ satisfy $Cx \leq b$?
- How many efficient solutions (nondominated points) do exist?
- KNAPSACK: Given $a^1, a^2 \in \mathbb{Z}^n$ and $b_1, b_2 \in \mathbb{Z}$, does there exist $x \in \{0, 1\}^n$ such that $(a^1)^T x \leq b_1$ and $(a^2)^T x \geq b_2$?
- KNAPSACK is NP-complete and #P-complete

< ロ > < 同 > < 三 > < 三 >

The Unconstrained MOCO Problem

Observation

Multiobjective combinatorial optimization problems are NP-hard, #P-complete, and intractable.

$$\min\sum_{i=1}^n c_i^k x_i \qquad k=1,\ldots,p$$
 subject to $x_i \in \{0,1\}$ $i=1,\ldots,n$

< 17 ▶

3.5

The Unconstrained MOCO Problem

Observation

$$\label{eq:multiplicative} \begin{split} & \textit{Multiobjective combinatorial optimization problems are NP-hard,} \\ & \#P\text{-complete, and intractable.} \end{split}$$

$$\min\sum_{i=1}^n c_i^k x_i \qquad k=1,\ldots,p$$

subject to $x_i \in \{0,1\} \qquad i=1,\ldots,n$

< 17 ▶

3.5

The Unconstrained MOCO Problem

- Does there exist $x \in \{0,1\}^n$ such that $(c^1)^T x \leq d_1$ and $(c^2)^T x \leq d_2$?
- With an instance of KNAPSACK $c^1 := a^1$, $d_1 = b_1$, $c^2 := -a^2$, $d_2 := -b_2$ is a parsimonious transformation
- With $c_i^k := (-1)^k 2^{i-1}$ it holds $Y = Y_N$

イロト イポト イヨト イヨト

The Unconstrained MOCO Problem

- Does there exist $x \in \{0,1\}^n$ such that $(c^1)^T x \leq d_1$ and $(c^2)^T x \leq d_2$?
- With an instance of KNAPSACK c¹ := a¹, d₁ = b₁, c² := -a², d₂ := -b₂ is a parsimonious transformation
 With c^k_i := (−1)^k2^{i−1} it holds Y = Y_N

イロト イポト イヨト イヨト

The Unconstrained MOCO Problem

- Does there exist $x \in \{0,1\}^n$ such that $(c^1)^T x \leq d_1$ and $(c^2)^T x \leq d_2$?
- With an instance of KNAPSACK $c^1 := a^1$, $d_1 = b_1$, $c^2 := -a^2$, $d_2 := -b_2$ is a parsimonious transformation
- With $c_i^k := (-1)^k 2^{i-1}$ it holds $Y = Y_N$

イロト イポト イヨト イヨト

Multiobjective Shortest Path Problem

< 17 ▶

Э

Multiobjective Shortest Path Problem

• Exponentially many efficient paths

- Assignment (NP-hard: Serafini 1986, #P-hard: Neumayer 1994)
- Spanning tree (Intractable: Hamacher and Ruhe 1994)
- Network flow (Intractable: Ruhe 1988)

< 17 ▶

- Assignment (NP-hard: Serafini 1986, #P-hard: Neumayer 1994)
- Spanning tree (Intractable: Hamacher and Ruhe 1994)
- Network flow (Intractable: Ruhe 1988)

< □ > <

3.5

- Assignment (NP-hard: Serafini 1986, #P-hard: Neumayer 1994)
- Spanning tree (Intractable: Hamacher and Ruhe 1994)
- Network flow (Intractable: Ruhe 1988)

< 🗇 🕨 <

3.5

Number of Efficient Solutions

- Intractable: X_E , even Y_{SN} , can be exponential in the size of the instance
- Number of nondominated points for biobjective shortest path and assignment problems (Raith 2007, Przybylski 2006)

Shortest path			Assignment	
Nodes	Edges	$ Y_N $	п	$ Y_N $
4,902	19,596	6	10	13
4,902	19,596	1,594	20	82
3,000	33,224	15	40	243
14,000	153,742	17	60	470
330,386	1,202,458	21		671
330,386	1,202,458	24	100	947

< 67 ▶

Number of Efficient Solutions

- Intractable: X_E , even Y_{SN} , can be exponential in the size of the instance
- Number of nondominated points for biobjective shortest path and assignment problems (Raith 2007, Przybylski 2006)

Shortest path			Assignment	
Nodes	Edges	$ Y_N $	n	$ Y_N $
4,902	19,596	6	10	13
4,902	19,596	1,594	20	82
3,000	33,224	15	40	243
14,000	153,742	17	60	470
330,386	1,202,458	21	80	671
330,386	1,202,458	24	100	947

A - A - A

Number of Efficient Solutions

Empirically often

- $|X_{NE}|$ grows exponentially with instance size
- $|X_{SE}|$ grows polynomially with instance size
- but this depends on numerical values of C

____ **►**

Number of Efficient Solutions

Empirically often

- $|X_{NE}|$ grows exponentially with instance size
- $|X_{SE}|$ grows polynomially with instance size
- but this depends on numerical values of C

____ **►**

Number of Efficient Solutions

Empirically often

- $|X_{NE}|$ grows exponentially with instance size
- $|X_{SE}|$ grows polynomially with instance size
- but this depends on numerical values of C

____ **►**

Number of Efficient Solutions

0.3 ----x----0.25 0.2 nb SE par rap. NE 0.15 0.1 0.05 0 , 50 100 150 200 250 300 350 400 450 500 instance ъ

Bi-KP Problems : proportion de supportees

Matthias Ehrgott

MOCO Introduction

5900

Number of Efficient Solutions

Bi-AP Problems : prop SE par rap. NE

Matthias Ehrgott

MOCO Introduction

5900

Э

Overview

- Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

< 17 ▶

э

1

The Multiobjective Shortest Path Problem

- Digraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with arc costs $c_{ij}^k, k = 1, \dots, p, (i, j) \in \mathcal{A}$
- Given origin s ∈ V, destination t ∈ V find efficient paths from s to t:

where \mathcal{P} is set of all *s*-*t* paths

• Assume that all $c_{ij}^k \ge 0$

Proposition

The Multiobjective Shortest Path Problem

- Digraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with arc costs $c_{ij}^k, k = 1, \dots, p, (i, j) \in \mathcal{A}$
- Given origin $s \in V$, destination $t \in V$ find efficient paths from s to t:

$$\min_{P\in\mathcal{P}}\sum_{(i,j)\in P}c_{ij}$$

where \mathcal{P} is set of all *s*-*t* paths

• Assume that all $c_{ij}^k \ge 0$

Proposition

The Multiobjective Shortest Path Problem

- Digraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with arc costs $c_{ij}^k, k = 1, \dots, p, (i, j) \in \mathcal{A}$
- Given origin $s \in V$, destination $t \in V$ find efficient paths from s to t:

$$\min_{P\in\mathcal{P}}\sum_{(i,j)\in P}c_{ij}$$

where \mathcal{P} is set of all *s*-*t* paths

• Assume that all $c_{ij}^k \ge 0$

Proposition

The Multiobjective Shortest Path Problem

- Digraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with arc costs $c_{ij}^k, k = 1, \dots, p, (i, j) \in \mathcal{A}$
- Given origin $s \in V$, destination $t \in V$ find efficient paths from s to t:

$$\min_{P\in\mathcal{P}}\sum_{(i,j)\in P}c_{ij}$$

where \mathcal{P} is set of all *s*-*t* paths

• Assume that all $c_{ij}^k \ge 0$

Proposition

The Multiobjective Shortest Path Problem

Concatenations of efficient paths need not be efficient!

1-3 is efficient, 3-4 is efficient, 1-3-4 is not

The Multiobjective Shortest Path Problem

Concatenations of efficient paths need not be efficient!

1-3 is efficient, 3-4 is efficient, 1-3-4 is not

The Multiobjective Shortest Path Problem

For a labelling algorithm we need

- Sets of nondominated labels at each node
- Store all costs, the predecessor, the label number at the predecessor, the number of the current label
- A list of permanent and temporary labels
- Make sure that a permanent label defines an efficient path: Choose the lexicographically smallest label from temporary list

Lemma

If P_1 and P_2 are two paths between nodes s and t and $c(P_1) \leq c(P_2)$ then $c(P_1) <_{lex} c(P_2)$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

The Multiobjective Shortest Path Problem

For a labelling algorithm we need

- Sets of nondominated labels at each node
- Store all costs, the predecessor, the label number at the predecessor, the number of the current label
- A list of permanent and temporary labels
- Make sure that a permanent label defines an efficient path: Choose the lexicographically smallest label from temporary list

Lemma

If P_1 and P_2 are two paths between nodes s and t and $c(P_1) \leq c(P_2)$ then $c(P_1) <_{lex} c(P_2)$.

(4 同) (4 回) (4 回)

The Multiobjective Shortest Path Problem

For a labelling algorithm we need

- Sets of nondominated labels at each node
- Store all costs, the predecessor, the label number at the predecessor, the number of the current label
- A list of permanent and temporary labels
- Make sure that a permanent label defines an efficient path: Choose the lexicographically smallest label from temporary list

Lemma

If P_1 and P_2 are two paths between nodes s and t and $c(P_1) \leq c(P_2)$ then $c(P_1) <_{lex} c(P_2)$.

The Multiobjective Shortest Path Problem

For a labelling algorithm we need

- Sets of nondominated labels at each node
- Store all costs, the predecessor, the label number at the predecessor, the number of the current label
- A list of permanent and temporary labels
- Make sure that a permanent label defines an efficient path: Choose the lexicographically smallest label from temporary list

Lemma

If P_1 and P_2 are two paths between nodes s and t and $c(P_1) \leq c(P_2)$ then $c(P_1) <_{lex} c(P_2)$.

◆ロ > ◆母 > ◆臣 > ◆臣 >

The Multiobjective Shortest Path Problem

For a labelling algorithm we need

- Sets of nondominated labels at each node
- Store all costs, the predecessor, the label number at the predecessor, the number of the current label
- A list of permanent and temporary labels
- Make sure that a permanent label defines an efficient path: Choose the lexicographically smallest label from temporary list

Lemma

If P_1 and P_2 are two paths between nodes s and t and $c(P_1) \leq c(P_2)$ then $c(P_1) <_{lex} c(P_2)$.

・ロト ・同ト ・ヨト ・

> Algorithm (Multiobjective label setting algorithm) Input: A digraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with p arc costs. Initialization: Create label $\mathcal{L} = (0, \dots, 0, 0, 0, 1)$ at node s and let $\mathcal{TL} := \{L\}$. While $T\mathcal{L} \neq \emptyset$ do Let label $L = (c^1, ..., c^p, v_h, l, k)$ of node v_i be the lexicographically smallest label in $\mathcal{T}\mathcal{L}$ Remove L from TL and add it to PL. For all $v_i \in \mathcal{V}$ such that $(v_i, v_i) \in \mathcal{A}$ do Create label $L' = (c^1 + c^1(v_i, v_i), \dots, c^p + c^p(v_i, v_i), v_i, k, t)$ as the next label at node v_i and add it to $T\mathcal{L}$. Delete all temporary labels of node v_i dominated by L', delete L' if it is dominated by another label of node v_i . End for. End while. Use the predecessor labels in the permanent labels to recover all efficient paths from s to other nodes of \mathcal{G} . Output: All efficient paths from node s to all other nodes of \mathcal{G} .

nan

Multiobjective Label Setting Algorithm

Matthias Ehrgott MOCO Introduction

・ロット 4 日マ 4 田マ 4

Multiobjective Label Setting Algorithm

Matthias Ehrgott

MOCO Introduction

Multiobjective Label Correcting Algorithm

- Label setting fails if negative arc lengths are permitted
- Negative cycles C
 - Case 1: If ∑_{a∈C} c^k_a < 0 and ∑_{a∈C} c^j_a > 0 for j ≠ k there are infinitely many efficient paths
 - Case 2: If $\sum_{a \in C} c_a \leq 0$ there is no efficient path
- A label correcting algorithm is required
- Let $\mathcal{L}(i, k)$ be set of labels at node *i* in iteration *k*

A (10) < (10) < (10) </p>

Multiobjective Label Correcting Algorithm

- Label setting fails if negative arc lengths are permitted
- Negative cycles C
 - Case 1: If $\sum_{a \in C} c_a^k < 0$ and $\sum_{a \in C} c_a^j > 0$ for $j \neq k$ there are infinitely many efficient paths
 - Case 2: If $\sum_{a \in C} c_a \leq 0$ there is no efficient path
- A label correcting algorithm is required
- Let $\mathcal{L}(i, k)$ be set of labels at node *i* in iteration *k*

- 4 同 1 - 4 回 1 - 4 回 1
Multiobjective Label Correcting Algorithm

- Label setting fails if negative arc lengths are permitted
- Negative cycles C
 - Case 1: If $\sum_{a \in C} c_a^k < 0$ and $\sum_{a \in C} c_a^j > 0$ for $j \neq k$ there are infinitely many efficient paths
 - Case 2: If $\sum_{a \in C} c_a \leq 0$ there is no efficient path
- A label correcting algorithm is required
- Let $\mathcal{L}(i, k)$ be set of labels at node *i* in iteration *k*

- 4 同 6 4 日 6 4 日 6

Multiobjective Label Correcting Algorithm

- Label setting fails if negative arc lengths are permitted
- Negative cycles C
 - Case 1: If $\sum_{a \in C} c_a^k < 0$ and $\sum_{a \in C} c_a^j > 0$ for $j \neq k$ there are infinitely many efficient paths
 - Case 2: If $\sum_{a \in C} c_a \leq 0$ there is no efficient path
- A label correcting algorithm is required
- Let $\mathcal{L}(i, k)$ be set of labels at node *i* in iteration *k*

イロト イポト イヨト イヨト

Multiobjective Label Correcting Algorithm

- Label setting fails if negative arc lengths are permitted
- Negative cycles C
 - Case 1: If $\sum_{a \in C} c_a^k < 0$ and $\sum_{a \in C} c_a^j > 0$ for $j \neq k$ there are infinitely many efficient paths
 - Case 2: If $\sum_{a \in C} c_a \leq 0$ there is no efficient path
- A label correcting algorithm is required

• Let $\mathcal{L}(i, k)$ be set of labels at node *i* in iteration *k*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multiobjective Label Correcting Algorithm

- Label setting fails if negative arc lengths are permitted
- Negative cycles C
 - Case 1: If $\sum_{a \in C} c_a^k < 0$ and $\sum_{a \in C} c_a^j > 0$ for $j \neq k$ there are infinitely many efficient paths
 - Case 2: If $\sum_{a \in C} c_a \leq 0$ there is no efficient path
- A label correcting algorithm is required
- Let $\mathcal{L}(i, k)$ be set of labels at node *i* in iteration *k*

イロト イポト イヨト イヨト

Algorithm (Multiobjective label correcting algorithm)

Input: A digraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with p arc costs. Initialization: Set $d_{ii} := (0, ..., 0)$ for i = 1, ..., n. Set $d_{ii} := (\infty, \dots, \infty)$ if $v_i \neq v_i$ and $(v_i, v_i) \notin A$. Set $d_{ii} := (c^1(v_i, v_i), \ldots, c^p(v_i, v_i))$ otherwise. Set $\mathcal{L}(i, 1) := \{d_{1i}\}, i = 1, \dots, n.$ For k := 1 to n - 1 do For i := 1 to n do $\mathcal{L}(i,k+1) := \min igcup_{j=1}^{''}ig\{d_{ji}+l_j^k: l_j^k \in \mathcal{L}(j,k)ig\}$ End for. If $\mathcal{L}(i, k+1) = \mathcal{L}(i, k)$ for all i = 1, ..., n then If k = n - 1 then STOP, a negative cycle exists. STOP

End for.

Output: All efficient paths from node v_1 to all other nodes.

Multiobjective Label Correcting Algorithm

Multiobjective Label Correcting Algorithm

< 4 ₽ > < E

-

Multiobjective Label Correcting Algorithm

Multiobjective Label Correcting Algorithm

< A > <

The Multiobjective Spanning Tree Problem

• Graph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with edge costs $c_{ij}^k, k = 1, \dots, p$; $(i, j) \in \mathcal{E}$

• Find efficient spanning trees of \mathcal{G} :

$$\min_{T\in\mathcal{T}}\sum_{[i,j]\in\mathcal{T}}c_{ij}$$

where ${\mathcal T}$ is set of all spanning trees of ${\mathcal G}$

The Multiobjective Spanning Tree Problem

- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ with edge costs $c_{ij}^k, k = 1, \dots, p$; $(i, j) \in \mathcal{E}$
- Find efficient spanning trees of \mathcal{G} :

$$\min_{T\in\mathcal{T}}\sum_{[i,j]\in\mathcal{T}}c_{ij}$$

where ${\mathcal T}$ is set of all spanning trees of ${\mathcal G}$

▲□► ▲ □► ▲

The Multiobjective Spanning Tree Problem

Theorem (Hamacher and Ruhe 1994)

T efficient spanning tree of \mathcal{G}

• Let $e \in \mathcal{E}(T)$ be an edge of T. Let $(\mathcal{V}(T_1), \mathcal{E}(T_1))$ and $(\mathcal{V}(T_2), \mathcal{E}(T_2))$ be the two connected components of $\mathcal{G} \setminus \{e\}$. Let $C(e) := \{f = (v_i, v_j) \in \mathcal{E} :$ $v_i \in \mathcal{V}(T_1), v_j \in \mathcal{V}(T_2)\}$ be the cut defined by deleting e. Then $c(e) \in \min\{c(f) :$ $f \in C(e)\}$.

The Multiobjective Spanning Tree Problem

Theorem (Hamacher and Ruhe 1994)

T efficient spanning tree of *G* • Let $f \in \mathcal{E} \setminus \mathcal{E}(T)$ and let P(f) be the unique path in *T* connecting the end nodes of *f*. Then $c(f) \leq c(e)$ does not hold for any $e \in P(f)$.

The Multiobjective Spanning Tree Problem

Algorithm (Prim's spanning tree algorithm)

Input: A graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 with p edge costs.
 $\mathcal{T}_0 := \{(\{1\}, \emptyset)\}$
For $k := 1$ to $n - 1$ do
 $\mathcal{T}_k := \{\mathcal{E}(T) \cup \{e_j\} : T \in \mathcal{T}_{k-1}, e_j \in \operatorname{argmin}\{c(e) = c([v_i, v_j]) : v_i \in \mathcal{V}(T), v_j \in \mathcal{V} \setminus \mathcal{V}(T)\}\}$
End for
 $\mathcal{T}_{n-1} := \operatorname{argmin}\{c(T) : T \in \mathcal{T}_{n-1}\}$

Output: T_{n-1} , all efficient spanning trees of G.

(日)

The Multiobjective Spanning Tree Problem

Matthias Ehrgott MOCO Introduction

(1)

Image: A math a math

The Multiobjective Spanning Tree Problem

Image: A math a math

-

Matthias Ehrgott MOCO Introduction

The Multiobjective Spanning Tree Problem

< □ > < 同 > <

Э

э

The Multiobjective Spanning Tree Problem

The Multiobjective Spanning Tree Problem

Overview

- Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- 7 Conclusion

1 →

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)}

Find lexicographic solutions
Recursively:

2 Recursively:

Calculate λ

Solve $\min_{x \in X} \lambda' Cx$

• Phase 2: Compute X_{NE}

Solve by triangle

Use neighborhood (wrong)

Use constraints (bad)

Use variable fixing (possible)

Use ranking (good)

< 17 ▶

The Two Phase Method with 2 Objectives

< 17 ▶

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF}

< 同 → < 目

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF}

< □ > <

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF} Solve by triangle

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF} Solve by triangle ② Use neighborhood (wrong)

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF} Solve by triangle ② Use neighborhood (wrong) Output States (bad)

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF} Solve by triangle ② Use neighborhood (wrong) Output States (bad) Use variable fixing (possible)

The Two Phase Method with 2 Objectives

• Phase 1: Compute X_{SE(1)} Find lexicographic solutions 2 Recursively: Calculate λ Solve $\min_{x \in X} \lambda^T C x$ • Phase 2: Compute X_{NF} Solve by triangle ② Use neighborhood (wrong) Output States (bad) Use variable fixing (possible) Use ranking (good)

Formulation and Definitions of Optimality The Multiobjective Shortest Path and Spanning Tree Problems The Two Phase Method Branch and Bound

Enumeration Problems

Finding maximal complete set:

- Enumeration to find all optimal solutions of min_{$x \in X$} $\lambda^T C x$
- Enumeration to find all $x \in X_{NF}$ with $Cx = y \in Y_{ND}$
- Finding minimal complete set:

Matthias Ehrgott

Enumeration Problems

- Finding maximal complete set:
 - Enumeration to find all optimal solutions of $\min_{x \in X} \lambda^T C x$
- Enumeration to find all x ∈ X_{NE} with Cx = y ∈ Y_{ND}
 Finding minimal complete set:

Enumeration to find X_{SE2}

Matthias Ehrgott

MOCO Introduction

Enumeration Problems

- Finding maximal complete set:
 - Enumeration to find all optimal solutions of $\min_{x \in X} \lambda^T C x$
 - Enumeration to find all $x \in X_{NE}$ with $Cx = y \in Y_{ND}$

• Finding minimal complete set:

Enumeration to find X_{SE}

Enumeration Problems

- Finding maximal complete set:
 - Enumeration to find all optimal solutions of $\min_{x \in X} \lambda^T C x$
 - Enumeration to find all $x \in X_{NE}$ with $Cx = y \in Y_{ND}$
- Finding minimal complete set:
 - Enumeration to find X_{SE2}

Matthias Ehrgott

MOCO Introduction

Enumeration Problems

- Finding maximal complete set:
 - Enumeration to find all optimal solutions of $\min_{x \in X} \lambda^T C x$
 - Enumeration to find all $x \in X_{NE}$ with $Cx = y \in Y_{ND}$
- Finding minimal complete set:
 - Enumeration to find X_{SE2}

Bounds on $\lambda^T Cx$ in Phase Two

 $\{x^i: 0 \leq i \leq q\}$ candidates for X_{NE} sorted by increasing z^1 in $\Delta(x^r, x^s)$

$$\begin{split} \gamma &:= & \max_{i=0}^{q-1} \{\lambda_1 z_1(x^{i+1}) + \lambda_2 z_2(x^i)\} \\ \beta_0 &:= & \max\left\{\gamma, \lambda^1 z^1(x^0) + \lambda^2 z^2(x'), \lambda^1 z^1(x^s) + \lambda^2 z^2(x^q)\right\} \end{split}$$

Bounds on $\lambda^T Cx$ in Phase Two

 $\{x^i: 0 \leq i \leq q\}$ candidates for X_{NE} sorted by increasing z^1 in $\Delta(x^r, x^s)$

$$\begin{split} \delta_1 &:= & \max_{i=0}^{q} \{\lambda^1 z^1(x^i) + \lambda^2 z^2(x^i)\} \\ \delta_2 &:= & \max_{i=1}^{q} \{\lambda^1 (z^1(x^i) - 1) + \lambda^2 (z^2(x^{i-1}) - 1)\} \\ \beta_1 &:= & \max\left\{\delta_1, \delta_2, \lambda^1 (z^1(x^0) - 1) + \lambda^2 (z^2(x^r) - 1), \lambda^1 (z^1(x^s) - 1) + \lambda^2 (z^2(x^q) - 1)\right\} \end{split}$$

Bounds on $\lambda^T Cx$ in Phase Two

 $\{x^i : 0 \leq i \leq q\} \text{ candidates for } X_{NE} \text{ sorted by increasing } z^1 \text{ in } \Delta(x^r, x^s)$ $\beta_2 := \max \left\{ \delta_2, \lambda^1(z^1(x^0) - 1) + \lambda^2(z^2(x^r) - 1), \lambda^1(z^1(x^s) - 1) + \lambda^2(z^2(x^n) - 1) \right\}$

Matthias Ehrgott

MOCO Introduction

Two Phase Algorithm for Biobjective Assignment

Przybylski et al. 2006:

- Hungarian Method for $\min_{x \in X} \lambda^T C x$
- Enumeration of all optimal solutions of $\min_{x \in X} \lambda^T C x$ (Fukuda and Matsui 1992)
- Ranking of (non-optimal) solutions of $\min_{x \in X} \lambda^T Cx$ (Chegireddy and Hamacher 1987)

(4 回 1) (4 回 1) (4

Two Phase Algorithm for Biobjective Assignment

Przybylski et al. 2006:

- Hungarian Method for $\min_{x \in X} \lambda^T C x$
- Enumeration of all optimal solutions of min_{x∈X} λ^TCx (Fukuda and Matsui 1992)
- Ranking of (non-optimal) solutions of $\min_{x \in X} \lambda^T Cx$ (Chegireddy and Hamacher 1987)

- 日本 - マン・

Two Phase Algorithm for Biobjective Assignment

Przybylski et al. 2006:

- Hungarian Method for $\min_{x \in X} \lambda^T C x$
- Enumeration of all optimal solutions of $\min_{x \in X} \lambda^T C x$ (Fukuda and Matsui 1992)
- Ranking of (non-optimal) solutions of $\min_{x \in X} \lambda^T Cx$ (Chegireddy and Hamacher 1987)

- 4 同 ト - 4 三 ト - 4

Two Phase Algorithm for Biobjective Assignment

Przybylski et al. 2006:

- Hungarian Method for $\min_{x \in X} \lambda^T C x$
- Enumeration of all optimal solutions of min_{x∈X} λ^TCx (Fukuda and Matsui 1992)
- Ranking of (non-optimal) solutions of $\min_{x \in X} \lambda^T Cx$ (Chegireddy and Hamacher 1987)

Two Phase Algorithm for Biobjective Assignment

Results for 100 \times 100 (1 GHz, 512 MB RAM):

Range of c_{ij}^k	Variable Fixing	Seek & Cut	Ranking
[0, 20]	14049.17	2251.72	228.26
[0, 40]	×	17441.35	225.06
[0, 60]	×	38553.18	399.65
[0, 80]	×	53747.45	721.08
[0, 100]	×	60227.31	711.97

< ロ > < 同 > < 三 > < 三 >

Two Phase Algorithm for Biobjective Assignment

Comparison with CPLEX 9.0 using constraints (3.4 GHz, 4 GB RAM)

Range of c_{ij}^k	CPLEX 9.0	Ranking
[0, 20]	200.63	85.58
[0, 40]	512.96	83.63
[0, 60]	1730.65	149.73
[0, 80]	3766.00	274.06
[0, 100]	4822.00	275.09

- 4 同 ト - 4 三 ト - 4

3.5

Two Phase Algorithm for Biobjective Assignment

• Objective values of an AP with $c_{ij} \in \{0, \ldots, r-1\}$

• Proof by Przybylski and Bourdon 2006: $\mu = \frac{n(r-1)}{2}, \sigma^2 = \frac{n(r^2-1)}{12}$

Matthias Ehrgott

MOCO Introduction

(日) (同) (三) (

Two Phase Algorithm for Biobjective Assignment

• Objective values of an AP with $c_{ij} \in \{0, \ldots, r-1\}$

• Proof by Przybylski and Bourdon 2006: $\mu = \frac{n(r-1)}{2}, \sigma^2 = \frac{n(r^2-1)}{12}$

- Hyperplane defined by 3 points, possibly 6 lexicographically optimal points
- Normal vector defined by 3 nondominated points may not be positive

$$C^{1} = \begin{pmatrix} 3 & 6 & 4 & 5 \\ 2 & 3 & 5 & 4 \\ 3 & 5 & 4 & 2 \\ 4 & 5 & 3 & 6 \end{pmatrix} , C^{2} = \begin{pmatrix} 2 & 3 & 5 & 4 \\ 5 & 3 & 4 & 3 \\ 5 & 2 & 6 & 4 \\ 4 & 5 & 2 & 5 \end{pmatrix} , C^{3} = \begin{pmatrix} 4 & 2 & 4 & 2 \\ 4 & 2 & 4 & 6 \\ 4 & 2 & 6 & 3 \\ 2 & 4 & 5 & 3 \end{pmatrix}$$

- 3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
- Normal vector $\lambda = (1, -40, -28)$ yields (16,20,16)
- Normal vector λ = (-1, 40, 28) yields (11,11,14), (15,9,17) and (19,14,10)
- Supported non-dominated point (13,16,11) is not found
 (□ → (@) (□) (♡)

- Hyperplane defined by 3 points, possibly 6 lexicographically optimal points
- Normal vector defined by 3 nondominated points may not be positive

$$C^{1} = \begin{pmatrix} 3 & 6 & 4 & 5 \\ 2 & 3 & 5 & 4 \\ 3 & 5 & 4 & 2 \\ 4 & 5 & 3 & 6 \end{pmatrix} \ , \ C^{2} = \begin{pmatrix} 2 & 3 & 5 & 4 \\ 5 & 3 & 4 & 3 \\ 5 & 2 & 6 & 4 \\ 4 & 5 & 2 & 5 \end{pmatrix} \ , \ C^{3} = \begin{pmatrix} 4 & 2 & 4 & 2 \\ 4 & 2 & 4 & 6 \\ 4 & 2 & 6 & 3 \\ 2 & 4 & 5 & 3 \end{pmatrix}$$

- 3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
- Normal vector $\lambda = (1, -40, -28)$ yields (16,20,16)
- Normal vector $\lambda = (-1, 40, 28)$ yields (11,11,14), (15,9,17) and (19,14,10)
- Supported non-dominated point (13,16,11) is not found

- Hyperplane defined by 3 points, possibly 6 lexicographically optimal points
- Normal vector defined by 3 nondominated points may not be positive

$$C^{1} = \begin{pmatrix} 3 & 6 & 4 & 5 \\ 2 & 3 & 5 & 4 \\ 3 & 5 & 4 & 2 \\ 4 & 5 & 3 & 6 \end{pmatrix} \ , \ C^{2} = \begin{pmatrix} 2 & 3 & 5 & 4 \\ 5 & 3 & 4 & 3 \\ 5 & 2 & 6 & 4 \\ 4 & 5 & 2 & 5 \end{pmatrix} \ , \ C^{3} = \begin{pmatrix} 4 & 2 & 4 & 2 \\ 4 & 2 & 4 & 6 \\ 4 & 2 & 6 & 3 \\ 2 & 4 & 5 & 3 \end{pmatrix}$$

- 3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
- Normal vector $\lambda = (1, -40, -28)$ yields (16,20,16)
- Normal vector $\lambda = (-1, 40, 28)$ yields (11,11,14), (15,9,17) and (19,14,10)
- Supported non-dominated point (13,16,11) is not found

- Hyperplane defined by 3 points, possibly 6 lexicographically optimal points
- Normal vector defined by 3 nondominated points may not be positive

$$C^{1} = \begin{pmatrix} 3 & 6 & 4 & 5 \\ 2 & 3 & 5 & 4 \\ 3 & 5 & 4 & 2 \\ 4 & 5 & 3 & 6 \end{pmatrix} \ , \ C^{2} = \begin{pmatrix} 2 & 3 & 5 & 4 \\ 5 & 3 & 4 & 3 \\ 5 & 2 & 6 & 4 \\ 4 & 5 & 2 & 5 \end{pmatrix} \ , \ C^{3} = \begin{pmatrix} 4 & 2 & 4 & 2 \\ 4 & 2 & 4 & 6 \\ 4 & 2 & 6 & 3 \\ 2 & 4 & 5 & 3 \end{pmatrix}$$

- 3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
- Normal vector $\lambda = (1, -40, -28)$ yields (16,20,16)
- Normal vector $\lambda = (-1, 40, 28)$ yields (11,11,14), (15,9,17) and (19,14,10)
- Supported non-dominated point (13,16,11) is not found

- Hyperplane defined by 3 points, possibly 6 lexicographically optimal points
- Normal vector defined by 3 nondominated points may not be positive

$$C^{1} = \begin{pmatrix} 3 & 6 & 4 & 5 \\ 2 & 3 & 5 & 4 \\ 3 & 5 & 4 & 2 \\ 4 & 5 & 3 & 6 \end{pmatrix} \ , \ C^{2} = \begin{pmatrix} 2 & 3 & 5 & 4 \\ 5 & 3 & 4 & 3 \\ 5 & 2 & 6 & 4 \\ 4 & 5 & 2 & 5 \end{pmatrix} \ , \ C^{3} = \begin{pmatrix} 4 & 2 & 4 & 2 \\ 4 & 2 & 4 & 6 \\ 4 & 2 & 6 & 3 \\ 2 & 4 & 5 & 3 \end{pmatrix}$$

- 3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
- Normal vector $\lambda = (1, -40, -28)$ yields (16,20,16)
- Normal vector $\lambda = (-1, 40, 28)$ yields (11,11,14), (15,9,17) and (19,14,10)
- Supported non-dominated point (13,16,11) is not found

- Hyperplane defined by 3 points, possibly 6 lexicographically optimal points
- Normal vector defined by 3 nondominated points may not be positive

$$C^{1} = \begin{pmatrix} 3 & 6 & 4 & 5 \\ 2 & 3 & 5 & 4 \\ 3 & 5 & 4 & 2 \\ 4 & 5 & 3 & 6 \end{pmatrix} \ , \ C^{2} = \begin{pmatrix} 2 & 3 & 5 & 4 \\ 5 & 3 & 4 & 3 \\ 5 & 2 & 6 & 4 \\ 4 & 5 & 2 & 5 \end{pmatrix} \ , \ C^{3} = \begin{pmatrix} 4 & 2 & 4 & 2 \\ 4 & 2 & 4 & 6 \\ 4 & 2 & 6 & 3 \\ 2 & 4 & 5 & 3 \end{pmatrix}$$

- 3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
- Normal vector $\lambda = (1, -40, -28)$ yields (16,20,16)
- Normal vector $\lambda = (-1, 40, 28)$ yields (11,11,14), (15,9,17) and (19,14,10)
- Supported non-dominated point (13,16,11) is not found

Weight Space Decomposition

$$\begin{split} & \mathcal{W}^{0} \quad := \quad \left\{ \lambda : \lambda_{1} > 0, \dots, \lambda_{p} > 0, \lambda_{p} = 1 - \sum_{k=1}^{p-1} \lambda_{k} \right\} \\ & \mathcal{W}^{0}(y) \quad := \quad \{\lambda \in \mathcal{W}^{0} : \lambda^{T} y \leqq \lambda^{t} Y' \text{ for all } y' \in Y \} \end{split}$$

Proposition

- If y is supported but not extreme then W⁰(y) = ∩^k_{i=1} W⁰(yⁱ) where yⁱ, i ∈ {1,...,k} are the extreme points of the face of conv(Y) that contains y in its relative interior.
- **2** Let y be a supported point, then $W^0(y) = \{\lambda \in W^0 : \lambda^T y \leq \lambda^T y' \text{ for all supported extreme points } y'.$
- W⁰(y) is a nonempty convex polytope if y is supported.

Weight Space Decomposition

$$\begin{split} & W^0 \quad := \quad \left\{ \lambda : \lambda_1 > 0, \dots, \lambda_p > 0, \lambda_p = 1 - \sum_{k=1}^{p-1} \lambda_k \right\} \\ & W^0(y) \quad := \quad \{\lambda \in W^0 : \lambda^T y \leqq \lambda^t Y' \text{ for all } y' \in Y \} \end{split}$$

Proposition

- If y is supported but not extreme then W⁰(y) = ∩^k_{i=1} W⁰(yⁱ) where yⁱ, i ∈ {1,...,k} are the extreme points of the face of conv(Y) that contains y in its relative interior.
- **2** Let y be a supported point, then $W^0(y) = \{\lambda \in W^0 : \lambda^T y \leq \lambda^T y' \text{ for all supported extreme points } y'.$
- W⁰(y) is a nonempty convex polytope if y is supported.

Weight Space Decomposition

$$egin{aligned} & \mathcal{W}^0 & := & \left\{ \lambda: \lambda_1 > 0, \dots, \lambda_p > 0, \lambda_p = 1 - \sum_{k=1}^{p-1} \lambda_k
ight\} \ & \mathcal{W}^0(y) & := & \{\lambda \in \mathcal{W}^0: \lambda^T y \leqq \lambda^t Y' ext{ for all } y' \in Y \} \end{aligned}$$

Proposition

- If y is supported but not extreme then W⁰(y) = ∩^k_{i=1} W⁰(yⁱ) where yⁱ, i ∈ {1,...,k} are the extreme points of the face of conv(Y) that contains y in its relative interior.
- Let y be a supported point, then $W^0(y) = \{\lambda \in W^0 : \lambda^T y \leq \lambda^T y' \text{ for all supported extreme points } y'.$

W⁰(y) is a nonempty convex polytope if y is supported.

Weight Space Decomposition

$$egin{aligned} & \mathcal{W}^0 & := & \left\{ \lambda: \lambda_1 > 0, \dots, \lambda_p > 0, \lambda_p = 1 - \sum_{k=1}^{p-1} \lambda_k
ight\} \ & \mathcal{W}^0(y) & := & \{\lambda \in \mathcal{W}^0: \lambda^T y \leqq \lambda^t Y' ext{ for all } y' \in Y \} \end{aligned}$$

Proposition

- If y is supported but not extreme then W⁰(y) = ∩^k_{i=1} W⁰(yⁱ) where yⁱ, i ∈ {1,...,k} are the extreme points of the face of conv(Y) that contains y in its relative interior.
- Let y be a supported point, then W⁰(y) = {λ ∈ W⁰ : λ^Ty ≤ λ^Ty' for all supported extreme points y'.

• $W^0(y)$ is a nonempty convex polytope if y is supported.

Weight Space Decomposition

Proposition

- If y is a supported extreme point then W⁰(y) is a polytope of dim p − 1.
- ② Let y^1 and y^2 be two supported points and $W^0(y^1) \cap W^0(y^2) \neq \emptyset$ then $W^0(y^1)$ and $W^0(y^2)$ have a common face.

Two supported extreme points y^1 and y^2 are adjacent if $W^0(y^1) \cap W^0(y^2)$ is a polytope of dimension p-2

Proposition

Let $\{y^1, \ldots, y^n\}$ be the set of supported extreme points, then $W^0 = \bigcup_{i=1}^n W^0(y^i).$

Weight Space Decomposition

Proposition

- If y is a supported extreme point then W⁰(y) is a polytope of dim p − 1.
- Let y¹ and y² be two supported points and W⁰(y¹) ∩ W⁰(y²) ≠ Ø then W⁰(y¹) and W⁰(y²) have a common face.

Two supported extreme points y^1 and y^2 are adjacent if $W^0(y^1) \cap W^0(y^2)$ is a polytope of dimension p-2

Proposition

Let $\{y^1, \ldots, y^n\}$ be the set of supported extreme points, then $W^0 = \bigcup_{i=1}^n W^0(y^i).$

Weight Space Decomposition

Proposition

- If y is a supported extreme point then W⁰(y) is a polytope of dim p − 1.
- Let y¹ and y² be two supported points and W⁰(y¹) ∩ W⁰(y²) ≠ Ø then W⁰(y¹) and W⁰(y²) have a common face.

Two supported extreme points y^1 and y^2 are adjacent if $W^0(y^1) \cap W^0(y^2)$ is a polytope of dimension p-2

Proposition

Let $\{y^1, \ldots, y^n\}$ be the set of supported extreme points, then $W^0 = \bigcup_{i=1}^n W^0(y^i)$.

Weight Space Decomposition

Proposition

- If y is a supported extreme point then W⁰(y) is a polytope of dim p − 1.
- Let y¹ and y² be two supported points and W⁰(y¹) ∩ W⁰(y²) ≠ Ø then W⁰(y¹) and W⁰(y²) have a common face.

Two supported extreme points y^1 and y^2 are adjacent if $W^0(y^1) \cap W^0(y^2)$ is a polytope of dimension p-2

Proposition

Let $\{y^1, \ldots, y^n\}$ be the set of supported extreme points, then $W^0 = \bigcup_{i=1}^n W^0(y^i).$

Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

$$Y_{SN1} \subseteq S \iff W^0 = \bigcup_{y \in S} W^0(y).$$

- Let S be a set of supported points
- Let $W^0_p(y) = \left\{ \lambda \in W^0 : \langle \lambda, y \rangle \le \langle \lambda, y^* \rangle \text{ for all } y^* \in S \right\}$
- $W^0(y) \subseteq W^0_p(y)$ for all $y \in S$
- $W^0 = \bigcup_{y \in S} W^0_p(y)$

Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

$$Y_{SN1} \subseteq S \iff W^0 = \bigcup_{y \in S} W^0(y).$$

- Let S be a set of supported points
- Let $W^0_p(y) = \left\{ \lambda \in W^0 : \langle \lambda, y \rangle \le \langle \lambda, y^* \rangle \text{ for all } y^* \in S \right\}$
- $W^0(y) \subseteq W^0_p(y)$ for all $y \in S$
- $W^0 = \bigcup_{y \in S} W^0_p(y)$

Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

$$Y_{SN1} \subseteq S \iff W^0 = \bigcup_{y \in S} W^0(y).$$

- Let S be a set of supported points
- Let $W^0_p(y) = \left\{ \lambda \in W^0 : \langle \lambda, y \rangle \le \langle \lambda, y^* \rangle \text{ for all } y^* \in S \right\}$
- $W^0(y) \subseteq W^0_p(y)$ for all $y \in S$
- $W^0 = \bigcup_{y \in S} W^0_p(y)$

Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

$$Y_{SN1} \subseteq S \iff W^0 = \bigcup_{y \in S} W^0(y).$$

- Let S be a set of supported points
- Let $W^0_p(y) = \left\{ \lambda \in W^0 : \langle \lambda, y \rangle \leq \langle \lambda, y^* \rangle \text{ for all } y^* \in S \right\}$

•
$$W^0(y) \subseteq W^0_p(y)$$
 for all $y \in S$

• $W^0 = \bigcup_{y \in S} W^0_p(y)$

Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

$$Y_{SN1} \subseteq S \iff W^0 = \bigcup_{y \in S} W^0(y).$$

- Let S be a set of supported points
- Let $W^0_p(y) = \left\{ \lambda \in W^0 : \langle \lambda, y \rangle \leq \langle \lambda, y^* \rangle \text{ for all } y^* \in S \right\}$

•
$$W^0(y) \subseteq W^0_p(y)$$
 for all $y \in S$

• $W^0 = \bigcup_{y \in S} W^0_p(y)$

(日) (同) (三) (

Algorithm (Phase 1 with 3 Objectives)

- Initialize S with the lexicographically optimal points
- **2** For all $\hat{y} \in S$
 - Compute $W_p^0(\hat{y})$
 - Investigate all facets F of $W_p^0(\hat{y})$ defined by $\lambda^T \hat{y} = \lambda^T y'$ for
 - $y' \in S$ to determine whether F is also a facet of $W^0(\hat{y})$
 - If ŷ minimizes λ^Ty for all λ ∈ F then ŷ and y' are adjacent and F is the common face of W⁰(ŷ) and W⁰(y')
 - If there are $y^* \in Y$ and $\lambda \in F$ such that $\lambda^T y^* < \lambda^T y$ then $W^0(\hat{y}) \subset W^0_p(\hat{y})$ and y^* is added to S and $W^0_p(\hat{y})$ is updated

An Example

$$C^{1} = \begin{pmatrix} 2 & 5 & 4 & 7 \\ 3 & 3 & 5 & 7 \\ 3 & 8 & 4 & 2 \\ 6 & 5 & 2 & 5 \end{pmatrix}, \ C^{2} = \begin{pmatrix} 3 & 3 & 6 & 2 \\ 5 & 3 & 7 & 3 \\ 5 & 2 & 7 & 4 \\ 4 & 6 & 3 & 5 \end{pmatrix}, \ C^{3} = \begin{pmatrix} 4 & 2 & 5 & 3 \\ 5 & 3 & 4 & 3 \\ 4 & 3 & 5 & 2 \\ 6 & 4 & 7 & 3 \end{pmatrix}$$

Lexicographically optimal points: y¹ = (9, 13, 16), y² = (19, 11, 17), y³ = (18, 20, 13)
S = {y¹, y², y³}

< ロ > < 同 > < 三 > < 三 >

An Example

Matthias Ehrgott

E

An Example

Matthias Ehrgott

문 문 문

An Example

Matthias Ehrgott

E

An Example

Matthias Ehrgott

문 🕨 🗉 문

An Example

Matthias Ehrgott

문 🕨 🗉 문

An Example

Matthias Ehrgott

MOCO Introduction

문 🕨 🗉 문
An Example

Matthias Ehrgott

문 🕨 🗉 문

An Example

E

Numerical Results

Size	$ Y_N $	SC 2004	T-P 2003	LZT 2005	2 Phase
5	12	0.15	0.04	0.15	0.00
10	221	99865.00	97.30	41.70	0.08
15	483	×	544.53	172.29	0.36
20	1942	×	×	1607.92	4.51
25	3750	×	×	5218.00	30.13
30	5195	×	×	15579.00	55.87
35	10498	×	×	101751.00	109.96
40	14733	×	×	×	229.05
45	23941	×	×	×	471.60
50	29193	×	×	×	802.68

Matthias Ehrgott MOCO Introduction

Э

• Two phase method respects problem structure

- Successful for assignment, shortest path, network flow
- Requires ranking algorithm, which is available for most polynomially solvable problems

< 17 ▶

- Two phase method respects problem structure
- Successful for assignment, shortest path, network flow
- Requires ranking algorithm, which is available for most polynomially solvable problems

▲ 同 ▶ ▲ 王

- Two phase method respects problem structure
- Successful for assignment, shortest path, network flow
- Requires ranking algorithm, which is available for most polynomially solvable problems

< A > <

Overview

- Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method

5 Scalarization

6 Branch and Bound

Conclusion

14 ₽

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completeness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completeness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completeness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completeness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

- Correctness: Optimal solutions are (weakly) efficient
- Completeness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

- 日本 - マン・

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

- Correctness: Optimal solutions are (weakly) efficient
- Completeness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

(4月) (1日) (4

Scalarization Methods

- Weighted sum: $\min_{x \in X} \left\{ \lambda^T z(x) \right\}$
- ε -constraint: $\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$
- Weighted Chebychev:

$$\min_{x \in X} \left\{ \max_{k=1,\dots,p} \nu_k(z_k(x) - y_k^I) \right\}$$

 Э

naa

Scalarization Methods

- Weighted sum: $\min_{x \in X} \left\{ \lambda^T z(x) \right\}$
- ε -constraint: $\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$

• Weighted Chebychev: $\min_{x \in X} \left\{ \max_{k=1,\dots,p} \nu_k(z_k(x) - y'_k) \right\}$

Scalarization Methods

- Weighted sum: $\min_{x \in X} \left\{ \lambda^T z(x) \right\}$
- ε -constraint: $\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$
- Weighted Chebychev: $\min_{x \in X} \left\{ \max_{k=1,\dots,p} \nu_k (z_k(x) - y_k^l) \right\}$

< 17 ▶

э

э

SQA

General Formulation

$$\min_{x \in X} \quad \left\{ \max_{k=1}^{p} \left[\nu_k (c_k x - \rho_k) \right] + \sum_{k=1}^{p} \left[\lambda_k (c_k x - \rho_k) \right] \right\}$$

subject to $c_k x \le \varepsilon_k \quad k = 1, \dots, p$

Includes	Correct	Complete	Computable	Linear
Weighted sum	+	_	+	+
ε -constraint	+			
Benson	+			
Chebychev	+	(+)	(-)	
Max-ordering	+			
Reference point	+	(+)	(-)	+

Matthias Ehrgott

MOCO Introduction

nar

General Formulation

$\min_{x\in X}$	$\begin{cases} p\\ \max_{k=1} [\nu_k(c$	$[k_k x - \rho_k)] + \sum_{k=1}^p [\lambda_k (c_k x - \rho_k)] $
subject to	$c_k x \leq \varepsilon_k$	$k=1,\ldots,p$

Includes	Correct	Complete	Computable	Linear
Weighted sum	+	-	+	+
ε -constraint	+			
Benson	+			
Chebychev	+	(+)	(-)	
Max-ordering	+			
Reference point	-	(+)	(-)	+

Matthias Ehrgott MOCO

General Formulation

$\min_{x \in X}$ subject to	$\begin{cases} p\\ \max_{k=1} [\nu_k] \\ c_k x \leq \varepsilon_k \end{cases}$	$egin{aligned} & (c_k x - ho_k) \end{bmatrix} \ & k = 1, . \end{aligned}$	$+\sum_{k=1}^{p} [\lambda_k(c_k x + \dots, p$	$-\rho_k)]\bigg\}$
Includes	Correct	Complete	Computable	Linear
Weighted sum	+	-	+	+
ε -constraint	+	+	-	+
Benson	+			
Chebychev	+	(+)	(-)	
Max-ordering	+			
Reference point	+	(+)	(-)	+

Matthias Ehrgott MOCO In

5900

Э

General Formulation

$\min_{x \in X}$ subject to	$\begin{cases} p \\ \max_{k=1} [\nu_k] \\ c_k x \leq \varepsilon_k \end{cases}$	$(c_k x - \rho_k)]$ $k = 1, .$	$+\sum_{k=1}^{p} [\lambda_k(c_k x + \dots, p)]$	$-\rho_k)]\bigg\}$
Includes	Correct	Complete	Computable	Linear
Weighted sum	+	-	+	+
ε -constraint	+	+	-	+
Benson	+	+	-	+
Chebychev	+	(+)	(-)	
Max-ordering	+			
Reference point	+	(+)	(-)	+

Matthias Ehrgott MOCO Introduction

5900

General Formulation

$$\min_{x \in X} \left\{ \max_{k=1}^{p} \left[\nu_k (c_k x - \rho_k) \right] + \sum_{k=1}^{p} \left[\lambda_k (c_k x - \rho_k) \right] \right\}$$
subject to $c_k x \le \varepsilon_k \quad k = 1, \dots, p$

Includes	Correct	Complete	Computable	Linear
Weighted sum	+	-	+	+
ε -constraint	+	+	-	+
Benson	+	+	-	+
Chebychev	+	(+)	(-)	+
Max-ordering	+			
Reference point	-	(+)	(-)	+

5900

General Formulation

$$\min_{x \in X} \left\{ \max_{k=1}^{p} \left[\nu_k (c_k x - \rho_k) \right] + \sum_{k=1}^{p} \left[\lambda_k (c_k x - \rho_k) \right] \right\}$$
subject to $c_k x \le \varepsilon_k \quad k = 1, \dots, p$

Includes	Correct	Complete	Computable	Linear
Weighted sum	+	-	+	+
ε -constraint	+	+	-	+
Benson	+	+	-	+
Chebychev	+	(+)	(-)	+
Max-ordering	+	+	-	+
Reference point	+	(+)	(-)	+

5900

General Formulation

$$\min_{x \in X} \left\{ \max_{k=1}^{p} \left[\nu_k (c_k x - \rho_k) \right] + \sum_{k=1}^{p} \left[\lambda_k (c_k x - \rho_k) \right] \right\}$$
subject to $c_k x \le \varepsilon_k \quad k = 1, \dots, p$

Includes	Correct	Complete	Computable	Linear
Weighted sum	+	-	+	+
ε -constraint	+	+	-	+
Benson	+	+	-	+
Chebychev	+	(+)	(-)	+
Max-ordering	+	+	-	+
Reference point	+	(+)	(-)	+

5900

General Formulation

Theorem (Ehrgott 2005)

- The general scalarization is NP-hard.
- An optimal solution of the Lagrangian dual of the linearized general scalarization is a supported efficient solution.

< - 12 ▶

Method of Elastic Constraints

Method of Elastic Constraints

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

- is correct and complete,
- contains the weighted sum and ε-constraint method as special cases,
- is NP-hard.

... but (often) solvable in practice because

- it "respects" problem structure
- it "limits damage" of ε-constraints

< 口 > < 同

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

- is correct and complete,
- contains the weighted sum and ε-constraint method as special cases,
- is NP-hard.

... but (often) solvable in practice because

- it "respects" problem structure
- it "limits damage" of ε-constraints

< □ > < 同 >

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

- is correct and complete,
- contains the weighted sum and ε-constraint method as special cases,
- is NP-hard.

- ... but (often) solvable in practice because
 - it "respects" problem structure
 - it "limits damage" of ε-constraints

< □ > < 同 >

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

- is correct and complete,
- contains the weighted sum and ε-constraint method as special cases,
- is NP-hard.

- ... but (often) solvable in practice because
 - it "respects" problem structure
 - it "limits damage" of ε -constraints

< □ > < 同 >

Overview

- Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
 - Conclusion

1 →

Multicriteria Branch and Bound

- Ulungu and Teghem 1997, Mavrotas and Diakoulaki 2002
- Branching: As in single objective case
- Bounding: Ideal point of problem at node is dominated by efficient solution
- Branching may be very ineffective
- Use lower and upper bound sets

Multicriteria Branch and Bound

- Ulungu and Teghem 1997, Mavrotas and Diakoulaki 2002
- Branching: As in single objective case
- Bounding: Ideal point of problem at node is dominated by efficient solution
- Branching may be very ineffective
- Use lower and upper bound sets

Multicriteria Branch and Bound

- Ulungu and Teghem 1997, Mavrotas and Diakoulaki 2002
- Branching: As in single objective case
- Bounding: Ideal point of problem at node is dominated by efficient solution
- Branching may be very ineffective
- Use lower and upper bound sets

A.

Multicriteria Branch and Bound

- Ulungu and Teghem 1997, Mavrotas and Diakoulaki 2002
- Branching: As in single objective case
- Bounding: Ideal point of problem at node is dominated by efficient solution
- Branching may be very ineffective
- Use lower and upper bound sets

Multicriteria Branch and Bound

- Ulungu and Teghem 1997, Mavrotas and Diakoulaki 2002
- Branching: As in single objective case
- Bounding: Ideal point of problem at node is dominated by efficient solution
- Branching may be very ineffective
- Use lower and upper bound sets

Multicriteria Branch and Bound

SQA

э

Bound Sets

Ehrgott and Gandibleux 2005:

- Lower bound set L• is \mathbb{R}^{p}_{\geq} -closed • is \mathbb{R}^{p}_{\geq} -bounded • $Y_{N} \subset L + \mathbb{R}^{p}_{\geq}$
 - $L \subset \left(L + \mathbb{R}^p_{\geq}\right)_N$
- ② Upper bound set U
 is ℝ^ℓ-closed
 - is $\mathbb{R}^{\stackrel{\leq}{p}}_{>}$ -bounded
 - $Y_N \in \operatorname{cl}\left[\left(U + \mathbb{R}^p_{\geq}\right)^c\right]$ • $U \subset \left(U + \mathbb{R}^p_{\geq}\right)_{u}$

Bound Sets

Ehrgott and Gandibleux 2005:

- Lower bound set L
 - is \mathbb{R}^{p}_{\geq} -closed
 - is \mathbb{R}^{p}_{\geq} -bounded
 - $Y_N \subset L + \mathbb{R}^p_{\geq}$ • $L \subset \left(L + \mathbb{R}^p_{\geq}\right)_N$
- **2** Upper bound set U
 - is \mathbb{R}_{\geq}^{p} -closed • is \mathbb{R}_{\geq}^{p} -bounded • $Y_{N} \in \operatorname{cl}\left[\left(U + \mathbb{R}_{\geq}^{p}\right)^{c}\right]$ • $U \subset \left(U + \mathbb{R}_{\geq}^{p}\right)_{N}$

Overview

- Formulation and Definitions of Optimality
- 2 Complexity
- 3 The Multiobjective Shortest Path and Spanning Tree Problems
- 4 The Two Phase Method
- 5 Scalarization
- 6 Branch and Bound
- Conclusion

1 →

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound

Conclusion

- MOCO problems as special multiobjective integer programmes
- Distinguish supported and non-supported efficient solutions
- MOCO problems are NP-hard, #P-hard, intractable
- MOCO problems can be solvable in practice
- Shortest path: Label setting and correcting algorithms transferable, i.e. dynamic programming principles work
- Spanning tree: Prim's (and Kruskal's) algorithm transferable, i.e. greedy algorithm works
- Moderate problems: Two phase method works well, ranking algorithm required (assignment, network flow)
- Difficult problems: Scalarization and branch and bound