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Mathematical Formulation

min z(x) = Cx

subject to Ax = b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n

C ∈ Zp×n −→ p objective functions, k = 1, . . . , p

A ∈ Zm×n −→ m constraints, j = 1, . . . ,m

Combinatorial structure: paths, trees, flows, tours, etc.
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Feasible Sets

X = {x ∈ {0, 1}n : Ax = b}
feasible set in decision space

Y = z(X ) = {Cx : x ∈ X}
feasible set in objective space

conv(Y ) + Rp
=
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Lexicographic Optimality

Individual minima
zk(x̂) 5 zk(x) for all x ∈ X

Lexicographic optimality (1)
z(x̂) 5lex z(x) for all x ∈ X

Lexicographic optimality (2)
zπ(x̂) 5lex zπ(x) for all x ∈ X
and some permutation zπ of
(z1, . . . , zp)
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Efficient Solutions

Weakly efficient solutions XwE :
there is no x with z(x) < z(x̂)
z(x̂) is weakly nondominated
YwN := z(XwN)

Efficient solutions XE :
there is no x with z(x) ≤ z(x̂)
z(x̂) is nondominated
YN := z(XE )
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Efficient Solutions

Supported efficient solutions
XSE : There is λ > 0 with
λTCx̂ 5 λTCx for all x ∈ X

Cx̂ is extreme point of
conv(Y ) + Rp

= → XSE1

Cx̂ is in relative interior of
face of conv(Y )+Rp

= → XSE2

Nonsupported efficient solutions
XNE : Cx̂ is in interior of
conv(Y ) + Rp
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Nonsupported Effcient Solutions

Shortest path: 1

2

4

3

(2,0)

(0,2)

(3,3)

(2,0)

(0,2)

YN =

{(
4
0

)
,

(
3
3

)
,

(
0
4

)}

Spanning tree:
1

2

3

(3,0)

(1,1)

(0,3) YN =

{(
4
1

)
,

(
3
3

)
,

(
1
4

)}

Assignment:

1

2

3

1

2

3

(3,0)

(2,2)

(0,3)

(2,2)

(2,0) (0,2)

(2,2)

(0,2) (2,0)

YN =

{(
7
0

)
,

(
4
4

)
,

(
0
7

)}

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

Classification of Efficient Sets

Hansen 1979:

x1, x2 ∈ XE are equivalent if
Cx1 = Cx2

Complete set: X̂ ⊂ XE such
that for all y ∈ YN there is
x ∈ X̂ with z(x) = y

Minimal complete set contains
no equivalent solutions

Maximal complete set contains
all equivalent solutions

XE

XSE XNE

XSE1 XEm XSE2 XNEm

XSE1m
XSE2m
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MOCO Problems Are Hard

Decision problem: Given b ∈ Zp: Does there exist x ∈ X such
that Cx 5 b?

Counting problem: Given b ∈ Zp: How many x ∈ X satisfy
Cx 5 b?

How many efficient solutions (nondominated points) do exist?

Knapsack: Given a1, a2 ∈ Zn and b1, b2 ∈ Z, does there
exist x ∈ {0, 1}n such that (a1)T x 5 b1 and (a2)T x = b2?

Knapsack is NP-complete and #P-complete
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The Unconstrained MOCO Problem

Observation

Multiobjective combinatorial optimization problems are NP-hard,
#P-complete, and intractable.

min
n∑

i=1

ck
i xi k = 1, . . . , p

subject to xi ∈ {0, 1} i = 1, . . . , n
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The Unconstrained MOCO Problem

Does there exist x ∈ {0, 1}n such that (c1)T x 5 d1 and
(c2)T x 5 d2?

With an instance of Knapsack c1 := a1, d1 = b1,
c2 := −a2, d2 := −b2 is a parsimonious transformation

With ck
i := (−1)k2i−1 it holds Y = YN
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Multiobjective Shortest Path Problem

NP-hard: Hansen 1979

• • • •

(a1

1
, 0) (a1

2
, 0)

(0, a
2

1
) (0, a

2

2
)

v0 v1 v2 vn

Exponentially many efficient paths

• • • • • • • •

(1, 0) (2, 0) (2
n−1

2 , 0)

(0, 1) (0, 0) (0, 2) (0, 0) (0, 2
n−1

2 ) (0, 0)

. . .
v1 v2 v3 v4 v5 vn−2 vn−1 vn
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Other Examples

Assignment (NP-hard: Serafini 1986, #P-hard: Neumayer
1994)

Spanning tree (Intractable: Hamacher and Ruhe 1994)

Network flow (Intractable: Ruhe 1988)
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Number of Efficient Solutions

Intractable: XE , even YSN , can be exponential in the size of
the instance

Number of nondominated points for biobjective shortest path
and assignment problems (Raith 2007, Przybylski 2006)

Shortest path Assignment
Nodes Edges |YN | n |YN |
4,902 19,596 6 10 13
4,902 19,596 1,594 20 82
3,000 33,224 15 40 243

14,000 153,742 17 60 470
330,386 1,202,458 21 80 671
330,386 1,202,458 24 100 947
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Number of Efficient Solutions

Empirically often

|XNE | grows exponentially with instance size

|XSE | grows polynomially with instance size

but this depends on numerical values of C
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The Multiobjective Shortest Path Problem

Digraph G = (V,A) with arc costs ck
ij , k = 1, . . . , p, (i , j) ∈ A

Given origin s ∈ V, destination t ∈ V find efficient paths from
s to t:

min
P∈P

∑
(i ,j)∈P

cij

where P is set of all s-t paths

Assume that all ck
ij = 0

Proposition

Let Pst be an efficient path from s to t. Then any subpath Puv

from u to v, where u and v are vertices on Pst is an efficient path
from u to v.
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The Multiobjective Shortest Path Problem

Concatenations of efficient paths need not be efficient!

1

2

3

4

(0, 10) (0, 10)

(1, 9) (1, 9)

(1, 15)

1-3 is efficient, 3-4 is efficient, 1-3-4 is not
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The Multiobjective Shortest Path Problem

For a labelling algorithm we need

Sets of nondominated labels at each node

Store all costs, the predecessor, the label number at the
predecessor, the number of the current label

A list of permanent and temporary labels

Make sure that a permanent label defines an efficient path:
Choose the lexicographically smallest label from temporary list

Lemma

If P1 and P2 are two paths between nodes s and t and
c(P1) ≤ c(P2) then c(P1) <lex c(P2).
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Algorithm (Multiobjective label setting algorithm)
Input: A digraph G = (V,A) with p arc costs.
Initialization: Create label L = (0, . . . , 0, 0, 0, 1) at node s and let T L := {L}.

While T L 6= ∅ do

Let label L = (c1, . . . , cp, vh, l , k) of node vi be the lexicographically
smallest label in T L.
Remove L from T L and add it to PL.
For all vj ∈ V such that (vi , vj) ∈ A do

Create label L′ = (c1 + c1(vi , vj), . . . , c
p + cp(vi , vj), vi , k, t) as the

next label at node vj and add it to T L.
Delete all temporary labels of node vj dominated by L′, delete L′ if
it is dominated by another label of node vj .

End for.

End while.
Use the predecessor labels in the permanent labels to recover all efficient
paths from s to other nodes of G.

Output: All efficient paths from node s to all other nodes of G.
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Multiobjective Label Setting Algorithm

1 2
3

4
5 6(10; 4; 2; 10)(6; 1; 18; 10) (6;2;10;10

) (0; 10; 12; 1)
(4; 0; 0; 3)(1; 4; 8; 1) (5;1;3;7)

(10; 1; 1; 1)(6; 0; 0; 6)
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Multiobjective Label Setting Algorithm
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Multiobjective Label Correcting Algorithm

Label setting fails if negative arc lengths are permitted

Negative cycles C

Case 1: If
∑

a∈C ck
a < 0 and

∑
a∈C c j

a > 0 for j 6= k there are
infinitely many efficient paths
Case 2: If

∑
a∈C ca ≤ 0 there is no efficient path

A label correcting algorithm is required

Let L(i , k) be set of labels at node i in iteration k
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Algorithm (Multiobjective label correcting algorithm)

Input: A digraph G = (V,A) with p arc costs.

Initialization: Set dii := (0, . . . , 0) for i = 1, . . . , n.
Set dij := (∞, . . . ,∞) if vi 6= vj and (vi , vj) /∈ A.
Set dij := (c1(vi , vj), . . . , c

p(vi , vj)) otherwise.
Set L(i , 1) := {d1i}, i = 1, . . . , n.

For k := 1 to n − 1 do

For i := 1 to n do

L(i , k + 1) := min
nS

j=1

˘
dji + lkj : lkj ∈ L(j , k)

¯
End for.
If L(i , k + 1) = L(i , k) for all i = 1, . . . , n then

If k = n − 1 then STOP, a negative cycle exists.

STOP

End for.

Output: All efficient paths from node v1 to all other nodes.
Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

Multiobjective Label Correcting Algorithm
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Multiobjective Label Correcting Algorithm

1 2
3 4 000 !
 1�12 !
 03�2 !

 111 !
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Multiobjective Label Correcting Algorithm

1 2
3 4 000 !
 1�12 !

min( 03�2 ! ; 1�12 !+ �124 !) = ( 03�2 ! ; 016 !)
min( 1�12 !+ �103 ! ; 03�2 !+ 533 !)= ( 0�15 ! ; 561 !)
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Multiobjective Label Correcting Algorithm

1 2
3 4 000 !
 1�12 !
( 03�2 ! ; 016 !)

min( 0�15 ! ; 561 ! ; 016 !+ 533 !)= ( 0�15 ! ; 561 !)
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The Multiobjective Spanning Tree Problem

Graph G = (V,A) with edge costs ck
ij , k = 1, . . . , p; (i , j) ∈ E

Find efficient spanning trees of G:

min
T∈T

∑
[i ,j]∈T

cij

where T is set of all spanning trees of G
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The Multiobjective Spanning Tree Problem

Theorem (Hamacher and Ruhe
1994)

T efficient spanning tree of G
1 Let e ∈ E(T ) be an edge of

T . Let (V(T1), E(T1)) and
(V(T2), E(T2)) be the two
connected components of
G \ {e}. Let
C (e) := {f = (vi , vj) ∈ E :
vi ∈ V(T1), vj ∈ V(T2)} be
the cut defined by deleting
e. Then c(e) ∈ min{c(f ) :
f ∈ C (e)}.

e

T1 T2

edges in C(e)
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The Multiobjective Spanning Tree Problem

Theorem (Hamacher and Ruhe
1994)

T efficient spanning tree of G
1 Let f ∈ E \ E(T ) and let

P(f ) be the unique path in
T connecting the end nodes
of f . Then c(f ) ≤ c(e) does
not hold for any e ∈ P(f ).

f P (f)
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The Multiobjective Spanning Tree Problem

Algorithm (Prim’s spanning tree algorithm)

Input: A graph G = (V, E) with p edge costs.
T0 := {({1}, ∅)}
For k := 1 to n − 1 do

Tk := {E(T ) ∪ {ej} : T ∈ Tk−1, ej ∈ argmin{c(e) =
c([vi , vj ]) : vi ∈ V(T ), vj ∈ V \ V(T )}}

End for
Tn−1 := argmin{c(T ) : T ∈ Tn−1}

Output: Tn−1, all efficient spanning trees of G.
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2 Complexity
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The Two Phase Method with 2 Objectives

Phase 1: Compute XSE(1)

1 Find lexicographic solutions
2 Recursively:

Calculate λ
Solve min

x∈X
λTCx

Phase 2: Compute XNE

1 Solve by triangle
2 Use neighborhood (wrong)
3 Use constraints (bad)
4 Use variable fixing (possible)
5 Use ranking (good)
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Enumeration Problems

Finding maximal complete set:
Enumeration to find all optimal solutions of minx∈X λTCx
Enumeration to find all x ∈ XNE with Cx = y ∈ YND

Finding minimal complete set:
Enumeration to find XSE2

205

210

215

220

225

230

235

195 200 205 210 215 220 225

z
2

z1

( 206,223 )
   ( 207,222 )
      ( 208,221 )
         ( 209,220 )
            ( 210,219 )
               ( 211,218 )

( 199,230 )

( 220,209 )

( 218,211 )

( 202,227 )
   ( 203,226 )
      ( 204,225 )

                  ( 212,217 )
                     ( 213,216 )
                        ( 214,215 )
                           ( 215,214 )
                              ( 216,213 )

z(x) ∈ ZSN1

z(x) ∈ ZSN2

λ = 0.5666

=0.5λ

=0.4918λ
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Bounds on λTCx in Phase Two

{x i : 0 5 i 5 q} candidates for XNE sorted by increasing z1 in ∆(x r , x s)

γ :=
q−1
max
i=0

{λ1z1(x
i+1) + λ2z2(x

i )}

β0 := max
n

γ, λ1z1(x0) + λ2z2(x r ), λ1z1(x s) + λ2z2(xq)
o

50

52

54

56

58

60

62

64

66

82 84 86 88 90 92 94 96 98 100

z2

z1

bound used by (Tuyttens et al. , 2000)

pt
local nadir

bound
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Bounds on λTCx in Phase Two

{x i : 0 5 i 5 q} candidates for XNE sorted by increasing z1 in ∆(x r , x s)

δ1 :=
q

max
i=0

{λ
1z1(x i ) + λ

2z2(x i )}

δ2 :=
q

max
i=1

{λ
1(z1(x i ) − 1) + λ

2(z2(x i−1) − 1)}

β1 := max
n

δ1, δ2, λ
1(z1(x0) − 1) + λ

2(z2(x r ) − 1), λ
1(z1(xs ) − 1) + λ

2(z2(xq) − 1)
o

50

52

54

56

58

60

62

64

66

82 84 86 88 90 92 94 96 98 100

z2

z1

improved bound

pt
one unit down and left to local nadir

bound
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Bounds on λTCx in Phase Two

{x i : 0 5 i 5 q} candidates for XNE sorted by increasing z1 in ∆(x r , x s)

β2 := max
n

δ2, λ
1(z1(x0)− 1) + λ2(z2(x r )− 1), λ1(z1(x s)− 1) + λ2(z2(xn)− 1)

o

50

52

54

56

58

60

62

64

66

82 84 86 88 90 92 94 96 98 100

z2

z1

an improved bound for a not maximal complete set

pt
one unit down and left to local nadir

bound
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Two Phase Algorithm for Biobjective Assignment

Przybylski et al. 2006:

Hungarian Method for minx∈X λTCx

Enumeration of all optimal solutions of minx∈X λTCx
(Fukuda and Matsui 1992)

Ranking of (non-optimal) solutions of minx∈X λTCx
(Chegireddy and Hamacher 1987)
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Two Phase Algorithm for Biobjective Assignment

Results for 100× 100 (1 GHz, 512 MB RAM):

Range of ck
ij Variable Fixing Seek & Cut Ranking

[0, 20] 14049.17 2251.72 228.26
[0, 40] × 17441.35 225.06
[0, 60] × 38553.18 399.65
[0, 80] × 53747.45 721.08
[0, 100] × 60227.31 711.97
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Two Phase Algorithm for Biobjective Assignment

Comparison with CPLEX 9.0 using constraints (3.4 GHz, 4 GB
RAM)

Range of ck
ij CPLEX 9.0 Ranking

[0, 20] 200.63 85.58
[0, 40] 512.96 83.63
[0, 60] 1730.65 149.73
[0, 80] 3766.00 274.06
[0, 100] 4822.00 275.09
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Two Phase Algorithm for Biobjective Assignment

Objective values of an AP with cij ∈ {0, . . . , r − 1}

0
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un
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so
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ns

value

distribution of an 10*10 instance
10! * N(10 * moy(c_{ij}),10 * var(c_{ij})

Proof by Przybylski and Bourdon 2006:

µ = n(r−1)
2 , σ2 = n(r2−1)

12

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

Two Phase Algorithm for Biobjective Assignment

Objective values of an AP with cij ∈ {0, . . . , r − 1}

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 50 100 150 200

co
un

te
d 

so
lu

tio
ns

value

distribution of an 10*10 instance
10! * N(10 * moy(c_{ij}),10 * var(c_{ij})

Proof by Przybylski and Bourdon 2006:

µ = n(r−1)
2 , σ2 = n(r2−1)

12

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

The Two Phase Method with 3 Objectives

Hyperplane defined by 3 points, possibly 6 lexicographically
optimal points
Normal vector defined by 3 nondominated points may not be
positive

C1 =

0BB@
3 6 4 5
2 3 5 4
3 5 4 2
4 5 3 6

1CCA , C2 =

0BB@
2 3 5 4
5 3 4 3
5 2 6 4
4 5 2 5

1CCA , C3 =

0BB@
4 2 4 2
4 2 4 6
4 2 6 3
2 4 5 3

1CCA

3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
Normal vector λ = (1,−40,−28) yields (16,20,16)
Normal vector λ = (−1, 40, 28) yields (11,11,14), (15,9,17)
and (19,14,10)
Supported non-dominated point (13,16,11) is not found
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The Two Phase Method with 3 Objectives

Hyperplane defined by 3 points, possibly 6 lexicographically
optimal points
Normal vector defined by 3 nondominated points may not be
positive

C1 =

0BB@
3 6 4 5
2 3 5 4
3 5 4 2
4 5 3 6

1CCA , C2 =

0BB@
2 3 5 4
5 3 4 3
5 2 6 4
4 5 2 5

1CCA , C3 =

0BB@
4 2 4 2
4 2 4 6
4 2 6 3
2 4 5 3

1CCA

3 lexicographic points (11,11,14), (15,9,17) and (19,14,10)
Normal vector λ = (1,−40,−28) yields (16,20,16)
Normal vector λ = (−1, 40, 28) yields (11,11,14), (15,9,17)
and (19,14,10)
Supported non-dominated point (13,16,11) is not found
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Weight Space Decomposition

W 0 :=

(
λ : λ1 > 0, . . . , λp > 0, λp = 1−

p−1X
k=1

λk

)
W 0(y) := {λ ∈ W 0 : λT y 5 λtY ′ for all y ′ ∈ Y }

Proposition

1 If y is supported but not extreme then W 0(y) =
⋂k

i=1 W 0(y i )
where y i , i ∈ {1, . . . , k} are the extreme points of the face of
conv(Y ) that contains y in its relative interior.

2 Let y be a supported point, then
W 0(y) = {λ ∈ W 0 : λT y 5 λT y ′ for all supported extreme
points y ′.

3 W 0(y) is a nonempty convex polytope if y is supported.
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Weight Space Decomposition

Proposition

1 If y is a supported extreme point then W 0(y) is a polytope of
dim p − 1.

2 Let y1 and y2 be two supported points and
W 0(y1) ∩W 0(y2) 6= ∅ then W 0(y1) and W 0(y2) have a
common face.

Two supported extreme points y1 and y2 are adjacent if
W 0(y1) ∩W 0(y2) is a polytope of dimension p − 2

Proposition

Let {y1, . . . , yn} be the set of supported extreme points, then
W 0 =

⋃n
i=1 W 0(y i ).
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Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

YSN1 ⊆ S ⇐⇒ W 0 =
⋃
y∈S

W 0(y).

Let S be a set of supported points

Let W 0
p (y) =

{
λ ∈ W 0 : 〈λ, y〉 ≤ 〈λ, y∗〉 for all y∗ ∈ S

}
W 0(y) ⊆ W 0

p (y) for all y ∈ S

W 0 =
⋃

y∈S W 0
p (y)
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Algorithm (Phase 1 with 3 Objectives)

1 Initialize S with the lexicographically optimal points
2 For all ŷ ∈ S

Compute W 0
p (ŷ)

Investigate all facets F of W 0
p (ŷ) defined by λT ŷ = λT y ′ for

y ′ ∈ S to determine whether F is also a facet of W 0(ŷ)

If ŷ minimizes λT y for all λ ∈ F then ŷ and y ′ are adjacent
and F is the common face of W 0(ŷ) and W 0(y ′)
If there are y∗ ∈ Y and λ ∈ F such that λT y∗ < λT y then
W 0(ŷ) ⊂ W 0

p (ŷ) and y∗ is added to S and W 0
p (ŷ) is updated

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

An Example

C1 =

0BB@
2 5 4 7
3 3 5 7
3 8 4 2
6 5 2 5

1CCA , C2 =

0BB@
3 3 6 2
5 3 7 3
5 2 7 4
4 6 3 5

1CCA , C3 =

0BB@
4 2 5 3
5 3 4 3
4 3 5 2
6 4 7 3

1CCA

Lexicographically optimal points: y1 = (9, 13, 16),
y2 = (19, 11, 17), y3 = (18, 20, 13)

S = {y1, y2, y3}

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

An Example
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Weight to use
for enumeration
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Numerical Results

Size |YN | SC 2004 T-P 2003 LZT 2005 2 Phase

5 12 0.15 0.04 0.15 0.00
10 221 99865.00 97.30 41.70 0.08
15 483 × 544.53 172.29 0.36
20 1942 × × 1607.92 4.51
25 3750 × × 5218.00 30.13
30 5195 × × 15579.00 55.87
35 10498 × × 101751.00 109.96
40 14733 × × × 229.05
45 23941 × × × 471.60
50 29193 × × × 802.68
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Comments

Two phase method respects problem structure

Successful for assignment, shortest path, network flow

Requires ranking algorithm, which is available for most
polynomially solvable problems
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Overview

1 Formulation and Definitions of Optimality

2 Complexity

3 The Multiobjective Shortest Path and Spanning Tree Problems

4 The Two Phase Method

5 Scalarization

6 Branch and Bound

7 Conclusion
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Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

Correctness: Optimal solutions are (weakly) efficient

Completeness: All efficient solutions can be found

Computability: Scalarization is not harder than single
objective version of problem (theory and practice)

Linearity: Scalarization has linear formulation
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Scalarization Methods

Weighted sum:

min
x∈X

{
λT z(x)

}
ε-constraint:
min
x∈X

{zl(x) : zk(x) ≤ εk , k 6= l}

Weighted Chebychev:

min
x∈X

{
max

k=1,...,p
νk(zk(x)− y I

k)

}
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General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion

General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +

Matthias Ehrgott MOCO Introduction



Formulation and Definitions of Optimality
Complexity

The Multiobjective Shortest Path and Spanning Tree Problems
The Two Phase Method

Scalarization
Branch and Bound

Conclusion
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Theorem (Ehrgott 2005)

1 The general scalarization is NP-hard.

2 An optimal solution of the Lagrangian dual of the linearized
general scalarization is a supported efficient solution.
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Method of Elastic Constraints

min
x∈X

clx +
∑
k 6=l

µkwk

s.t. ckx + vk − wk ≤ εk k 6= l

vk ,wk ≥ 0 k 6= l
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Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

is correct and complete,

contains the weighted sum and ε-constraint method as special
cases,

is NP-hard.

... but (often) solvable in practice because

it “respects” problem structure

it “limits damage” of ε-constraints
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Multicriteria Branch and Bound

Ulungu and Teghem 1997,
Mavrotas and Diakoulaki 2002

Branching: As in single
objective case

Bounding: Ideal point of
problem at node is dominated
by efficient solution

Branching may be very
ineffective

Use lower and upper bound sets
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Multicriteria Branch and Bound

max 11x1 + 5x2 + 7x3 + 13x4 + 3x5

max 9x1 + 2x2 + 16x3 + 5x4 + 4x5

s. t. 4x1 + 2x2 + 8x3 + 7x4 + 5x5 ≤ 16
x ∈ {0, 1}5
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Ehrgott and Gandibleux 2005:
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Conclusion

MOCO problems as special multiobjective integer programmes

Distinguish supported and non-supported efficient solutions

MOCO problems are NP-hard, #P-hard, intractable

MOCO problems can be solvable in practice

Shortest path: Label setting and correcting algorithms
transferable, i.e. dynamic programming principles work

Spanning tree: Prim’s (and Kruskal’s) algorithm transferable,
i.e. greedy algorithm works

Moderate problems: Two phase method works well, ranking
algorithm required (assignment, network flow)

Difficult problems: Scalarization and branch and bound
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