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Heuristics versus Metaheuristics

Heuristic: Technique which seeks near-optimal solutions at a
reasonable computational cost without being able to
guarantee optimality ... often problem specific
(Reeeves 1995)

Examples: Multiobjective greedy and local search (Ehrgott and
Gandibleux 2004, Paquete et al. 2005)

Metaheuristic: Iterative master strategy that guides and modifies
the operations of subordinate heuristics by combining
intelligently different concepts for exploring and
exploiting the search space ... applicable to a large
number of problems. (Glover and Laguna 1997,
Osman and Laporte 1996)

Examples: MOEA, MOTS, MOSA etc.
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The Quality of Heuristics

z2

z1

Which approximation is best?
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The Quality of Heuristics

Cardinal and geometric measures
(Hansen and Jaszkiewicz 1998)

Hypervolumes (Zitzler and Thiele 1999)

Coverage, uniformity, cardinality (Sayin 2000)

Distance based measures (Viana and de Sousa 2000)

Integrated convex preference (Kim et al. 2001)

Volume based measures (Tenfelde-Podehl 2002)

Analysis and Review (Ziztler et al. 2003)
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Timeline for Multiobjective Metaheuristics

Evolutionary Algorithms
1984: VEGA by Schaffer

Neural Networks
1990: Malakooti

Neighbourhood Search Algorithms
1992: Simulated Annealing by Serafini
1992/93: MOSA by Ulungu and Teghem
1996/97: MOTS by Gandibleux et al.
1997: TS by Sun
1998: GRASP by Gandibleux et al.

Hybrid and Problem Dependent Algorithms
1996: Pareto Simulated Annealing by Czyzak and Jaszkiewicz
1998: MGK algorithm by Morita et al.
Many more since 2000
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Multiobjective Evolutionary Algorithms

Main principles
1 Population of solutions
2 Self adaptation (independent evolution)
3 Cooperation (exchange of information)

Main problems
1 Uniform convergence (fitness assignment by ranking and

selection with elitism)
2 Uniform distribution (niching, sharing)

Huge number of publications, including surveys, books, EMO
conference series

Few applications to MOCO problems
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Multiobjective Neighbourhood Search Algorithms

Multiobjective Simulated Annealing

Initial solution

Neighbourhood structure

Scalarizing function s(z(x), λ)

Set of weights (directions) λ

Simulated annealing based on s

Merge sets of solutions

Multiobjective Tabu Search

Initial solution

Neighbourhood structure

Scalarizing function s(z(x), λ)

Set of weights (directions) λ

Tabu search based on s

Merge sets of solutions
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Hybrid Algorithms

1 EA components in NSA (to improve coverage)

Pareto Simulated Annealing (Czyzak and Jaszkiewicz 1996)
Use set of starting solutions
SA uses information from set of solutions
TAMOCO (Hansen 1997, 2000)
Use set of starting solutions
TS uses information from set of solutions

2 NSA strategies inside EAs (to improve convergence)

MGK (Morita et al. 1998, 2001)
Use local search to improve solutions
MOGLS (Jaszkiewicz 2001)
Use local search to improve solutions
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Hybrid Algorithms

3 Alternate between EA and NSA

Ben Abdelaziz et al. 1997, 1999
Use GA to find first approximation
Apply TS to improve reults of GA
Delorme et al. 2003, 2005
Use Use GRASP to compute first approximation
Use SPEA to improve results of GRASP
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Hybrid Algorithms

4 Combination of EA, NSA and problem dependent components

Gandibleux et al. 2003, 2004
Use crossover and population as EA component
Use path-relinking as NSA component
Use XSEm and bound set as problem dependent component

x1 x2

move
neighbor

swap

initiating
solution

guiding
solution

move
neighbor
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Hybrid Algorithms

5 Combination of heuristics and exact algorithms

Gandibleux and Fréville 2000
Use tabu search as heuristic
Use cuts to eliminate search areas where (provably) no efficient
solutions exist
Przybylski et al. 2004
Use two phase method as exact algorithm
Use heuristic to reduce search space
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New Metaheuristic Schemes for MOCO

1 Ant colony optimization (Iredi et al. 2001, Gravel et al. 2002,
Doerner et al. since 2001)

2 Scatter search (Beausoleil 2001, Molina 2004, Gomes da Silva
et al. 2006, 2007)

3 Particle swarm (Coello 2002, Mostaghim 2003, Rahimi-Vahed
and Mirghorbani 2007, Yapicioglu et al. 2007)

4 Constraint programming (Barichard 2003)
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Mio hits on google
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Portfolio Selection

Markowitz 1952
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Portfolio Selection

Standard and Individual Investors

Why do investors not buy
efficient portfolios?
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Mixed Integer Problem

Cardinality constraint on number of assets (Chang et al. 2000)
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Comments

Multiobjective optimization provides explanation of
phenomenon that has no explanation in standard framework

Chapter 20 in Figueira, Greco, Ehrgott “Multicriteria Decision
Analysis” Springer 2005
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Computation Times for Biobjective Shortest Path

Known to be NP-hard and intractable

Experiments by Raith 2007

Type Nodes Edges Paths CPU Time

Grid 4,902 19,596 6 <0.01
Grid 4,902 19,596 1,594 20.85

NetMaker 3,000 33,224 15 <0.01
NetMaker 14,000 153,742 17 0.02

Road 330,386 1,202,458 21 1.10
Road 330,386 1,202,458 24 39.07
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Theoretical Results

Using ratio of first and second objective on arcs

Theorem (Müller-Hannemann and Weihe 2006)

Even if the ratio between first and second length of an arc
assumes only 2 values there are exponentially many efficient
paths.

If k different ratios are allowed and the sequence of ratios
switches only once between increasing and decreasing (bitonic
path) then there are at most O(n2k−2) efficient paths.
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Experimental Results

1.4 million nodes, 2.3 million arcs

84% of efficient paths are bitonic

Distance versus time: average 2, maximum 8

Fare versus time: average 3, maximum 22

Distance, Time, Train changes: average 10, maximum 96
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Comments

The concept of NP-hardness may not be too relevant in
multiobjective optimization

Worst case estimates may not apply in a particular application

Problem size, structure and cost structure important

Interesting mathematical results to be obtained from
particular applications
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Airline Crew Scheduling

Sunday, 4 August, 2002, 20:29 GMT 21:29 UK

Delays as Easyjet cancels 19 flights

Passengers with low-cost airline Easyjet are suffering delays after 19 flights in and out

of Britain were cancelled.

The company blamed the move - which comes a week after passengers staged a protest sit-in

at Nice airport - on crewing problems stemming from technical hitches with aircraft.

Crews caught up in the delays worked up to their maximum hours and then had to be allowed

home to rest.

Mobilising replacement crews has been a problem as it takes time to bring people to

airports from home. Standby crews were already being used and other staff are on holiday.
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Airline Crew Scheduling

Partition flights into set of pairings to minimize cost

aij =

{
1 pairing j includes flight i
0 otherwise

min = cT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Big OR success story, used by all airlines

Matthias Ehrgott MOCO: Applications



Metaheuristics
Finance

Transportation
Medicine

Telecommunication
Conclusion

Train Timetable Information
Crew Scheduling

Airline Crew Scheduling

Partition flights into set of pairings to minimize cost

aij =

{
1 pairing j includes flight i
0 otherwise

min = cT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Big OR success story, used by all airlines

Matthias Ehrgott MOCO: Applications



Metaheuristics
Finance

Transportation
Medicine

Telecommunication
Conclusion

Train Timetable Information
Crew Scheduling

Airline Crew Scheduling

Partition flights into set of pairings to minimize cost

aij =

{
1 pairing j includes flight i
0 otherwise

min = cT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Big OR success story, used by all airlines

Matthias Ehrgott MOCO: Applications



Metaheuristics
Finance

Transportation
Medicine

Telecommunication
Conclusion

Train Timetable Information
Crew Scheduling

Airline Crew Scheduling

Partition flights into set of pairings to minimize cost

aij =

{
1 pairing j includes flight i
0 otherwise

min = cT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Big OR success story, used by all airlines

Matthias Ehrgott MOCO: Applications



Metaheuristics
Finance

Transportation
Medicine

Telecommunication
Conclusion

Train Timetable Information
Crew Scheduling

Delay Propagation

Cost optimal solutions tend to minimize ground time

Delays easily propagate through schedule
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Dealing with Delay

Solution 1: Stochastic
programme with recourse (Yen
and Birge 2006)

min cT x + Q(x)

s.t. Ax = e

Mx = b

x ∈ {0, 1}

Q(x) =
∑

ω∈Ω p(ω)Q(x , ω),
where Q(x , ω) is delay under
schedule x in scenario ω

Solution 2: Biobjective
programme (Ehrgott and Ryan
2002)

min rT x

min cT x

s.t. Ax = e

Mx = b

x ∈ {0, 1}

rj is penalty for short ground
time, uses parameters of delay
distribution
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Simulation Results

Simulation of schedules obtained by both methods (Tam et al.
2007)
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Solving Biobjective Set Partitioning Models

Method of elastic constraints

min rT x + ps

s.t. Ax = e

Mx = b

cT x − s + t 5 ε

x ∈ {0, 1}n

s = 0

Solutions are weakly efficient

All efficient solutions can be
found

Computationally superior
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Unit Crewing

What’s the use of having robust solutions for pilots if cabin crew
do something different?

Solve pairings problem for several crew groups

Minimize cost, maximize unit crewing (Tam et al. 2004)

min cT
1 x1 + cT

2 x2

min eT s1 + eT s2
subject to A1x1 = e

M1x1 = b1

A2x2 = e
M2x2 = b2

U1x1 − U2x2 − s1 + s2 = 0
x1 x2 s1 s2 ∈ {0, 1}n
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Minimize cost, maximize unit crewing (Tam et al. 2004)

min cT
1 x1 + cT

2 x2

min eT s1 + eT s2
subject to A1x1 = e

M1x1 = b1

A2x2 = e
M2x2 = b2

U1x1 − U2x2 − s1 + s2 = 0
x1 x2 s1 s2 ∈ {0, 1}n
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Comments

Development of new multiojective programming technique
driven by application

Biobjective model may be an alternative to stochastic
programming, if recourse can be captured in deterministic
objective

Naturally drives development towards integrated model for
airline operations (Weide et al. 2006)
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Radiotherapy Treatment Design

Given beam directions find
intensity map

such that “good” dose
distribution results

http://www.icr.ac.uk/ncri/liz adams rmt.html
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Optimization Practice Today

(Intensity Modulated Radiotherapy) IMRT represents an
advance in the means that radiation is delivered to the target,
and it is believed that IMRT offers an improvement over
conventional and conformal radiation in its ability to provide
higher dose irradiation of tumor mass, while exposing the
surrounding normal tissue to less radiation.
http://www.cancernews.com/data/Article/259.asp

Most popular optimization model given goal dose to target,
upper bounds for dose to critical structures and normal tissue

min
x=0

ωT‖AT x − TG‖ + ωC

∥∥(ACx − CG )+
∥∥ + ωN

∥∥(AN x − NG )+
∥∥

Most popular solution technique simulated annealing

Trial and error regarding values of ωT , ωC , ωN
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Evolution of Multiobjective Models

Standard dose based objective is weighted sum of
multiobjective model

But obvious MOP

min
x=0

(
‖AT x − TG‖ ,

∥∥(ACx − CG )+
∥∥ ,

∥∥(AN x − NG )+
∥∥)

only used with pre-selected weights and weighted sum
optimization (Cotrutz et al. 2001, Lahanas et al. 2003)

First multiobjective LP model by Hamacher and Küfer 2000
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A Multiobjective LP Formulation

Theorem (Romeijn et al. 2004)

The MOPs min{(f1(x), . . . , fp(x)) : x ∈ X} and
min{(h1(f1(x)), . . . , hp(fp(x))) : x ∈ X} with strictly increasing
h1, . . . , hp and convex f1, . . . , fp have the same efficient set.

min(yT , yC , yN )
subject to AT x + yT e = lT

AT x 5 uT
ACx − yCe 5 uC

AN x − yN e 5 uN
yN , yT , x = 0

yC = −uC
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Results

Only 3 objectives, so solve problem in objective space

Benson’s algorithm (Benson 1998)

Dual variant of Benson’s algorithm (Ehrgott, Loehne, Shao
2007)

Dose matrix imprecise, delivery imprecise

Calculation to small fraction of a Gy

Approximation versions of primal and dual Benson Algorithm
(Ehrgott and Shao 2006, 2007)
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The Test Cases

Acoustic Neuroma Prostate Pancreatic Lesion

Dose calculation inexact

Inaccuracies during delivery

Planning to small fraction of a Gy acceptable
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The Test Cases

Case AN P PL

Tumour voxels 9 22 67
Critical organ voxels 47 89 91
Normal tissue voxels 999 1182 986
Bixels 594 821 1140

uT 87.55 90.64 90.64
lT 82.45 85.36 85.36
uC 60/45 60/45 60/45
uN 0.00 0.00 0.00
zT UB 16.49 42.68 17.07
zCUB 12.00 30.00 12.00
zNUB 87.55 100.64 90.64
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Numerical Results

ε Solving the dual Solving the primal
Time Vert. Cuts Time Vert. Cuts

AC 0.1 1.484 17 8 5.938 27 21
0.01 3.078 33 18 8.703 47 44

0 8.864 85 55 13.984 55 85
PR 0.1 4.422 39 19 14.781 56 42

0.01 18.454 157 78 64.954 296 184
0 792.390 3280 3165 995.050 3165 3280

PL 0.1 58.263 85 44 164.360 152 90
0.01 401.934 582 298 1184.950 1097 586

0.005 734.784 1058 539 2147.530 1989 1041
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Numerical Results
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Numerical Results
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The Challenge

min(yT , yC , yN )
subject to AT x + yT e = lT

AT x 5 uT
ASx − ySe 5 uS

AN x − yN e 5 uN
zN = 0

x = 0
x 5 My

eT y 5 r
y ∈ {0, 1}l

where l is number of candidate beams
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Comments

It may be hard to convince practitioners of the usefulness of
multiobjective optmization

Exploit application to simplify methods

Multiobjective optimization leads to improved processes

New theoretical developments driven by application
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Routing in IP Networks

Standard: OSPF protocol (open
shortest path first)

Dijkstra’s algorithm used to
minimize number of hops

Other protocols allow
aggregation of several objectives

But still “best effort” rather
than “Quality of Service”
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Multiobjective Shortest Paths

Find paths (routes) p with objectives (Gandibleux et al. 2006)

min f1(p) =
∑

(i,j)∈p c1(i , j) (delay)

max f2(p) = min(i,j)∈p c2(i , j) (bandwidth)
min f3(p) = |{(i , j) ∈ p}| (number of hops)

Additional constraints

Modification of Martin’s label correcting algorithm
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∑

(i,j)∈p c1(i , j) (delay)

max f2(p) = min(i,j)∈p c2(i , j) (bandwidth)
min f3(p) = |{(i , j) ∈ p}| (number of hops)

Additional constraints

Modification of Martin’s label correcting algorithm
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Result

With delay and bandwidth objectives there are 5 efficient paths
from 7 to 11
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Comments

Old dogs can learn new tricks

Multiobjective modelling helps thinking outside the box

Chapter 22 in Figueira, Greco, Ehrgott “Multicriteria Decision
Analysis” Springer 2005
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Very hard MOCO problems: (Meta)Heuristics
Challenge 1: Two phase method for more than three
objectives (Principle: Przybylski et al. 2007)
Challenge 2: Multiobjective branch and bound algorithm
(Spanjaard and Sourd 2007)
Challenge 3: Polyhedral theory for MOCO scalarization
Challenge 4: How to build an exact algorithm for very hard
problems
Real world applications provide opportunities for progress in
multiobjecive optimization methodology and theory
Multiobjective models provide insights in applications that
conventional models cannot reveal
Additional benefits derive from improvement of processes
Many challenges and new application areas are available
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