Fuzzy Preference Structures

János FODOR

Budapest Tech, Hungary
fodor@bmf.hu

April 15, 2008, Troina, Sicily

Contents

1. Introduction
2. Boolean preference structures
3. Continuous de Morgan triplets
4. Additive fuzzy preference structures
5. Axiomatic constructions
6. Characteristic behaviour
7. Generator triplets
8. Conclusion

1. Introduction

- "Alternative a is at least as good as alternative $b \ldots$.."
- Boolean: classical YES/NO
- Discrete: finite totally ordered set of (linguistic) values \mathcal{L}

$$
\begin{gathered}
\text { None } \preceq \text { Very Low } \preceq \text { Low } \preceq \text { Medium } \\
\preceq \text { High } \preceq \text { Very High } \preceq \text { Perfect }
\end{gathered}
$$

- Fuzzy: evaluation scale is a compact real interval

2. Boolean preference structures

- Preference structure: result of
- the pairwise comparison
- of a set of alternatives A
- by a decision maker

2. Boolean preference structures

- Preference structure: result of
- the pairwise comparison
- of a set of alternatives A
- by a decision maker
- Consists of three binary relations on A :
- strict preference relation P
- indifference relation I
- incomparability relation J

2. Boolean preference structures

- A preference structure on a set of alternatives A is a triplet (P, I, J) of relations in A that satisfy:
(B1) $\quad P$ is irreflexive, I is reflexive and J is irreflexive
(B2) $\quad P$ is asymmetric, I is symmetric and J is symmetric
(B3) $\quad P \cap I=\emptyset, P \cap J=\emptyset$ and $I \cap J=\emptyset$
(B4) $P \cup P^{t} \cup I \cup J=A^{2}$

2. Boolean preference structures

- A preference structure on a set of alternatives A is a triplet (P, I, J) of relations in A that satisfy:
(B1) P is irreflexive, I is reflexive and J is irreflexive
(B2) $\quad P$ is asymmetric, I is symmetric and J is symmetric
(B3) $P \cap I=\emptyset, P \cap J=\emptyset$ and $I \cap J=\emptyset$
(B4) $P \cup P^{t} \cup I \cup J=A^{2}$
- (P, I, J) is a preference structure on A iff
(i) I is reflexive and I is symmetric
(ii) $\quad P(a, b)+P(b, a)+I(a, b)+J(a, b)=1$

2. Completeness condition (B4)

(C1) $\quad \operatorname{co}(P \cup I)=P^{t} \cup J$
(C2) $\quad \operatorname{co}\left(P \cup P^{t}\right)=I \cup J$
(C3) $\quad \operatorname{co}\left(P \cup P^{t} \cup I\right)=J$
(C4) $\quad \operatorname{co}\left(P \cup P^{t} \cup J\right)=I$
(C5) $\quad \operatorname{co}\left(P^{t} \cup I \cup J\right)=P$
(C6) $P \cup P^{t} \cup I \cup J=A^{2}$

2. Construction and characterization

- Given a reflexive relation R in A, the triplet (P, I, J) defined by

$$
\begin{aligned}
P & =R \cap \operatorname{co}\left(R^{t}\right) \\
I & =R \cap R^{t} \\
J & =\operatorname{co} R \cap \operatorname{co}\left(R^{t}\right)
\end{aligned}
$$

is a preference structure on A such that

$$
R=P \cup I \quad \text { and } \quad R^{c}=P^{t} \cup J
$$

2. Construction and characterization

- Given a reflexive relation R in A, the triplet (P, I, J) defined by

$$
\begin{aligned}
P & =R \cap \operatorname{co}\left(R^{t}\right) \\
I & =R \cap R^{t} \\
J & =\operatorname{co} R \cap \operatorname{co}\left(R^{t}\right)
\end{aligned}
$$

is a preference structure on A such that

$$
R=P \cup I \quad \text { and } \quad R^{c}=P^{t} \cup J
$$

- Consider a preference structure (P, I, J) on A. Define its large preference relation R as

$$
R=P \cup I
$$

then (P, I, J) can be reconstructed from R.

3. Continuous de Morgan triplets

- A t-norm T is an increasing, commutative and associative binary operation on $[0,1]$ with neutral element 1
- minimum operator $T_{\mathbf{M}}(x, y)=\min (x, y)$
- algebraic product $T_{\mathbf{P}}(x, y)=x y$
- Lukasiewicz t-norm $T_{\mathbf{L}}(x, y)=\max (x+y-1,0)$

3. Continuous de Morgan triplets

- At-norm T is an increasing, commutative and associative binary operation on $[0,1]$ with neutral element 1
- minimum operator $T_{\mathbf{M}}(x, y)=\min (x, y)$
- algebraic product $T_{\mathbf{P}}(x, y)=x y$
- Lukasiewicz t-norm $T_{\mathbf{L}}(x, y)=\max (x+y-1,0)$
- A t-conorm S is an increasing, commutative and associative binary operation on $[0,1]$ with neutral element 0
- maximum operator $S_{\mathbf{M}}(x, y)=\max (x, y)$
- probabilistic sum $S_{\mathbf{P}}(x, y)=x+y-x y$
- bounded $\operatorname{sum} S_{\mathbf{L}}(x, y)=\min (x+y, 1)$

3. Continuous de Morgan triplets

- A t-norm T is an increasing, commutative and associative binary operation on $[0,1]$ with neutral element 1
- minimum operator $T_{\mathrm{M}}(x, y)=\min (x, y)$
- algebraic product $T_{\mathbf{P}}(x, y)=x y$
- Lukasiewicz t-norm $T_{\mathbf{L}}(x, y)=\max (x+y-1,0)$
- A t-conorm S is an increasing, commutative and associative binary operation on $[0,1]$ with neutral element 0
- maximum operator $S_{\mathbf{M}}(x, y)=\max (x, y)$
- probabilistic sum $S_{\mathbf{P}}(x, y)=x+y-x y$
- bounded $\operatorname{sum} S_{\mathbf{L}}(x, y)=\min (x+y, 1)$
- An involutive negator N is an involutive decreasing permutation of $[0,1]$
- standard negator $N_{s}(x)=1-x$

3. Continuous de Morgan triplets

- N-dual t-conorm of a t-norm T is the t-conorm T^{N} :

$$
T^{N}(x, y)=N(T(N(x), N(y)))
$$

3. Continuous de Morgan triplets

- N-dual t-conorm of a t-norm T is the t-conorm T^{N} :

$$
T^{N}(x, y)=N(T(N(x), N(y)))
$$

- A de Morgan triplet M is a triplet of the type

$$
\left(T, T^{N}, N\right)
$$

(is called continuous if T is continuous)

- The Lukasiewicz triplet: $\left(T_{\mathbf{L}}, S_{\mathbf{L}}, N_{s}\right)$

3. The Frank t-norm family

- $s \in] 0,1[\cup] 1, \infty[$:

$$
T_{s}^{\mathbf{F}}(x, y)=\log _{s}\left(1+\frac{\left(s^{x}-1\right)\left(s^{y}-1\right)}{s-1}\right)
$$

3. The Frank t-norm family

- $s \in] 0,1[\cup] 1, \infty[$:

$$
T_{s}^{\mathbf{F}}(x, y)=\log _{s}\left(1+\frac{\left(s^{x}-1\right)\left(s^{y}-1\right)}{s-1}\right)
$$

- limits:

$$
\begin{aligned}
\lim _{s \rightarrow 0} T_{s}^{\mathbf{F}}(x, y) & =\min (x, y) \\
\lim _{s \rightarrow 1} T_{s}^{\mathbf{F}}(x, y) & =x y \\
\lim _{s \rightarrow \infty} T_{s}^{\mathbf{F}}(x, y) & =\max (x+y-1,0)
\end{aligned}
$$

3. The Frank t-norm family

- $s \in] 0,1[\cup] 1, \infty[$:

$$
T_{s}^{\mathbf{F}}(x, y)=\log _{s}\left(1+\frac{\left(s^{x}-1\right)\left(s^{y}-1\right)}{s-1}\right)
$$

- limits:

$$
\begin{aligned}
\lim _{s \rightarrow 0} T_{s}^{\mathbf{F}}(x, y) & =\min (x, y) \\
\lim _{s \rightarrow 1} T_{s}^{\mathbf{F}}(x, y) & =x y \\
\lim _{s \rightarrow \infty} T_{s}^{\mathbf{F}}(x, y) & =\max (x+y-1,0)
\end{aligned}
$$

- $T_{0}^{\mathbf{F}}=T_{\mathbf{M}}, T_{1}^{\mathbf{F}}=T_{\mathbf{P}}, T_{\infty}^{\mathbf{F}}=T_{\mathbf{L}}$

3. The Frank t-norm family

- Frank t-norm family: $\left(T_{s}^{\mathbf{F}}\right)_{s \in[0, \infty]}$
- Frank t-conorm family: $\left(S_{s}^{\mathbf{F}}\right)_{s \in[0, \infty]}, S_{s}^{\mathbf{F}}=\left(T_{s}^{\mathbf{F}}\right)^{*}$
- Continuous irreducible solutions of the Frank equation:

$$
T(x, y)+S(x, y)=x+y
$$

4. Additive fuzzy preference structures

- Consider a continuous de Morgan triplet $M=(T, S, N)$. An M-FPS on A w.r.t. completeness condition ($\mathrm{C} i$), $i \in\{1, \ldots, 6\}$, is a triplet (P, I, J) of binary fuzzy relations in A that satisfy:
(i) P is irreflexive, I is reflexive and J is irreflexive
(ii) P is T-asymmetric, I is symmetric and J is symmetric
(iii) $P \cap_{T} I=\emptyset, P \cap_{T} J=\emptyset$ and $I \cap_{T} J=\emptyset$
(iv) (P, I, J) satisfies completeness condition ($\mathrm{C} i$)

4. Completeness condition

(C1) $\quad \operatorname{co}_{N}\left(P \cup_{S} I\right)=P^{t} \cup_{S} J$
(C2) $\quad \operatorname{co}_{N}\left(P \cup_{S} P^{t}\right)=I \cup_{S} J$
(C3) $\operatorname{co}_{N}\left(P \cup_{S} P^{t} \cup_{S} I\right)=J$
(C4) $\operatorname{co}_{N}\left(P \cup_{S} P^{t} \cup_{S} J\right)=I$
(C5) $\quad \operatorname{co}_{N}\left(P^{t} \cup_{S} I \cup_{S} J\right)=P$
(C6) $P \cup_{S} P^{t} \cup_{S} I \cup_{S} J=A^{2}$

4. Completeness condition

- $p_{i}=(P, I, J)$ is an M-FPS on A w.r.t. ($\left.\mathbf{C} i\right)$
- in general: no relationships
- in the case of the Lukasiewicz triplet: $i \in\{3,4,5\}$

$$
\left\{p_{1}, p_{2}\right\} \quad \Rightarrow \quad p_{i} \quad \Rightarrow \quad p_{6}
$$

4. Why use the Lukasiewicz triplet?

- Assignment Principle: the decision maker should be able to assign one of the degrees $P(a, b), P(b, a), I(a, b)$ and $J(a, b)$ freely in the unit interval $(a \neq b)$

4. Why use the Lukasiewicz triplet?

- Assignment Principle: the decision maker should be able to assign one of the degrees $P(a, b), P(b, a), I(a, b)$ and $J(a, b)$ freely in the unit interval $(a \neq b)$
- The only suitable continuous de Morgan triplet is the Lukasiewicz triplet. (up to automorphism(s))

4. Why use the Lukasiewicz triplet?

- Assignment Principle: the decision maker should be able to assign one of the degrees $P(a, b), P(b, a), I(a, b)$ and $J(a, b)$ freely in the unit interval $(a \neq b)$
- The only suitable continuous de Morgan triplet is the Lukasiewicz triplet. (up to automorphism(s))
- Which completeness condition to use?

We suggest (C1):

- strongest condition
- axiomatic constructions

4. (Minimal) Definition

- An additive fuzzy preference structure on A is a triplet (P, I, J) of fuzzy relations in A that satisfy:
(F1) $\quad P$ is irreflexive, I is reflexive and J is irreflexive
(F2) $\quad P$ is T_{L}-asymmetric, I is symmetric and J is symmetric
(F3) $\quad P \cap_{\mathbf{L}} I=\emptyset, P \cap_{\mathbf{L}} J=\emptyset$ and $I \cap_{\mathbf{L}} J=\emptyset$
(F4) $\quad \operatorname{co}\left(P \cup_{\mathbf{L}} I\right)=P^{t} \cup_{\mathbf{L}} J$

4. (Minimal) Definition

- An additive fuzzy preference structure on A is a triplet (P, I, J) of fuzzy relations in A that satisfy:
(F1) $\quad P$ is irreflexive, I is reflexive and J is irreflexive
(F2) $\quad P$ is T_{L}-asymmetric, I is symmetric and J is symmetric
(F3) $\quad P \cap_{\mathbf{L}} I=\emptyset, P \cap_{\mathbf{L}} J=\emptyset$ and $I \cap_{\mathbf{L}} J=\emptyset$
(F4) $\quad \operatorname{co}\left(P \cup_{\mathbf{L}} I\right)=P^{t} \cup_{\mathbf{L}} J$
- (P, I, J) is an additive fuzzy preference structure on A iff
(i) I is reflexive and I is symmetric
(ii) $\quad P(a, b)+P(b, a)+I(a, b)+J(a, b)=1$

5. Axiomatic constructions

- Orlovski (78):

$$
\begin{aligned}
P(a, b) & =\max (R(a, b)-R(b, a), 0) \\
I(a, b) & =\min (R(a, b), R(b, a))
\end{aligned}
$$

- Ovchinnikov (81):

$$
\begin{aligned}
& P(a, b)=\left\{\begin{array}{cl}
R(a, b), & \text { if } R(a, b)>R(b, a) \\
0, & \text { otherwise }
\end{array}\right. \\
& I(a, b)=\min (R(a, b), R(b, a))
\end{aligned}
$$

5. Axiomatic considerations

- Roubens \& Vincke (87):

$$
\begin{aligned}
& P(a, b)=\min (R(a, b), 1-R(b, a)) \\
& I(a, b)=\min (R(a, b), R(b, a)) \\
& J(a, b)=\min (1-R(a, b), 1-R(b, a))
\end{aligned}
$$

- Roubens (89), Ovchinnikov \& Roubens (91), Fodor (91)

5. Axiomatic considerations

- Consider a continuous de Morgan triplet $M=(T, S, N)$ and a reflexive binary fuzzy relation R in A. Construct

$$
\begin{aligned}
P & =R \cap_{T} \operatorname{co}_{N} R^{t} \\
I & =R \cap_{T} R^{t} \\
J & =\operatorname{co}_{N} R \cap_{T} \operatorname{co}_{N} R^{t}
\end{aligned}
$$

5. Axiomatic considerations

- Consider a continuous de Morgan triplet $M=(T, S, N)$ and a reflexive binary fuzzy relation R in A. Construct

$$
\begin{aligned}
P & =R \cap_{T} \operatorname{co}_{N} R^{t} \\
I & =R \cap_{T} R^{t} \\
J & =\operatorname{co}_{N} R \cap_{T} \cos _{N} R^{t}
\end{aligned}
$$

- When does it hold that $R=P \cup_{S} I$, i.e.

$$
R=\left(R \cap_{T} \cos _{N} R^{t}\right) \cup_{S}\left(R \cap_{T} R^{t}\right) ?
$$

5. Axiomatic considerations

- Consider a continuous de Morgan triplet $M=(T, S, N)$ and a reflexive binary fuzzy relation R in A. Construct

$$
\begin{aligned}
P & =R \cap_{T} \operatorname{co}_{N} R^{t} \\
I & =R \cap_{T} R^{t} \\
J & =\operatorname{co}_{N} R \cap_{T} \cos _{N} R^{t}
\end{aligned}
$$

- When does it hold that $R=P \cup_{S} I$, i.e.

$$
R=\left(R \cap_{T} \cos _{N} R^{t}\right) \cup_{S}\left(R \cap_{T} R^{t}\right) ?
$$

- Answer: in general, never (Alsina, 1985).

5. Axioms of Fodor and Roubens

Consider a continuous de Morgan triplet (T, S, N).
(IA) Independence of Irrelevant Alternatives:

$$
\begin{aligned}
P(a, b) & =p(R(a, b), R(b, a)) \\
I(a, b) & =i(R(a, b), R(b, a)) \\
J(a, b) & =j(R(a, b), R(b, a))
\end{aligned}
$$

(PA) Positive Association Principle: The mappings $p(x, N(y)), i(x, y)$ and $j(N(x), N(y))$ are increasing.
(S) Symmetry: The mappings i and j are symmetric.

5. Axioms of Fodor and Roubens

(LP) Preserving Large Preference:

$$
\begin{aligned}
& P \cup_{S} I=R \\
& P \cup_{S} J=\mathrm{co}_{N} R^{t}
\end{aligned}
$$

Underlying functional equations:

$$
\begin{aligned}
& S(p(x, y), i(x, y))=x \\
& S(p(x, y), j(x, y))=N(y)
\end{aligned}
$$

5. Axioms of Fodor and Roubens

- If (T, S, N, p, i, j) satisfies the above axioms then

$$
(T, S, N)=\left(T_{\mathbf{L}}, S_{\mathbf{L}}, N_{s}\right)
$$

(up to automorphism) and, for any $(x, y) \in[0,1]^{2}$:

$$
\begin{aligned}
T_{\mathbf{L}}(x, 1-y) & \leq \quad p(x, y) & & \leq \min (x, 1-y) \\
T_{\mathbf{L}}(x, y) & \leq i(x, y) & & \leq \min (x, y) \\
T_{\mathbf{L}}(1-x, 1-y) & \leq j(x, y) & & \leq \min (1-x, 1-y) .
\end{aligned}
$$

5. Axioms of Fodor and Roubens

- If (T, S, N, p, i, j) satisfies the above axioms then

$$
(T, S, N)=\left(T_{\mathbf{L}}, S_{\mathbf{L}}, N_{s}\right)
$$

(up to automorphism) and, for any $(x, y) \in[0,1]^{2}$:

$$
\begin{aligned}
T_{\mathbf{L}}(x, 1-y) & \leq \quad p(x, y) & & \leq \min (x, 1-y) \\
T_{\mathbf{L}}(x, y) & \leq i(x, y) & & \leq \min (x, y) \\
T_{\mathbf{L}}(1-x, 1-y) & \leq j(x, y) & & \leq \min (1-x, 1-y) .
\end{aligned}
$$

- For any reflexive binary fuzzy relation R in A, the triplet (P, I, J) defined by means of (p, i, j) is an AFPS on A such that

$$
R=P \cup_{\mathbf{L}} I \quad \text { and } \quad R^{c}=P^{t} \cup_{\mathbf{L}} J
$$

5. Axioms of Fodor and Roubens

- Consider two continuous t-norms T_{1} and T_{2}. Define p and i by

$$
\begin{aligned}
p(x, y) & =T_{1}(x, 1-y) \\
i(x, y) & =T_{2}(x, y)
\end{aligned}
$$

then $\left(T_{\mathbf{L}}, S_{\mathbf{L}}, N_{s}, p, i, j\right)$ satisfies the above axioms iff $\exists s \in[0, \infty]$ such that

$$
\begin{aligned}
& T_{1}=T_{1 / s}^{\mathbf{F}} \\
& T_{2}=T_{s}^{\mathbf{F}}
\end{aligned}
$$

In this case, we have that $j(x, y)=i(1-x, 1-y)$.

6. Characteristic behaviour

- Given a reflexive binary fuzzy relation R in A and $s \in[0, \infty]$, the triplet (P, I, J) defined by

$$
(P, I, J)=\left(R \cap_{1 / s} R^{d}, R \cap_{s} R^{t}, R^{c} \cap_{s} R^{d}\right)
$$

is an AFPS on A such that $R=P \cup_{\mathbf{L}} I$ and $R^{c}=P^{t} \cup_{\mathbf{L}} J$. Note that

$$
R(a, b)=P(a, b)+I(a, b)
$$

6. Characteristic behaviour

- Given a reflexive binary fuzzy relation R in A and $s \in[0, \infty]$, the triplet (P, I, J) defined by

$$
(P, I, J)=\left(R \cap_{1 / s} R^{d}, R \cap_{s} R^{t}, R^{c} \cap_{s} R^{d}\right)
$$

is an AFPS on A such that $R=P \cup_{\mathbf{L}} I$ and $R^{c}=P^{t} \cup_{\mathbf{L}} J$. Note that

$$
R(a, b)=P(a, b)+I(a, b)
$$

- Characteristic behaviour: Consider an AFPS (P, I, J) on A. Define its fuzzy large preference relation as

$$
R=P \cup_{\mathbf{L}} I .
$$

How can (P, I, J) be reconstructed from R ?

6. T-norm-based constructions

- An s-AFPS on A is an $\operatorname{AFPS}(P, I, J)$ on A that satisfies:
(D1) for $s \in\{0,1, \infty\}$, the condition

$$
P \cap_{s} P^{t}=I \cap_{1 / s} J
$$

(D2) for $s \in] 0,1[\cup] 1, \infty[$, the condition

$$
s^{P \cap_{s} P^{t}}+s^{-\left(I \cap_{1 / s} J\right)}=2
$$

6. T-norm-based constructions

- An s-AFPS on A is an AFPS (P, I, J) on A that satisfies:
(D1) for $s \in\{0,1, \infty\}$, the condition

$$
P \cap_{s} P^{t}=I \cap_{1 / s} J
$$

(D2) for $s \in] 0,1[\cup] 1, \infty[$, the condition

$$
s^{P \cap_{s} P^{t}}+s^{-\left(I \cap_{1 / s} J\right)}=2
$$

- Condition (D1) is equivalent to:
(i) for $s=0: \min (P(a, b), P(b, a))=0$
(ii) for $s=1: P(a, b) P(b, a)=I(a, b) J(a, b)$
(iii) for $s=\infty: \min (I(a, b), J(a, b))=0$
- Construction and characterization work!

6. T-norm-based constructions

Consider a reflexive binary fuzzy relation R in A, then we can construct the following fuzzy preference structures on A :

- a 0-AFPS $\left(P_{0}, I_{0}, J_{0}\right)$:

$$
\begin{aligned}
P_{0}(a, b) & =\max (R(a, b)-R(b, a), 0) \\
I_{0}(a, b) & =\min (R(a, b), R(b, a)) \\
J_{0}(a, b) & =\min (1-R(a, b), 1-R(b, a))
\end{aligned}
$$

- a 1-AFPS $\left(P_{1}, I_{1}, J_{1}\right)$:

$$
\begin{aligned}
P_{1}(a, b) & =R(a, b)(1-R(b, a)) \\
I_{1}(a, b) & =R(a, b) R(b, a) \\
J_{1}(a, b) & =(1-R(a, b))(1-R(b, a))
\end{aligned}
$$

6. T-norm-based constructions

- an $\infty-\operatorname{AFPS}\left(P_{\infty}, I_{\infty}, J_{\infty}\right)$:

$$
\begin{aligned}
P_{\infty}(a, b) & =\min (R(a, b), 1-R(b, a)) \\
I_{\infty}(a, b) & =\max (R(a, b)+R(b, a)-1,0) \\
J_{\infty}(a, b) & =\max (1-R(a, b)-R(b, a), 0)
\end{aligned}
$$

7. Generator triplets (with B. De Baets)

- A triplet (p, i, j) of $[0,1]^{2} \rightarrow[0,1]$ mappings is called a generator triplet compatible with a continuous t-conorm S if for any reflexive fuzzy relation R on A it holds that the triplet (P, I, J) defined by:

$$
\begin{aligned}
P(a, b) & =p(R(a, b), R(b, a)) \\
I(a, b) & =i(R(a, b), R(b, a)) \\
J(a, b) & =j(R(a, b), R(b, a))
\end{aligned}
$$

is an AFPS on A such that

$$
P \cup_{S} I=R \quad \text { and } \quad P^{t} \cup_{S} J=R^{c}
$$

7. Generator triplets (with B. De Baets)

- A triplet (p, i, j) of $[0,1]^{2} \rightarrow[0,1]$ mappings is called a generator triplet compatible with a continuous t-conorm S if for any reflexive fuzzy relation R on A it holds that the triplet (P, I, J) defined by:

$$
\begin{aligned}
P(a, b) & =p(R(a, b), R(b, a)) \\
I(a, b) & =i(R(a, b), R(b, a)) \\
J(a, b) & =j(R(a, b), R(b, a))
\end{aligned}
$$

is an AFPS on A such that

$$
P \cup_{S} I=R \quad \text { and } \quad P^{t} \cup_{S} J=R^{c}
$$

- If (p, i, j) is a generator triplet compatible with a continuous t-conorm S, then S must be nilpotent.

7. Generator triplets

- (p, i, j) is a generator triplet iff
(i) $i(1,1)=1$
(ii) $i(x, y)=i(y, x)$
(iii) $p(x, y)+p(y, x)+i(x, y)+j(x, y)=1$
(iv) $p(x, y)+i(x, y)=x$

7. Generator triplets

- (p, i, j) is a generator triplet iff
(i) $i(1,1)=1$
(ii) $i(x, y)=i(y, x)$
(iii) $p(x, y)+p(y, x)+i(x, y)+j(x, y)=1$
(iv) $p(x, y)+i(x, y)=x$
- A generator triplet is uniquely determined by, for instance, the generator i :

$$
\begin{aligned}
p(x, y) & =x-i(x, y) \\
j(x, y) & =i(x, y)-(x+y-1)
\end{aligned}
$$

- $T_{\mathrm{L}} \leq i \leq T_{\mathrm{M}}$

7. Generator triplets

- (p, i, j) is a generator triplet iff
(i) $i(1,1)=1$
(ii) $i(x, y)=i(y, x)$
(iii) $p(x, y)+p(y, x)+i(x, y)+j(x, y)=1$
(iv) $p(x, y)+i(x, y)=x$
- A generator triplet is uniquely determined by, for instance, the generator i :

$$
\begin{aligned}
p(x, y) & =x-i(x, y) \\
j(x, y) & =i(x, y)-(x+y-1)
\end{aligned}
$$

- $T_{\mathrm{L}} \leq i \leq T_{\mathrm{M}}$
- From any symmetrical i such that $T_{\mathrm{L}} \leq i \leq T_{\mathrm{M}}$ a generator triplet can be built: the generator i

7. The arrival of quasi-copulas

- A generator triplet (p, i, j) is called monotone if:
(i) p is increasing in the first and decreasing in the second argument
(ii) i is increasing in both arguments
(iii) j is decreasing in both arguments

7. The arrival of quasi-copulas

- A generator triplet (p, i, j) is called monotone if:
(i) p is increasing in the first and decreasing in the second argument
(ii) i is increasing in both arguments
(iii) j is decreasing in both arguments
- A generator triplet (p, i, j) is monotone iff
i is a commutative quasi-copula
$(i(0, x)=0, i(1, x)=x$, increasing and 1-Lipschitz)

7. Frank again

- Consider a generator triplet (p, i, j) such that i is a t-norm, then the following statements are equivalent:
(i) the mapping $j(1-x, 1-y)$ is a t-norm
(ii) the mapping $p(x, 1-y)$ is commutative
(iii) i is an ordinal sum of Frank t-norms
and also the following ones:
(iv) the mapping $p(x, 1-y)$ is a t-norm
(v) i is a Frank t-norm

8. Conclusion

- Definition, construction and characterization of AFPS
- Generator triplets: the indifference generator i
- Further work based only on i :
- Propagation of transitivity-related properties (Ph.D. Susana Díaz)
- Future work: (appropriate classes of) left-continuous de Morgan triplets - how far can we go?

