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Outline

• Applications and fundamentals
• Detection at low budgets
• Variable thresholds and the ROC
• Using Multiple simultaneous tests
• Using Multiple tests sequentially problem
• Sequential: Linear programming
• Sequential: Dynamic Programming
• Open Problems
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Required joke: a scholarly talk should 
include things understood by

• Everyone 
• Students
• Graduate students
• Faculty
• Specialists
• Only the speaker
• No one 

Not a joke: 

9:00 in Paris, c’est 
4:00am  in New 
York

!!
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Applications

• Testing, the practical application of 
science, is used in industry and medicine, 
in sports, and in security

• Strength of materials
• Indicators of disease
• The Lance Armstrong problem
• Passenger screening
• Nuclear threat detection
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Fundamentals
• Tests are costly, and imperfect.
• Costs:

– Capital costs: buy the machinery, train the workers
• 1K detector – 5K stats good enough to determine 3-5sig 

change in count rate against background in 0.5 sec. 
Advanced Portal Monitor  ~50x higher cost (300,000USD)

– Operating costs: per case examined (bridge, patient, 
athlete, traveler, container, etc.) 

• Imperfections:
– Accuracy is less than 100%. 
– Requires two numbers to describe
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Accuracy
• A simple binary test yields two results, 

which we can call Flag (F) and not (N).
• The accuracy involves two (stochastic) 

parameters

• These are random not because of sensor 
behavior, but because of case variation

Pr{ | target}
Pr{ | not target}

d F
f F
=
=
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The value of knowledge
• The (expected) utility of taking one of the 

available actions 

• Depends on the “truth about the world”
– U(a,t).  

• We want to maximize expected utility
• The value of an imperfect sensor is the increase 

in 
– EU(a,t|i,W) compared to EU(a,t|W prior).

a A∈
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Applications

• This can be simplified to 
– Expected Utility(a=choice made) = + 

f[U(a=wrong, t=not target)]+constant +         
(1-d)[U(a=wrong,t=target)+constant’] + 
constant”

– We want to minimize EC(a)+C(tests)
– The problem is that such calculations depend 

on the prior probbility, and on the unknowable 
large negative utility:U(a=wrong, t=not target)

– We are still stuck 
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Divide and conquer
• We combine cost of false alarms, which 

occur very often, with operating costs, and 
keep the cost of missed items as a 
separate consideration:

• Cost-->   f [U(a=wrong, t=not 
target)]+constant + (Cost of test)

• Value--> (1-d)U(a=wrong,t=target)  
• At any given cost, we get the most value 

by  maximizing d  !
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We divide the problem 

• Technical problem
– for every value of the new cost, find that 

strategy producing the highest detection rate
– present the (cost,detection) curve to a 

decision maker
• Policy problem

– the decision maker decides what level of risk 
is acceptable, given competing demands on 
the budget.
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The detection performance of 
any strategy

• (f,d). These will depend on the sensors 
used, the sequence in which they are 
used, the decision rules, and the specific 
operating rules or (multiple) thresholds 
that are chose

• This  is a purely technical computation, 
involving only sensor characteristics as 
they relate to the universe of threats.
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The cost-detection performance

• At any operating point (f,d), the operating 
cost (remember: not the cost of a disaster) 
is given by 
– C(p)=C(Tests)+πdC(U)+(1-π)f(C(U)+C(I))
– C(p)= expected cost of policy p
– C(Tests)= expected cost of the testing
– C(U)= cost of unpacking (total inspection)
– C(I) = cost of interruption to commerce
– π = a priori probability of a threat (unkown)!.
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We are almost done
• This relation still contains the unknown 

parameter π.  However (this can be lifted if 
needed) we are going to use the fact that 
π<< 1, and neglect it compared to 1.

• Now the cost is just
– C(p)=C(Tests(p)) +(1)f(p)(C(U)+C(I))
– no troublesome Greek letters. ☺
– we measure costs in units of C(U), so 

• C(p)=C(Tests(p)) +f(p)(1+K)
• where K=C(I) interruption to commerce
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Detection at Low Budgets

• The typical cost-detection curve looks 
something like this.  There is no detection 
until everything has been examined. 

C(T) fK

d
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Detection is an intensive 
property

• Extensive property: 
– V(X ∪

 
Y)=V(X)+V(Y)

– example: volume of a gas
• Intensive property: 

– T(X ∪
 

Y)=|X|T(X)+|Y|T(Y)
– example: temperature of a gas. | | is a 

measure of the amount.
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Intensive (continued)

• If the cases are divided into two groups, 
with sizes ….

• And the same is true for decomposition 
into more than two sets

• The cost of inspection is also intensive.

1, 2 1 2

1 1 2 2

,

( ) ( ) ( )

N N subjected to policies P P

d N d P N d P= +N,P
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Convexity

• It follows that if any two (Cost, Detection) 
points are achievable, so is any point on 
the line connecting them.

C(T) fK

d
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For Low Budgets

• When there is not enough money to reach 
the point P, the optimal strategy is mixed, 
in the proportions needed to reach the 
budget, on the line from 0 to P.

C(T) fK

d

P

The budget1-α

α
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Screening Power Index

• If there are several available tests, with 
different cost-detection performance, in 
the regime of low budgets we can select 
among them based on a single number: 
Screening Power Index G(P)=d(P)/C(p).
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Multi-message tests

• We have so far assumed that a test either 
raises a flag F, or does not. In fact, a test 
may report any of serval messages, which 
we will label by m

• for example, inspection of documents 
might yield the three results 

– {highly suspicious, somewhat suspicious, OK}

T Tm M∈
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Ordering of labels

• These labels are placed in the “natural 
order”.

• This means that if the optimal strategy 
involves opening any of the cases with 
label m, we should also open all of the 
cases with label m’<m.

1 2

{highly suspicious, somewhat suspicious, OK}
  Pr{ | }/ Pr{ | } decreasingm t m t¬
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We assume this ordering
• If the labels were not in this order, we would 

simply rearrange them. Let S(m) represent 
the set of cases receiving label m

• We must now (we will relax this later) map 
the set of labels into the two actions 
{Inspect, Release}. 

• Clearly, the optimal subsets matched to 
Inspect are of the form 

*
( *) ( )

m m
S m S m

<
= U
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First Monotonicity

• Rather than write out the equations, we 
can make it obvious as follows. 
– Each label generates some fraction of the 

detectable threats, and some other fraction of 
the harmless items. These line segments 
convert to segments in the C-d plot. And they 
must be taken in decreasing odrer of slope.
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“Proof”
• If we took segment 3 (yellow) before 

segment 2 (red) the cost-detection curve 
would be dominated by the smarter choice.

Cost

D
et

ec
tio

n
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How should we set the 
operating point

• For a given (low) budget, the best strategy 
is a mixture. 

• But, should we always flag only the most 
suspicious items? No!

Cost

D
et

ec
tio

n

Use this
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The screening power index

• For low budgets we define the screening 
power index G by the equation:

• If there are several possible strategies and 
a low enough budget, choose the strategy 
with the highest value of G.

:

( )( ) max
( )trigger sets t of T

d tG T
C t

=
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Given performance, what is the “lowest 
cost for non-obvious solution”

• The portion of the plot to the right of C(T) does not depend on the 
cost of the test.

• If the cost is less than C*, opening only the most suspicious cases is 
opimal, with the budget determining the mixture. If the cost is above 
C*, then the mixture will include opening some of the less suspicious 

cases.

Cost

D
et

ec
tio

n

C*
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Multiple Simultaneous Tests
• Suppose we have a number of tests that 

can be conducted at the same time 
(various kinds of document check). 

• For simplicity, suppose that each yields 
only a pair of  labels or messages:

– {More suspicious, Less suspicious}

• How many of the tests should we run?
• What should be our decision rule based on 

the results.



Paul Kantor Endre Boros. Deceptive Detection. Rutgers University 29

Simplifying assumptions
• 1. All of the tests have the same cost
• 2. All of the tests have the same (f,d) 

parameters.
• The results are sometimes surprising
• To find the solution, we compute the (c-d) 

curves for each number of tests, and for 
each possible “k-out-of-n” rule (these are 
optimal when tests are identical).
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Example Results
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Example Results (2)
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Sequencing of tests and 

domination
• When sequencing several sensors we may need 

to use a dominated sensor strategy.
• In this example the dominated, costly, sensor s2 

is optimally used as the root sensor
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The general sequencing 
problem

• If something (a “case”) has been 
examined with a set of sensors which I will 
call:

• Yielding a set of readings or labels

• then we know something about the odds 
that it is harmful

(1) (2) ( ), ,...i i i ks s s

(1) (2) ( )
1 2, ,...i i i k

km m m
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The odds ratio

• The a priori odds that this case is a target 
have been increased by the Bayes factor:

(1) (2) ( )
1 2

(1) (2) ( )
1 2

( )

( )

Pr{ , ,... | }
Pr{ , ,... | }

Pr{ | }

Pr{ }

i i i k
k

i i i k
k

i j
j

i j
j k

m m m t
m m m t

m t

m j t≤

=
¬

¬
∏
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The path history

• The cases have an odds ratio completely 
determined by their “path history” -- which 
sensors they have met, and what readings 
resulted. So the odds ratio, which we will 
call Lambda, depends only on the set of 
labels

( )(1) (2) ( )
1 2( ) , ,...i i i k

kI m m mΛ = Λ
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The Linear Program

• Whatever set of policies we establish, they 
will define a tree which can be represented 
this way (just a moment)

• and corresponding to each path, there will 
be a certain fraction of the targets, and a 
certain fraction of the “not-targets” that 
follow the path. Label the path η

 
and the 

fraction following it y(η)
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An inspection policy

1,079,779,602
such trees with 4 

sensors!
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Given any particular budget, and any other capacity constraints, this 
problem can be solved using COTS LP solvers. It is a large problem, but 
smaller than the non-linear search used previously.  The optimal 
solution will be a mixture of at most J+1 pure solutions, where J is the 
number of linear constraints.
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Linear Programming: summary
• This approach, in which the possible 

solutions are found as the vertices of a 
polyhedron in the space of all possible 
paths through all possible trees, is a 
substantial improvement over enumerating 
all trees and doing a non-linear search 
over thresholds.
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But...

• As a Linear programming problem, it takes 
the form:

• We have to know the budget to solve the 
problem.

• Is there a simpler way?

max ( )
: ( )

d Strategy
subject to C Strategy Budget=
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Towards dynamic programming

• When a case has any specific history, it 
also has available various policies, each of 
which has its own detection and cost 
parameters.  So we should be able to 
make an optimal assignment of the case, 
to one of the available policies, which must 
only use the sensors not appearing in the 
path -- remember, we assume 
randomness is in targets, not sensors.
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An insight

• For any particular combination of sensors (a 
subset of all of them) there is some best 
detection strategy (cost-detection curve).

• We can consider all the subsets with, e.g. 3 
sensors. Find the best strategy for each subset. 

• Consider, in turn, using any of the others to do a 
preliminary triage

• Find the best mixture of strategies
• And then drop all the dominated strategies
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Dynamic Programming

B

B

B

B

B

B

B B
Maximum 

space required
K=20: 184,756 

!
/ 2 ( / 2)!( / 2)!

20 184,756 

K K
K K K

For K this is

⎛ ⎞
=⎜ ⎟

⎝ ⎠
=
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Dynamic programming overview
• Dynamic programming finds the entire cost- 

detection curve at once. 
• Basic Facts:

– Every optimal strategy is a mixture of at most 2 pure 
strategies.

– The efficient frontier is a piecewise linear curve in cost- 
detection space consisting of the optimal strategies for each 
budget value.

• Solution:
– Find curve by enumerating vertices – efficient pure strategies
– Use  cost-detection dominance when possible
– The  frontier for  k+1 sensors is  constructed  using all (already 

computed) subsets containing k sensors different from the one 
added.

– We call adding another sensor above an existing set of (pure) 
strategies, the “sensor prefixing problem”
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The key to prefixing

• Each label or message coming out of the top 
sensor represents a particular odds ratio:

• And every policy P to which it might be prefixed 
has a particular ratio d(P)/C(P)

• to assign each m to some P Sort decreasing by 

( )( )
1( )

top

i toptop mΛ = Λ

( , )* ( ) / ( )top m d P C PΛ
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The sensor prefixing problem
• Given a set of available testing strategies (C1 ,D1 ), …, (CN ,DN ), in cost-detection space, 

and a sensor with a set of bins characterized by (b1 ,g1 ), …, (bT , gT ):  bm =Prob{label=m|t)
– assign bins to  strategies and  maximize detection?
– every  bin  assigned 
– For each budget  (C):  a new special case of a 
– Linear Multiple Choice Knapsack problem (Zemel 1980).
– Can be solved (“greedy” algorithm)  O(NTlgT+NlgN) - for all values of budget M
– testing strategies are sorted;   solve in O(NT lg T)

,
( )

1, 1

,

( ) m a x

. .

1

0 1 ,

i T j N
n ew

i j ij
i j

i j ij
i j

ij
j

ij

D M b D x

s t
g C x M

x fo r e a ch i

x fo r e a ch i j

= =

= =

=

≤

=

≤ ≤

∑

∑

∑ The number of labels is B
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Dynamic programming 
formulation: the Math

• Let f(k)(S) be the set of efficient 
frontier vertices of height k using 
sensor set S

• Stages correspond to the height of 
the strategy trees

• No more than in total 2|S| possible 
subsets of sensors along a path

( 1) ( )

(0)

( ) ( ( , ( { })) {(0,0),(1,1)})

( ) {(0,0),(1,1)}

k k

s S

f S convhull sensorinsertion s f S s

f S

+

∈

= − ∪

=

U
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Representative Results

• Parametric Models:Running time depends 
on number of vertices: 

Fitted : sensors + logvertices

lo
gt

im
e

-5 0 5 10

-5
0

5
10

10.52 1.12( ) .65

2

2 2
98.5%

SensorsT Vertices
R

−=

=
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Number of vertices

• Depends, empirically on the number of sensors 
and the number of branches or bins:

• This quality would be great for social science; 
we want more.

( ) ( )
2

 1.46 1.37  1.55

44%

Sensors BinsVertices

R

=

=

2

6.96*(.75) *(.75) (1.3)
81%

Sensors Bins Bins SensorsVertices
R

×=

=
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Why do we care about running 
time?

• For some problems the test yields a 
continuous parameter, such as total 
counts of a specific type of radiation. The 
ROC figure is then a smooth curve. But 
our calculation requires that it be made 
discrete. The tradeoff is between the 
accuracy with which we approximate the 
curve, and the time+space cost of the 
calculation.
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“Bins”: From signal space, to Receiver 
Operating Characteristic (ROC)

• The naive approach is to assign a fixed number of bins 
in the space of scores.

• The distributions in the space of scores define an “odds 
ratio”

• The best detection for a given rate of false alarms is 
found by selecting regions of the space of scores, in 
decreasing order of the odds ratio (Neyman-Pearson)

• The ROC curve plots the resulting d(f) - detection rate as 
a function of the false alarm rate

64%
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Bins in ROC space

• We have been able to show that it is more 
effective to define bins in ROC space, and 
then translate them back into signal space.
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Summary

• With this approach we have been able to speed 
up the calculations (versus non-linear grid 
search) by 6 to 9 orders of magnitude 
(estimated, of course)

• I hope I have piqued your interest in this class of 
problems, as

• By no means have we exhausted the interesting 
and important questions that may be explored. 

• Let’s look at a few of them
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Open Social Problems

• Can decision makers accept strategies 
that involve some level of randomness?

• The expected performance of such 
strategies is provably better, but

• The political consequences of a missed 
threat would be much worse since the 
strategy could be criticized as “random” – 
an avoidance of responsibility.
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Open Social Problems

• Lobbying based on K
• we have tried to separate the political from the 

technical, but vendors of tests point to K, and 
argue that because it is so large, the goal is to 
minimize K. This is not wrong, but it does not 
attend to the primary goal of increasing d. It is, in a 
sense, a “peacetime” goal, rather than a “wartime” 
goal.
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Open technical problems

• How to solve for threats where π is O(1)?
• We speculate that the DP approach will generalize, 

but that the state space will now have two 
parameters: B and π

• How to control the computational burden 
when the reading(s) from a sensor are 
continuous?

• We believe that the errors of the DP algorithm can 
be strongly bounded, but the proofs have not 
revealed themselves to us yet. 
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Open technical problems (2) 

• What are the effects of randomness
• We have been examining only the expected values 

of the detection, and of the cost. But these are 
both random variables. What are the policy 
implications of observing a lower d than is 
expected? What happens if f is higher than 
expected and we run out of money?

• This problem was examined by M. Maschler, in the 
context of nuclear disarmament
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Open technical problems (3)

• How to deal with the case of stochastically 
dependent sensors:

• Prob{L(s), L(s’)|t}≠ Prob{L(s)|t} Prob{L(s’)|t}
• in this case, the backward algorithm does not 

seem to work. There is then a hard problem of 
reducing the computation to tractable size.

• We know the LP approach will work -- but even a 
supercomputer will not be adequate and the 
precise nature of the interrelations is not known.
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Open technical problems (4)

• Real data are spectral profiles, not single 
readings. The randomness is compounded 
by the fact that sensors, at any energy bin, 
are seeing Poisson variates. It is all 
computable, but one needs to “put the 
machinery into a shrink-wrapped tool” for 
the decision makers, since they cannot 
share the data with us.  
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Open technical problems (5)

• There are, in reality, multiple threats 
(highly enriched uranium, plutonium, 
cocaine). The correct secondary action will 
depend on what kind of threat is indicated 
by the primary test. How is this to be 
modeled?
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Open technical problems (6)

• The problem is embedded in a game 
(Inspector game) and the opponent can 
allocate resources to attacking through 
various channels, while we must allocate 
our resources to defending the several 
channels.
– Maschler (1966). Leader (Stuckelberg) game. 

We are not harmed by the fact that we must 
announce. Is that true here?
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Merci  Beaucoup

• Thanks to our sponsors:
• US DHS DNDO #CBET-0735910
• US DHS DyDAn Center
• US ONR Port Security

• I will do my best to answer questions. ☺
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To read more
• Testimony of Vayl Oxford; Director US DNDO.

– http://homeland.house.gov/SiteDocuments/20080305142759-83992.pdf

• Linear model; no independence assumptions; 
– http://rutcor.rutgers.edu/pub/rrr/reports2006/26_2006.pdf

• Screening Power Index (low budgets only)
– http://rutcor.rutgers.edu/pub/rrr/reports2007/26_2007.pdf

• Dynamic Programming. Stochastic Independence, π=0.
– http://rutcor.rutgers.edu/pub/rrr/reports2008/14_2008.pdf
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