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Social choice theory

e Mmost results in social choice theory are of the followingriothere does not
exist / there exists a social choice procedure meeting rements (R1),...,(Rp)
iImpossibility/possibility theorems

Example: Arrow’s theorem.

There exists no aggregation function defined on the set pfatflles, satisfying
unanimity, lIA and non-dictatorship.

computational issues are neglected

Knowing that a given proceduanbe computed is generally enough.




Computational social choice: two research streams

From social choice theory to computer science
Importing concepts and procedures from social choice fmirsgp problems
arising in computer science applications, such as

e societies of artificial agents (voting, negotiating / bangay, ...)
e aggregation procedures for web site ranking and informatdrieval
e fair division of computational resources

From computer science to social choice theory

using computational notions and techniques (mainly from@®R, Theoretical
Computer Science) for solving complex social choice pnoisle

e computational difficulty of voting rules; exact or approxta algorithms

e Vvoting with a very large (combinatorial) space of alternedi
computational bareers to manipulation (+ other forms @tetgic behaviour)
communication protocols for voting; voting with incommetnowledge
computational aspects of fair division
several other topics




Outline of the lectures
In the order of appearance:
(Christian Klamler) social choice theory
(Jose Figueira) history of social choice
(Jerome Lang) computational social choice: voting
Ulle Endriss computational social choice: fair division
Felix Brandt voting: tournament solutions
Stefano Moretti social choice and game theory: coalitions, power indices

Sebastien Koniecznysocial choice: logic-based approaches

Thierry Marchant social choice and multicriteria decision analysis




Outline of the lectures
not enough time to talk about every single piece of work
for each main topic I'll develop one or two approaches in idleta

focus on computation and communication

(tentative) full list of references, classified by topio/an in a separate file
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Voting rules and correspondences

1. afiniteset of votersz = {1, ...,n};

2. afiniteset of candidates (alternatives),

3. aprofile = a preference relation (= linear order) @nfor each agent
P=M,...,.Va)=(~1,---,>n)

V; (or =) = voteexpressed by voter
— there are exceptions, such as in approval voting —

4. p" set of all profiles.

Votingrule F: 2" — x
F(V1,...,Vn) = socially preferred (elected) candidate

Voting correspondenceC: 2" — 24 \ {0}
C(V1,...,Vnh) = set of socially preferred candidates.

Rules can be obtained from correspondences by tie-bre@ksuglly by using a
predefined priority order on candidates).




A family of voting rules: positional scoring rules
N voters,p candidates
fixed list of p integerss; > ... > s,
voteri ranks candidat® in position ] = scorg(X) = s;
winner: candidate maximizingx) = S ; scorg(X) (+ tie-breaking if necessary)
Examples:

e 5=1,5=...=5y,=0= plurality;
e S|=S=...=S1=1,5=0= veto;
e Si=p—-1,=p—-2,...5p=0= Borda

2 voters 1voter 1 voter plurality Borda veto

d a—1 a— 6 a— 6
b— 0 b— 7 b— 6

a Cr— 2 C— 6 c— 4
b d—1 d— 4 d— 4
C c winner b winner a oub winner




Condorcet winner

N(x,y) = #{i,x =i y} number of voters who preferto y.

Condorcet winner a candidates such thatvy # x, N(x,y) > 3
(= a candidate who beats any other candidate by a majoritgtesy.

2 votersoutof 3a >~ Db majority graph:
2 voters out of 3t >~ a N ¢
2 voters out of 3a >~ d
2 voters out of 3b > ¢
2 voters out of 3b >~ d
2 voters out of 3d - C

O

No Condorcet winner.




Condorcet winner

N(x,y) = #{i,x =i y} number of voters who preferto y.

Condorcet winner a candidates such thatvy # x, N(x,y) > 3
(= a candidate who beats any other candidate by a majoritgtesy.

A Condorcet-consistent ruleects the Condorcet winner whenever there is one.
2 voters out of 3b >~a majority graph :

L
<

2 voters out of 3c = a , 'y
2 voters out of 3a>~d
2 voters out of 3b = ¢
2 voters out of 3b >~ d
2 voters out of 3d - C

b Condorcet winner.




Another family of voting rules: Condorcet-consistent rules

A Condorcet-consistent ruleects the Condorcet winner whenever there is one.

An example: theCopeland rule

C(x) = number of candidatessuch that a majority of voters prefexsoy.

Copeland winner = candidate maximizi@g

(a)

e (b)

| C(c)

Cd)=1

a andb pre-winners

(the winner is obtained

after tie-breaking)

majority graph :

Important note: no scoring is Condorcet-consistent.




Simple transferable vote (STV)

If there exists a candidataanked first by more than 50% of the votes
then c wins
else Repeat
let d be the candidate ranked first by the fewest voters;
eliminated from all ballots
{votes ford transferred to the next best remaining candi¢iate
Until there exists a candidataanked first by more than 50% of the votes

When there are only 3 candidates, STV coincides witimality with runoff

3 3

2
d
C
b
a

Winner:b
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A brief refresher on computational complexity
A decision problemis a pairP = (Ip,Yp) where
e |p set ofproblem instances
e Yp set ofpositive instances

Np = Ip \ Yp set ofnegative instances
A decision problem is usually identified with the languag®fypositive instances.

Algorithm for a decision problem:

A decision problen® is solved by an algorithm if A halts for every instancee Ip
and returnes if and only if x € Yp. We also say that the set (or the languageis
recognized byA.

A search problemis a tripleP = (Ip, S, R) where
e |p set ofproblem instances
e S set ofpositive solutions

e RC Ipx S [R(x,S) means thasis a solution forx]




Complexity classes for decision problems

Let A be an algorithm running on a set of instanteketx € 1.

VaY

e ta(X) = running time ofA onx (= number of elementary steps);

e the worst-case running time #&fis the functiorta : N — N defined by

ta(n) = maxta(x)|x e l,|x < n}

e the running time oA is in O(g(n)) if ta(n) is O(g(n)).

[[given two functionsf,g: N — N, we say thatf (n) is O(g(n)) if there exist
constant, a andng such that for alh > ng, f(n) <c.g(n)+a.]]

A decision problem can be solved with tinfién) if there exist an algorithrA that
solves it and whose running time (resp. space) S(f(n)).

Deterministic polynomial time:

P = set of all decision problems that can be solved in tithéor somek € N




Nondeterministic algorithm: apart from all usual constructs, can execute commarjds
of the type guesyg € {0,1}.

Structure of a nondeterministic algorithm = computati@et(guess instructions
corresponding to branching pointg)linear structure of a deterministic algorithm (at
any step, one possible next step).

Nondeterministic problem solution:
P = (Ip,Yp) decision problem.
A nondeterministic algorithnA solvesP if, for all x € Ip:
1. Arunning onx halts for any possible guess sequence;

2. X € Yp Iff there exists a sequence of guesses which |daisreturn the value
YES.

Nondeterministic polynomial time:

NP = set of all decision problems that can be solved by a nonuatestic algorithm
in time n¥ for somek € N

Equivalently,NP is the set of all decision problems for whialsolution can be
verified in deterministic polynomial time



NP-complete problems

A decision problem islP-hard if any problem ofNP can be polynomially reduced to
It.

A decision problem is\P-complete if it is INNP and it iISNP-hard.

NP-complete problems = “the hardest” among problemisfin

coNP = set of all decision problems whose complement iNih

P= (Ip,Yp); YpisincoNP ifand only if Ip\ Ip is in NP.




Oracles and relativized complexity classes

Oracles: leP = (Ip, S, R) be a function problem. Apracle for Pis an abstract
device which, for any € IP , returns a valud (x) € SPin just one computation step.

An NP-oracle is an abstract device which, for any x ? IP , returnalaevf (x) ? SP in
just one computation step.

A decision problem
C complexity class

CNP is the class of all decision problems that can be recognidttdoomplexityC by
an algorithm using oracles forNP-complete probleni.

The (second level of the) polynomial hierarchy

e O =A% (O(logn)) = set of all decision problems that can be solved in
deterministic polynomial time using a logarithmic numbéN®-oracles.

o 35 =NPNP = set of all decision problems that can be solved in nondétestic
polynomial time usingNP-oracles.

P — p




Computing voting rules

Most voting rules can be computed in polynomial time

Examples:

e positional scoring rules, plurality with runof®(np)

e Copeland, maximin, ST\O(np?)

But some voting rules angP-hard.




Hard rules: a classification

rules based on the majority gragiournament solutionamong which Slater,
Banks, Tournament Equilibrium Set)
= lecture by Felix Brandt

rules based on the weighted majority graph: Kemeny

other rules: Dodgson, Young




Hard rules: Kemeny

Looks for rankings that are as close as possible to the @mferprofile and chooses
the top-ranked candidates in these rankings.

e Kemeny distance
dk (V,V’) = number of(x,y) € x? on whichV andV’ disagree

ch(V: (Vi Vo) = 5 (VW)

e Kemeny consensuslinear order-* such thatg (>, (V1,...,Vn)) minimum

e Kemeny winner candidate ranked first in a Kemeny consensus




Hard rules: Kemeny

A characterization of Kemeny: with each profite= (Py,...,P,) associate the
pairwise comparison matrig(X,y) )xyex WhereN(x,y) is the number of voters who
preferxtoy.

Given a rankindgR:
KR =S Nxy)
(xy)eR

If x> yis in Rthen this corresponds té(x,y) agreements (and(y, X)
disagreements)

P* is a Kemeny consensus Kf(P*) is minimum.

4 voters 3 voters 2 voters

b C
C a
a b

Find the Kemeny winner(s).




Hard rules: Kemeny

4 voters 3 voters 2 voters

a b C
b C a
C b

Kemeny scores:

abc acb bac bca cab cba
17 12 14 15 13 10

Kemeny consensusibc Kemeny winnera




Hard rules: Kemeny
e early results: Kemeny iNP-hard (Orlin, 81; Bartholdet al.,, 89; Hudry, 89)

e deciding whether a candidate is a Kemeny winn&fiéO(logn))-complete
(Hemaspaandra, Spakowski & Vogel, 04): needs logarithliigio@any oracles.

Membership ta\; (O(logn)):

. kmin:= 0:kmax;= ”m(r;_l);
. Repeat

K — (kminzkmaxw;

If there exists a rankinB such thaK(R) > k
then kmax:= k

elsekmin:=k—-1

. Until kmin= kmax

. k* := kmin(= kmax)

. guess a ranking,

10. check thaK(R) = k* and thatop(R) = x.

1
2
3.
4.
5.
6.
7
8
9

Step 4:NP-oracle [4a. guesR; 4b. check thaK(R) > K]




Hard rules: Kemeny
Lots of other works on Kemeny, among which

e efficient computation: Davenport and Kalagnanam, 04; @enitDavenport and
Kalagnanam, 06; Betzler, Fellows, Guo, Niedermeier & Ramaan 09.

o fixed-parameter complexity: Betzler, Fellows, Guo, Niedeier & Rosamond,
08.

e approximation: Ailon, Charikar & Newman, 05; Kenyon-Mathiand Schudy,

07.

More general problenmedian ordergsurvey in Hudry (08).




Hard rules: Dodgson

For anyx € x, D(x) = smallest number of elementary changes needed to make
Condorcet winner.

elementary change = exchange of adjacent candidates inex’saainking

Dodgson winner(s): candidate(s) minimizibgx)

An example (Nurmi, 04):

10 voters 8 voters 7 voters 4 voters

Find the Dodgson winner.




Hard rules: Dodgson

For anyx € x, D(x) = smallest number of elementary changes needed to make
Condorcet winner.

elementary change = exchange of adjacent candidates inex’saainking

Dodgson winner(s): candidate(s) minimizibgx)

An example (Nurmi, 04):

10 voters 8 voters 7 voters 4 voters

d d

a b
b a
C C

Dodgson winnerD, althoughD is the Condorcet loser.

Who is the winner if all votes are reversed?




Hard rules: Dodgson

Another example (Brandt, 09):

2

2

2 2

d
C
a
b

b
C
a
d

Replace every voter by three voters:

6

6

6 6 6

d
C
a
b

b
C
a
d




Hard rules: Dodgson

Another example (Brandt, 09): Dodgson does not sahisiymogeneity

2

2

2 2 2 1 1

d
C
a
b

b
C
a
d

Dodgson winnerA

Replace every voter by three voters:

6

6

6 6 6

d
C
a
b

b
C
a
d

Dodgson winnerD




Hard rules: Dodgson

Although Dodgson has received much attention in the lagtsyddails to satisfy
many desirable properties (Brandt, 09): Smith consisteamaymnogeneity,
monotonicity, independence of clones.

Moreover, computing Dodgson is hard:

e Bartholdi, Tovey & Trick, 89: deciding whetheris a Dodgson winner is
NP-hard.

e Hemaspaandra, Hemaspaandra & Rothe, 97: deciding whetharDodgson

winner is®5-complete (= requires a logarithmic number of calls\®oracles)

Caragiannis, Kaklamanis, Karanikolas & Procaccia ($0xially desirable
approximations of Dodgsoriexample:monotonic approximations voting rules:

e satisfying monotonicity
e close enough to Dodgson
e (possibly) computable in polynomial time

The approximation of a voting rule is a new voting rule thatrba interestinger se




Hard rules: Dodgson

For all candidates, y # x: De ficit(x,y) = max(0, 1+ LN(V’XEN(X’”J)

(Deficit(x,y) = number of votes (if any) tha¢needs to gain in order to begt

Tideman score

T(x) =) Deficit(x,y)
&

Tideman winner(sF candidate(s) with the lowest Tideman score
e Tideman winners are computable in tifdén. p?)
e Tideman satisfies monotonicity and homogeneity

e (after some rescaling of the definition of the Tideman scodr@g¢man is an
approximation of Dodgson with approximation rattdm.logm): T (x) < p.D(X)
with p = 0(m.logm) (Caragiannis, Kaklamanis, Karanikolas & Procaccia, 10)

e under the impartial culture assumption (uniform distnontof profiles), the
probability that the Tideman winner and the Dodgson winmmen@de converges
asymptotically to 1 as the number of voters tends to infilgCabe-Dansted,
Pritchard and Slinko, 06)




Hard rules: Dodgson

Recall thatDe ficit(x,y) = max(0, 1+ | MXNEY) |y = hymber of votes (if any) that
X needs to gain in order to beaby a majority of votes.

DefineSwagx,y) = number of votes in whicly is immediately above:.

o if for everyy # x, Swagx,y) > Deficit(x,y) then the Dodgson score »is
Zyyéx Swamxa y) .

e therefore, ifSwagx,y) > Deficit(x,y) holds for everyx,y, then the Dodgson
winner can be computed in polynomial time.

e under the impartial culture assumption, the probabiligt th

Swapx,y) > Deficit(x,y) holds for everyx,y tends to 1 when the number of
votersn tends to infinity (Homan and Hemaspaandra, 06).




Hard rules: Young

For anyx € x, Y(X) = smallest number of elementary changes needed to make
Condorcet winner.

elementary change = removal of a voter

4 voters 2 voters 3voters

b

Find the Young winner(s).

Deciding whethek is a Young winner i€ -complete (Rothe, Spakowski & Vogel,
03)




Hard rules: Banks
e Mp majority graph induced bf;
e XIS a Banks winner ik iIs undominated in some maximal transitive subsdvlpf

e deciding whethek is a Banks winner isiP-complete (Woeginger, 2003; Brandt
et al,, 2009)

e however, itis possible to find an arbitrary Banks winner itypomial time
(Hudry, 2004)

Finding a Banks winner in polynomial time by a greedy aldont

A= {x} wherex s an arbitrary candidate;

repeat
find y such that the subgraph bfp restricted toAU {y} is transitive;
addyto A

until there is no sucly;

return c undominated irA




Hard rules: Banks

4 voters 2 voters 3 voters

b

Find the Banks winner(s).




Hard rules: Slater
P=(Vi,...,Vh) profile
e Mp majority graph induced bfp.
e distance of a linear ord&f to Mp: number of edges iMp disagreeing witlV.
e Slater ranking = linear order on minimising the distance tp.
e Slater winner: best candidate in some Slater ranking

Complexity:

e weak tournaments (with possible tieé)%-complete;

e tournamentsNP-hard, in@%




Hard rules: Slater

4 voters 2 voters 3 voters

b

Find the Slater winner(s).
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Key question:tructureof the setx of candidates?

Example 1 choosing a common menu:
X = {asparagus risotto, foie gras}
x  {roasted chicken, vegetable curry}

x {white wine, red wne}

Example 2 multiple referendum: a local community has to decide onrstve
Interrelated issues (should we build a swimming pool or shiuld we build a
tennis court or not?)

Example 3 choosing a joint plan: the group travel problem (Klamler &gthy).
A set of cities; a set of agents; each of whom has preferen@rsedges between
cities. The group will travel together and has to reach ecdyonce.

Example 4 recruiting committee (3 positions, 6 candidates):
x ={A|AC{anb,c,d,e f}, |A <3}

Combinatorial domains® = {Xy,...,Xp} set ofvariables orissues
X =Dy x ... x Dp (whereD; Is a finite value domain for variabl§)




How should such a vote be conducted?

Some classes of solutions:
. vote separately on each variable, in parallel.

. ask voters to specify their preference relation by ramhthalternatives
explicitly.

. limit the number of possible alternatives that voters matg for.

. ask voters to report only a small part of their preferemtation and appply a
voting rule that needs this information only, such as pityal

. ask voters their preferred alternative(s) and completmtautomatically using a
predefinedlistance

. sequential voting decide on every variable one after the other, and broatitast
outcome for every variable before eliciting the votes onrtaet variable.

. use a&compact preference representation languagahich the voters’
preferences are represented in a concise way.




How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.




How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.multiple election
paradoxesarise as soon as some voters have preferential dependbatiaeen
attributes.

Example
2 binary variables$ (build a new swimming pool)T (build a new tennis court)

voters1and 2 ST = ST ST -~ ST
voters3and4 ST> ST - ST = ST
voter 5 ST> ST -~ ST- ST

Problem 1 voters 1-4 feel ill at ease reporting a preferenca[ﬁ,rg} and{T,'F}

Problem 2 suppose they do so by an “optimistic” projection
e Voters 1, 2 and 55, voters 3 and A4S = decision =S,
e Vvoters 3,4 and 5T ; voters 1 and 2T = decision =T.

Alternative ST is chosen although it is the worst alternative for all but voter.




How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variablemultiple election
paradoxesrise as soon as some voters have preferential dependbatieen
attributes.

Not too bad when preferences a&parable the preference over the possibles valugs
of a variable is independent from the values of other varabl

Separability
1V = {X1,...,Xp} set of variables
X =Dj1 x...xDp

D_i = xjxD;

for everyX; € v, everyx_j,X ; € D_j, and every;,x € Dj,
(R-i,%i) = (X-i,%) if and only if (X_;, %) = (X, %)

X; is preferred to¢ for some tuple of valueg_; of the other variable#f x; is preferred
to x for any other tuple of value® ; of the other variables.



How should such a vote be conducted?

Some classes of solutions:
1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking # alternatives
explicitly.

% :{Xl,...,Xp};x :D1><...><Dp

There ard11<j<p|Dj| alternatives.

=- as soon as there are more than three or four variables, explicpreference
elicitation is irrealistic.




How should such a vote be conducted?

Some classes of solutions:
. vote separately on each variable, in parallel.

. ask voters to specify their preference relation by ramhthalternatives
explicitly.

. limit the number of possible alternatives that voters may vaee for.

arbitrary (who decides which alternatives are allowed?)

so that this solution be realistic, the number of altermetithe voters can vote fo
has to be low. Therefore, voters only express their pret&a®on a tiny fraction
of the alternatives.




How should such a vote be conducted?
Some classes of solutions:
1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ramhlthalternatives
explicitly.

3. limit the number of possible alternatives that voters matg for.

4. ask voters to report only a small part of their preference rehation and appply
a voting rule that needs this information only, such as plurdity.

Results are completely nonsignificastsoon as the number of variables is much
higher than the number of voters’(2- n).

5 voters, 2 alternatives; rule : plurality

001010: 1 vote; 010111: 1 vote; 011000: 1 vote: 101001: 1:\dt&000: 1 vote
all other candidates : 0 vote.




How should such a vote be conducted?

Some classes of solutions:
. don’t bother and vote separately on each variable.

. ask voters to specify their preference relation by ramhthalternatives
explicitly.

. limit the number of possible alternatives that voters matg for.

. ask voters to report only a small part of their preferemtation and appply a

voting rule that needs this information only, such as pityal

. ask voters their preferred alternative(s) and complete then automatically
using a predefineddistance.




5 ask voters their preferred alternative(s) and complete then automatically
using a predefineddistance.

e every voter specifies one preferred alternaties

e for all alternativeX,y € D, X -; Y if and only if d(X,X*) < d(y,X*), whered is a
predefined distance db.

+ cheap in elicitation an computation.
— Important domain restriction.

Two examples of such approaches:

e propositional merging (Konieczny & Pino-Perez 98, etc.)

e Minimax approval voting




Minimax approval voting (Brams, Kilgour & Sanver, 2007)

e nvoters,mcandidatesk < m positions to be filled

e each voter casts an approval balpt= (Vi,... . v") € {0,1}™
vl = 1if voteri approves candidate

for every subseY of k candidates,
— d(VY,V;) = Hamming distance betwe&handV; (number of disagreements)
— d(Y,(V1,...,Vh)) = max_1_. nd(Y,V)
— find Y minimizingd(Y, (V1,...,Vh))




Examplen=4, m=4,k=2.

1110
1

1
3
1
3
3




Minimax approval voting
¢ finding an optimal subset $P-hard (Frances & Litman, 97)

e (Le Grand, Markakis & Mehta, 07): approximation algorithfasminimax
approval voting

. pick arbitrarily one of the ballotg;
. Kj <= number of 1's inV;
. If k; > kthen pick kj — k coordinates irVj and set them to O;

. If kj < kthen pick k—k;j coordinates irVj and set them to 1;

5. return the modified ballot/j’

The above algorithm is a polynomial 3-approximation of mimax approval (Le
Grand, Markakis & Mehta, 07)




Minimax approval voting

The above algorithm is a polynomial 3-approximation of nimakx approval (Le
Grand, Markakis & Mehta, 07)

e letV* be a minimax committee ar@PT =d(V*, (V1,...,Vh)).
letV; the ballot picked by the algorithm.
d(Vj, M) <d(V/,Vj) +d(V},V*) +d(V* M),
d(V*,V) < OPT andd(V;,V*) < OPT;

by construction oV}, d(V{,Vj) < d(V*,V;) < OPT;

e therefored(V',Vi) < 30PT
Conclusion:d(V’, (Vi,...,V,)) < 30PT.

Better approximation (ratio 2) in (Caragiannis, Kalait&i$/arkakis, 10)

More generally: multiwinner elections (Meir, Procacciadenschein & Zohar, 08)




How should such a vote be conducted?

Some classes of solutions:
. don’t bother and vote separately on each variable.

. ask voters to specify their preference relation by ramhthalternatives
explicitly.

. limit the number of possible alternatives that voters matg for.

. ask voters to report only a small part of their preferemtation and appply a
voting rule that needs this information only, such as pityal

. ask voters their preferred alternative(s) and completmtautomatically using a
predefinedlistance

. sequential voting : decide on every variable one after the other, and
broadcast the outcome for every variable before elicitingte votes on the
next variable.




Seguential voting

voters1and 2 ST = ST ST -~ ST
voters3and4 ST> ST - ST = ST
voter 5 ST ST = ST~ ST

Fix the orderS> T.

Step 1 elicit preferences m{nS§}

If voters report preferences optimistically: S S2:S-S

Step 2 compute the local outcome and broadcast the result
S

Step 3 elicit preferences ofiT, T} given the outcome ofiS, S}
4:S:T-T;1:S:T~T

Step 4 compute the final outcome




Seguential voting

+ simple elicitation protocol

+ computationally easy (provided local rules are easy to ade)p

e restriction-free sequential voting

+ always applicable

— voters may feel ill at ease reporting a preference on sombua#s, or
experience regret after the final outcome is known

— the outcome depends on the order in which the attributesesmeed

e “safe” sequential voting




voters1and 2 ST = ST> ST > ST

voters 3and 4 ST ST = ST = ST

voter 5 ST~ ST~ ST~ ST
Suppose voters behave optimistically, and that the chawkrthat.
S>T

3 votes forsS, 2 votes forS_; local outcome S
givenS= S, 4 votes forT, 1 vote forT = T, final outcome ST

T>95
3 votes forT, 2 votes forT; local outcome T B
givenT =T, 4 votes forS, 1 vote forS=- S, final outcomeST

The chair’s strategy:
e if she prefersST to ST: choose the ordes > T
e if she prefersSTto ST: choose the ordefF > S
Note thatST andST cannot be obtained.

The chair can (sometimes) control the election by fixing the@enda




“Safe” sequential voting

O: Xy >...> Xy order on variables

At stepi, all voters vote on variabl¥;, using a local voting rule;, and the outcome is
communicated to the voters before variale; is considered.

Requires the domain restriction

(R) the preferences of every voter onaXe independent from the values of
><i_|_]_, oo ,Xn.

+ simple elicitation protocol
+ computationally easy (provided local rules are easy to ade)p

+ voters have no problem reporting their preferences, nohegp ¢ver experience
regret after the final outcome is known
— the number of profiles satisfying (R) is exponentially smiadiwever
+ many “practical” domains comply with (R)
mai n course >first course > W ne
+ still: much weaker restriction than separability.




“Safe” sequential voting

Conditional preferential independence(Keeney & Raiffa, 76)
{x,o,z} partition of 7.
Dy = xXx.ecxDi etc.
Xx Is preferentially independent of (given z) iff

for all x, X € Dom(x ), v,v' € Dom(v ), w € Dom(z),

(X7y7 Z) t (X/7y7 Z) Iif and Only If (X,y,,Z> t (Xlaylaz)

given a fixed value z of Z, the preferences over the possialass/of X is
iIndependent from the value of Y




CP-nets(Boutilier, Brafman, Hoos and Poole, 99)

Language for specifying preferences on combinatorial dostaased on the notion
of conditional preferential independence.

-y
-y

YY

X independent of andZ; Y independent oZ
If X =X
thenY =y preferred toy =y

everything elsez) being equal ¢eteris paribu¥

XYyZ>= XYz ~ XYZ = XYz,
XyZ= XYZ  XyZ = XyZ




=" XYZ= XYZ XYZ = XYZ, XYZ> XyZ, XYyZ >~ XyZ
L XYZ- XYZ, XYZ = XYZ, XYyZ>— XYZ XyZ > XyZ
L XYZ> XYZ, XYZ- XYZ, XYZ>- XYZ, XYZ >~ XyZ

>~ = transitive closure of* U > U =4




XyZ

. / N -
. XYZ XYZ — XYZ — XYZ— XYZ— XYZ
NS
XyZ




. elicit voters’ preferences oX (possible because their preferences<oare
unconditional);

. apply local voting ruleéx and determine the “local” winnex*;

. elicit voters’ preferences on givenX = x* (possible because their preferences
onY depend only orX);

. apply local voting ruley and determing*;
. elicit voters’ preferences ah givenX = x* andY =y*.
. apply local voting rulez and determine*.

. winner: *,y*,Z")




Example:rx =ry = majority rule

3 voters

2 voters

2 voters

XY = XYy = XYy = XYy

XY == Xy = Xy = XYy

XYy = XY = XY = Xy

For all voters X is preferentially independent 8t ¢ = {(X,Y)}

X

3 voters

X=X

2 voters

X=X

2 voters

X>X

4 voters unconditionally preferoverx = x* =rx(>1,...,>7) =X




Example:rx =ry = majority rule

3 voters

2 voters

2 voters

XY = XYy = XYy = XYy

XY == Xy = Xy = XYy

XYy = XY = XY = Xy

X =rx(>1,...,=7) =X

3 voters

y>y

2 voters

y>y

2 voters

y>y

givenX = x, 5 voters out of 7 prefeyfoy = y* = r"X=X(=1,...,=7) =y

Sedqrx,ry)(>=1,...,>=7) = (X,y)




Question: given some proper®/of voting rules, do we have

r1,...,rp satisfyP = Sedry,...,rp) satisfied?

General study in (Lang & Xia, 09); here we just give an exanigtgarticipation




Counter-example fgparticipation

two variablesX, Y. Dx = {Xo,X1,%2}; Dy = {y,V}.

r1 a scoring rule with score vect8, 2,0), ro = majority.
r{ andr, satisfy participation.

V1,Vo: XY = XgY = X1Y = X1Y = X2y > X0y

V3! X1y > Xy > XoYy > X1Y > X2y > XoY

X1 > X2 > Xp

P = {V1,V2}: Sedry,r2)(P) = xoy
P = {V17V27V3}: Sequ, rz)(P/) — le

But 3 prefers<gy to x1y.




How should such a vote be conducted?

Some classes of solutions:
. don’t bother and vote separately on each variable.

. ask voters to specify their preference relation by ramhthalternatives
explicitly.

. limit the number of possible alternatives that voters matg for.

. ask voters to report only a small part of their preferemtation and appply a
voting rule that needs this information only, such as pityal

. ask voters their preferred alternative(s) and completmtautomatically using a
predefinedlistance

. sequential voting decide on every variable one after the other, and broatitast
outcome for every variable before eliciting the votes onrtaet variable.

. use acompact preference representation language in which the voters’
preferences are represented in a concise way.




7. use acompact preference representation language in which the voters’
preferences are represented in a concise way.

+ no domain restriction, provided the language is totallyregpive.

— potentially expensive in elicitation and/or computatioomputing the winner is
generallyNP-hard orcoNP-hard.

Examples of such approaches:
e using GAl-nets: (Gonzak & Perny, 08);
e using CP-nets: (Xia, Conitzer & Lang, 08);

e using weighted logical formulae: (Uckelman, 09).




Any preference relation on a combinatorial domain is compatvith some CP-net
(possibly with cyclic dependencies).

Elicit the CP-net corresponding to each voter and aggrétatally”.

Example 1(swimming pool): 5 voters, 2 binary variabl&sT
2 voters 2 voters 1 voter

ST~ ST> ST = ST ST> ST = ST = ST ST~ ST ST = ST

S T

S-S T>-T

apply an aggregation function (here majority) on each entryof each table

ST——ST

|

S[———ST




Example 2 3 voters, 2 binary variables, B

apply an aggregation function (here majority) on each entryof each table

B——AB

AB——AB




+ always applicable

— elicitation cost: in the worst case, exponential numberusrggs to each voter

computation cost: dominance in CP-nets with cyclic depros is
PSPACE-complete

there might be no winner; there might be several winners




How should such a vote be conducted?
Some classes of solutions:
. don’t bother and vote separately on each variable.

. ask voters to specify their preference relation by raglalhalternatives
explicitly.

. limit the number of possible alternatives that voters matg for.

. ask voters to report only a small part of their preferemtation and appply a
voting rule that needs this information only, such as pltyal

. ask voters their preferred alternative(s) and completmtautomatically using a
predefinedlistance

. sequential voting decide on every variable one after the other, and broativast
outcome for every variable before eliciting the votes onrtgt variable.

. use atompact preference representation languagehich the voters’
preferences are represented in a concise way.

Conclusion:either impose a strong domain restriction, or pay a high camitation
and computational cost




. Introduction to computational social choice
. Background
. Topic 1. computationally hard voting rules

. Topic 2: voting on combinatorial domains

. Topic 3. computational aspects of strategyproofness

. Topic 4: communication and incomplete knowledge

. Topic 5: other issues




Manipulation and strategyproofness

Gibbard (73) and Satterthwaite (75) 's theorem: if the nunafeandidates is at least
3, then any nondictatorial, surjective voting rule is maable for some profiles.

Barriers to manipulation:

e making manipulatiomess efficientmake as little as possible of the others’ votes
known to the would-be manipulating coalition

e make manipulatiomard to compute
First papers on the topic: Bartholdi, Tovey & Trick (89); Baoldi & Orlin (91);
then Conitzer and Sandholm (02), and lots of papers since the




Complexity of manipulation

e CONSTRUCTIVE MANIPULATION EXISTENCE

GIVEN a voting ruler, a set ofp candidatesc, a candidate € x, and the votes
ofvoters1....k<n

QUESTIONIS there a way for voterk+ 1, ..., nto cast their votes such thats
elected?

DESTRUCTIVE MANIPULATION EXISTENCE

GIVEN a voting ruler, a set ofp candidatest, a candidatex € x, and the votes
ofvoters1....k<n

QUESTIONIS there a way for voterk+ 1, ..., nto cast their votes such thats
notelected?




Complexity of manipulation

Manipulating the Borda rule by a single voter

Current Borda scores:
a 10

b: 10
C: 8
d: 7
e 5

Is there a constructive manipulation by one voterd@ifor b? for c? ford? fore?




Complexity of manipulation

Manipulating the Borda rule by two voters

Borda + tie-breaking priorita >b>c>d > e

Current Borda scores:

a:. 12
b: 10
c.9
d: 9
eq
f: 1

Is there a constructive manipulation twyo voters fore?




Complexity of manipulation
Example: manipulating the Borda rule by a single voter
Without loss of generality:
e P profile (without the manipulating voter)
e X; candidate that the voter wants to see winning

e Xo,...,Xm Other candidates, ranked by decreasing Borda score Wwea.turrent
profile

Algorithm: placex; on top, therx,, in second position, thex,,_1, ..., and finallyx,
In the bottom position.

If X, does not becomes a winner then there exists no manipulation f

Consequence: for BordaONSTRUCTIVE MANIPULATION EXISTENCE BY ONE
VOTER s in P. (Bartholdi, Tovey & Trick, 89).

e manipulation by coalitions of more than one votepen problem

e NP-complete foweighted voterseven for 3 candidates (Conitzer & Sandholm,
2002)




Complexity of (unweighted) manipulation

From Xiaet al. (09):

Number of manipulators 1 at least 2

Copeland P (1) NP-complete (2)

STV NP-complete (3)| NP-complete (3)

veto P(4) P (4)

cup P (5) P (5)
maximin P (1) NP-complete (6)

ranked pairs NP-complete (6)] NP-complete (6)
Bucklin P (6) P (6)
Borda P (1) ?

(1) Bartholdiet al. (89); (2) Falisezwsket al. (08); (3) Bartholdi and Orlin (91);
(4) Zuckermaret al. (08); (5) Conitzeret al. (07); (6) Xiaet al. (09).




Complexity of manipulation

An important concern:

e a worst-cas@lP-hardness results only says tisametimegmaybe rarely),
computing a manipulation will be hard
= t00 weak

e a few preliminarynegativeresults about the average hardness of manipulation
(Conitzer and Sandholm, 06; Procaccia and Rosenschein, 07)




Other kinds of strategic behaviouprocedural control

Some voting procedures can be controlled by the authoritgecting the election
(i.e. the chair) to achieve strategic results.

Several kinds of control:
e adding / deleting / partitioning candidates
e adding / deleting / partitioning voters

For each type of control and each voting ruléhree possivilities

e I isimmune to controlit is never possible for the chairman to change a
dandidatec from a non-winner to a unigue winner.

e r isresistant to contralr is not immune and it is computationally hard to
recognize opportunities for control

e I isvulnerable to contralr is not immune and it is computationally easy to
recognize opportunities for control




Other kinds of strategic behavioubribery

GIVEN: a sefC of candidates, a s&t = {1,...,n} of voters specified with their
preferences) integersps, ..., pn (pi = price for making voter change his vote), a
distinguished candidate and a nonnegative integkr.

QUESTION Is it possible to make a winner by changing the preference lists of
voters while spending at mokt?

(Rothe, Hemaspaandra and Hemaspaandra, 07):
e for plurality: BRIBERY Is in P (andNP-complete for weighted voters)

e for approval votingBRIBERY is in NP-complete, even for unit pricegj(= 1 for
eachi)

variations on bribery: nonuniform bribery (Faliszewslk8)0swap bribery (Elkind,
Faliszewski an Slinko, 09)




. Introduction to computational social choice
. Background
. Topic 1. computationally hard voting rules

. Topic 2: voting on combinatorial domains

. Topic 3: computational aspects of strategyproofness

. Topic 4: communication and incomplete knowledge

. Topic 5: other issues




Incomplete knowledge and communication complexity

Given somancompletedescription of the voters’ preferences,

¢ Is the outcome of the voting rule determined?
e If not, whose information about which candidates is needed?
4voters.c-d>a>Db
2votersia>-b>d>-c
2voterssb>-a>c>d
1 voter: 72-?>7?>7
plurality ?

Borda ?




Incomplete knowledge and communication complexity

Given somancompletedescription of the voters’ preferences,

¢ is the outcome of the voting rule determined?
e If not, whose information about which candidates is needed?
4voters.c-d>a>Db
2votersia>-b>d>-c
2voterssb>-a>c>d
1 voter: 72-?>7?>7
plurality winner already knownd)

Borda ?




Incomplete knowledge and communication complexity

Given somancompletedescription of the voters’ preferences,

¢ is the outcome of the voting rule determined?
e If not, whose information about which candidates is needed?
4voters.c-d>a>Db
2votersia>-b>d>-c
2voterssb>-a>c>d
1 voter: 72-?>7?>7
plurality winner already knownd)

Borda
partial scores (for 8 votersag: 14 ;b: 10 ;c: 14;d: 10
=- only need to know the last voters’s preference betwaeandc




Incomplete knowledge and communication complexity

More general problems to be considered:

Which elements of information should we ask the voters anenndm order to
determine the winner of the election while minimizing conmuation?

When the votes are only partially known: is the winner algedetermined?
Which candidates can still win?

When only a part of the electorate have expressed their Mob@scan we

synthesize the information expressed by this subeleetasasuccinctly as
possible?

When the voters have expressed their votes on a set of céesligiad then some
new candidates come in, who among the initial candidatestdawin?

How should sincerity and strategyproofness be reformdlatieen agents express
Incomplete preferences?




Possible and necessary winners

More generallyincomplete knowledgef the voters’ preferences.
For each voter: gartial order on the set of candidates:
P=(Pi,...,P,) incomplete profile

Completionof P: full profile T = (T4,..., Ty) of P, where eacfi; is a linear ranking
extendingP,.

Given a voting rule, an incomplete profil®, and a candidate:

e CIis apossible winneif there exists a completion & in whichc is elected.

e Cis anecessary winndf cis elected in every completion &




Possible and necessary winners

plurality with
a-ba-c b>a c»>a>Db | tie-breaking priorityp >a > c | Condorcet

abc cha cab C
abc bca cab

abc bac cab

acb bca cab

b
b
acb cba cab C
b
C

acb bac cab

Possible Condorcet winner§a, c}; possible plurality- a~c-winners:{b, c}.




Possible and necessary winners
Konczak & Lang, 05: definitions and first (partly wrong) commgaty results
Walsh, 07; Pini et al., 07: specific study
Xia & Conitzer, 08: complexity results for most common vgtirules
Betzler, Hemmann & Niedermeyer: parameterized complexity

Betzler & Dorn, 09: complexity results for (almost) all sty rules

Faliszewski et al., 09: swab bribery, generalizing the fdssvinner problem.




Possible and necessary winners
Two particular cases:

possible/necessary winners with respect to addition of vets
A subset of voter& have reported a full ranking; the other ones have not
reported anything.
Links with coalitional manipulation:

e X is a possible winner if the coalitioN \ A has a constructive manipulation
for x.

e Xis a necessary winner if the coalitibh\ A has no destructive manipulation
againsix.

possible/necessary winners with respect to addition of caindates
The voters have reported a full ranking on a subset of cateBa(and haven't
said anything about the remaining candidates).




Possible and necessary winners with respect to addition oaadidates
New candidates sometimes come while the voting processng go.
e Doodle: new dates become possible

e recruiting committee: a preliminary vote can be done befloedast applicants
are inrerviewed

Obviously: for any reasonable voting rule, any new canédaiist be a possible
winner.

Question:who among the initial candidates can win?

Example:

e N =12 voters; initial candidatesX = {a,b,c}; one new candidatg

e Vvoting rule = plurality with tie-breaking prioritg > b >c >y
e plurality scores beforg is taken into accouna+— 5,b+— 4,c+— 3.

Who are the possible winners?




Possible and necessary winners with respect to addition oaadidates

General result for plurality: iPx is the profile X the initial candidates)top(Px, X)
the number of voters who rankin top position inPy; then:x € X is a possible
winner forPx with respect to the addition éfnew candidatesf

ntop(Px,Xx) > } meax(o, ntop(Px, X)) —ntop(Px, X))
k X €

wherentop(Px, X) is the plurality score ok in P.




Possible and necessary winners with respect to addition oaadidates

Example 2:

e N =4 voters; initial candidatesX = {a,b,c,d}; k new candidateg, ..., Yk.

e voting rule = Borda

e initial profile: P = (bacd bacd bacd dach.
Borda scoresa— 8,b— 9,c— 4,d — 3.

Who are the possible winners, depending on the vall of




Possible and necessary winners with respect to addition oaadidates

Example 2:

e N =4 voters; initial candidatesX = {a,b,c,d}; k new candidateg, ..., Yk.

e voting rule = Borda

e initial profile: P = (bacd bacd bacd dach.

A useful lemmax is a possible winner fdPx w.r.t. the addition ok new candidates
If and only if x is the Borda winner for the profile adU {ys,...,yk} obtained from

Px by puttingy,. ... Yk right belowx (in an arbitrary order) in every vote &.

Who are the possible winners, depending on the vallk® df

e for anyk > 1, aandb are possible winners;
e for anyk > 5, a, b andd are possible winners;
e for any value ok, c is not a possible winner.

More general results in (Chevaleyetal., 10).




Introduction to protocols and communication complexity

Two key references:

e A.C Yao, Some complexity questions related to distribui@ahguting, Proc.
11th ACM Symposium on Theory of Computing, 1979, 209-213

e E. Kushilevitz and N. Nisan, Communication complexity, Gaitdge University
Press, 1997.

Communication problema set ofn agents has to compute a functid(xy, . .., Xn)

given that the input is distributed among the agents: ihytiagent 1 knows onlyy,
..., and agenh Knowsxp.

Protocot binary tree where each node is labelled with an agent andtamaolicy
specifying a bit the agent should communicate, dependinteoiknowledge.

Informally: a protocol is similar to an algorithm, excepathnstructions are replaced
by communication actions between agents, and such that caroation actions are
based on therivate informationof the agents.




Communication complexity of voting rules

From (Conitzer & Sandholm, 05).

e \oting rule
r:e" —x

A voting rule does not specify how the votes are elicited ftomvoters by the
central authority.

e Protocol for a voting rule r

Communication protocol for computingVs,. .., V), given thal is the private
Information of agent (votern)

e Communication complexity of a voting ruleminimum cost of a protocol for.




Communication complexity of voting rules

A protocol for any voting rule:

step 1 every voten sends/; to the central authority
— nlog(p!) bits

step 2 [the central authority sends back the name of the winnen ta&rs]
— nlog p bits

Corollary The communication complexity of an arbitrary voting rules at most

n.log(p!)[+nlogp]

From now on, we shall ignore step 2.




Communication complexity of voting rules

Example 1: plurality

A simple protocol:

voters send the name of their most preferred candidate toetiteal authority
— nlog p bits

Corollary The communication complexity of plurality is at mastog p




Communication complexity of voting rules

Obtaining a lower bound: via tHeoling settechnique.

Details on request(off-line)

Proposition the communication complexity of plurality with runoff is ©(n.logp)
(Conitzer & Sandholm, 05)




Communication complexity of voting rules

Example 2: plurality with runoff .

A protocol:

step 1 voters send the name of their most preferred candidate toetfieal authority
— nlogp bits

step 2 the central authority sends the names of the two finalistsdwoters
— 2nlogp bits

step 3 voters send the name of their preferred finalist to the ceatithority
— n bits

total n(3logp+ 1) bits (in the worst case)

Corollary: the communication complexity of plurality with runoff is O(n.logp).

The lower bound matches:

Proposition the communication complexity of plurality with runoff is ©(n.logp)
(Conitzer & Sandholm, 05)




Communication complexity of voting rules
Example 3: Single Transferable Vote (STV) a protocol

step 1 voters send their most preferred candidate to the centthbaty (C)
— nlogp bits

step 2 let x be the candidate to be eliminated. All voters who kRadnked first
receive a message frothasking them to send the name of their next preferred
candidate. There were at md&Buch voters
s 2% logp bits

step 3 similarly with the new candidatgto be eliminated. At mos{gﬂ—l voters voted
fory
< 2p%1 logp bits

etc.

total < 2nlogp(1+ % + p%l +...+3) =o0(n.(logp)?).

Lower bound matches (Conitzer & Sandholm, 05)




Incomplete knowledge and communication complexity

Example 4 Bucklin rule:

Let g the smallest integer such that there exists a candidsitieh that more than half
of the voters rank among theiig preferred candidates. (Necessarily ) < LZ).)

Then the winner is the candidate ranked indgyeferred candidates by the largest
number of voters.

Optimal protocol for Bucklin?




Compilation complexity

From the following paperY. Chevaleyre, J. Lang, N. Maudet and G. Ravilly-Abadie
Proc. 1JCAI-09.

Context sometimes the votes do not come all together at the same time

e votes of the citizens living abroad known only a few daysrathte rest of the
votes;

e choosing a date for a meeting: some participants vote laser dthers.

=- preprocess the information given by the subelectorate so @®pare the ground
for the time when the last votes are known, usasgittle space as possible

Input only m < nvotes have been expressed.
P = (Vi,...,Vim) = correspondingpartial prole.

Question what is the minimal size needed to comfgwhile still being able to
compute r when the last votes come in?




A context where it is useful to compile the vote of a subelextt verification of the
outcome of a vote by the population

e the electorate is split into different districts; each destcounts its ballots
separately and communicates the outcome to the Ministmgrofdr Affairs,

which, after gathering the outcomes from all districtsedatines the final
outcome,;

e In each district, the voters can check that the local resndsound:;

e local results are made public and voters can check the finabme from these
local outcomes.

space needed to synthesize the votes of a district

= amount of information the district has to send to the cemtnghority

If this amount of information is too large, it is impractidal publish the results

locally, and therefore, difficult to check the final outconmel aoters may be reluctant
to accept the voting rule.




Compilation complexity
p(a(P),R) =r(PUR)
o compilation function

Example rg = Borda.

o(P): vector of partial Borda scorésg(X | P))xex

P = (abc abc cbabca) — o(P) = (a: 3;b:5;c: 3).

p(o(P),R) = argmaxcx (ss(X | P) +ss(X| R))
R= (cababog — (a:34+3;b:5+1;c:34+2) — p(c(P),R) =h.




Compilation complexity

Size of a compilation function

Let 0 be a compilation function far

Sizéo) = max{|o(P)| | P partial profile

Compilation complexity of r:

C(r) = min{Siz€o) | c compilation function for }

C(r) is the minimum space needed to compile the partial pr&file




Compilation complexity and one-round communication compéxity

One-round communication complexity
two agentsA andB have to compute a functioh

each of them knows only a part of the input.

one-round protocolA sends only one messageBpand therB sends the output
to A.

one-round communication complexdf f . worst-case number of bits of the bes
one-round protocol fof.

One-round communication complexiy compilation complexity
A = set of voters having already expressed their votes
B = set of remaining voters;
compilation of the votes of A = information that A must sendto

minor difference B does not send back the outputAo




Equivalent profiles for a voting rule

r voting rule;
k number of remaining voters.

Two partial profiles? andQ areequivalent for rif no matter the remaining votes,
they will lead to the same outcome:

for everyRwe haver (PUR) =r(QUR)

Example rp = plurality with tie-breaking priorityp > a > c.

e (abc,abc bac,bac) and(acb,acb,bca, bca) are equivalent forp;

e P, = (abc abc) andP, = (abc,bac) are not equivalent farp: take
R = (bca bca), thenrp(PLUR) =a# rp(RUR) =b.




A useful result (similar result in (Kushilevitz & Nisan, 97)):
e I voting rule.
e mnumber of initial voters
e p number of candidates.

If the equivalence relation farhasg(m, p) equivalence classes then
C(r) = [logg(m, p)

Corollary:

e for any voting ruler, C(r) < mlog(p!);

e for any anonymous voting rule C(r) < min(mlog(p!), p!logm).
e the compilation complexity of a dictatorship is Ipg

e the compilation complexity af is O if and only ifr is constant.




Compilation complexity of voting rules:

e plurality: P andP’ are equivaleniff for all x, ntop(P,x) = ntop(P’, x), where
ntop(P,Xx) be the number of votes iA rankingx first.

e Borda P andP’ are equivaleniff for all x, scores(x, P) = scores(x,P’), where
scorgs (X, P) = Borda score ok obtained from the partial profile

e rules based on the majority grapkor any Condorcet-consistent rule based on
the (unweighted/weighted) majority graghandP’ are equivaleniff Mp = Mp,
whereap is theweightedmajority graph associated with

e plurality with runoff P andQ are equivaleniff these two conditions hold:
(a) for everyx, ntop(P,x) = ntop(Q, x); and (b)Mp = M.

e STV P andQ are equivaleniff for all subset of candidatésandx €V,
ntop(P-v,X) = ntop(Q_v, X)
(For any set of candidates that can possibly be eliminabedplurality scores of
the remaining candidates must be the sanfeamdQ.)

Results on compilation complexity follow from these residy computing bounds on
the number of equivalence classes.




Incomplete knowledge and communication complexity

Other issues:

e Vvoting with partial ballots: strategical issues (Retial., 07; Endrisset al., 09)

e communication issues with single-peaked preferencesl(;TéQ; Doignon, 05;
Conitzer, 08; Escoffieet al., 08)

e sequential announcements of votes (Pacuit and Parikh,i@i@ufand Endriss,
09; Elkindet al., 09; Xia and Conitzer, 10)




What if there were one more lecture?

Learning voting rules (Procaccia et al., 07/08)
Given a familyF of voting rules (for instance: scoring rules) and a set of
exampleg P, x) whereP is a profile and the winning candidate, find a voting
rule inF fitting the examples as much as possible.

Robustness of voting rules(Procaccia, Rosenschein & Kaminka, 07)

e r voting rule,k e N, P.

e elementary change = permutation of two adjacent candidagesoter’s
preferences;

e Dy(P) = set of profiles obtained frorid by k elementary changes.

e k-robustness af for P: pk(r,P) = probability thatr (P") = r(P) whereP' is
chosen according to a uniform law @y(P).

e k-robustness of: px(r) = minp pk(r, P)
Group plannning e.g, Ephrati & Rosenschein (93)

etc.




