
Computational aspects of voting

Jérôme Lang

LAMSADE, CNRS & Universit́e Paris-Dauphine

COST-ADT Doctoral School on Computational Social Choice

Estoril, April 9-14, 2010

1

1. A very brief introduction to computational social choice

2. Background

3. Topic 1: computationally hard voting rules

4. Topic 2: voting on combinatorial domains

5. Topic 3: computational aspects of strategyproofness

6. Topic 4: communication issues and incomplete preferences

7. Topic 5: other issues

8. Conclusion

2

Social choice theory

• most results in social choice theory are of the following form: there does not

exist / there exists a social choice procedure meeting requirements (R1),...,(Rp):

impossibility/possibility theorems.

Example: Arrow’s theorem.

There exists no aggregation function defined on the set of allprofiles, satisfying

unanimity, IIA and non-dictatorship.

• computational issues are neglected

Knowing that a given procedurecanbe computed is generally enough.

3

Computational social choice: two research streams

From social choice theory to computer science
importing concepts and procedures from social choice for solving problems
arising in computer science applications, such as

• societies of artificial agents (voting, negotiating / bargaining, ...)

• aggregation procedures for web site ranking and information retrieval

• fair division of computational resources

From computer science to social choice theory
using computational notions and techniques (mainly from AI, OR, Theoretical
Computer Science) for solving complex social choice problems.

• computational difficulty of voting rules; exact or approximate algorithms

• voting with a very large (combinatorial) space of alternatives

• computational bareers to manipulation (+ other forms of strategic behaviour)

• communication protocols for voting; voting with incomplete knowledge

• computational aspects of fair division

• several other topics

4

Outline of the lectures

In the order of appearance:

(Christian Klamler) social choice theory

(Jośe Figueira) history of social choice

(Jérôme Lang) computational social choice: voting

Ulle Endriss computational social choice: fair division

Felix Brandt voting: tournament solutions

Stefano Moretti social choice and game theory: coalitions, power indices

Sébastien Koniecznysocial choice: logic-based approaches

Thierry Marchant social choice and multicriteria decision analysis

5

Outline of the lectures

• not enough time to talk about every single piece of work

• for each main topic I’ll develop one or two approaches in detail

• focus on computation and communication

• (tentative) full list of references, classified by topic, given in a separate file

6

1. A very brief introduction to computational social choice

2. Background

3. Topic 1: computationally hard voting rules

4. Topic 2: voting on combinatorial domains

5. Topic 3: computational aspects of strategyproofness

6. Topic 4: communication issues and incomplete preferences

7. Topic 5: other issues

8. Conclusion

7

Voting rules and correspondences

1. a finiteset of votersA = {1, ...,n};

2. a finiteset of candidates (alternatives)X ;

3. aprofile = a preference relation (= linear order) onX for each agent

P = (V1, . . . ,Vn) = (≻1, . . . ,≻n)

Vi (or≻i) = voteexpressed by voteri.

— there are exceptions, such as in approval voting —

4. P n set of all profiles.

Voting rule F : P n→ X

F(V1, . . . ,Vn) = socially preferred (elected) candidate

Voting correspondenceC : P n→ 2X \{ /0}
C(V1, . . . ,Vn) = set of socially preferred candidates.

Rules can be obtained from correspondences by tie-breaking(usually by using a

predefined priority order on candidates).

8

A family of voting rules: positional scoring rules

- N voters,p candidates

- fixed list of p integerss1≥ . . .≥ sp

- voter i ranks candidatex in position j ⇒ scorei(x) = sj

- winner: candidate maximizings(x) = ∑n
i=1 scorei(x) (+ tie-breaking if necessary)

Examples:

• s1 = 1, s2 = . . . = sp = 0⇒ plurality;

• s1 = s2 = . . . = sp−1 = 1, sp = 0⇒ veto;

• s1 = p−1, s2 = p−2, . . .sp = 0⇒ Borda.

2 voters 1 voter 1 voter

c

b

a

d

a

b

d

c

d

a

b

c

plurality

a 7→ 1

b 7→ 0

c 7→ 2

d 7→ 1

c winner

Borda

a 7→ 6

b 7→ 7

c 7→ 6

d 7→ 4

b winner

veto

a 7→ 6

b 7→ 6

c 7→ 4

d 7→ 4

a ou b winner

9

Condorcet winner

N(x,y) = #{i,x≻i y} number of voters who preferx to y.

Condorcet winner: a candidatex such that∀y 6= x, N(x,y) > n
2

(= a candidate who beats any other candidate by a majority of votes).

a

b

d

c

d

b

c

a

c

a

b

d

2 voters out of 3:a≻ b

2 voters out of 3:c≻ a

2 voters out of 3:a≻ d

2 voters out of 3:b≻ c

2 voters out of 3:b≻ d

2 voters out of 3:d≻ c

majority graph:
a

b

c

d

No Condorcet winner.

10

Condorcet winner

N(x,y) = #{i,x≻i y} number of voters who preferx to y.

Condorcet winner: a candidatex such that∀y 6= x, N(x,y) > n
2

(= a candidate who beats any other candidate by a majority of votes).

A Condorcet-consistent ruleelects the Condorcet winner whenever there is one.

a

b

d

c

d

b

c

a

c

b

a

d

2 voters out of 3:b≻a
2 voters out of 3:c≻ a

2 voters out of 3:a≻ d

2 voters out of 3:b≻ c

2 voters out of 3:b≻ d

2 voters out of 3:d≻ c

majority graph :
a

b

c

d

b Condorcet winner.

11

Another family of voting rules: Condorcet-consistent rules

A Condorcet-consistent ruleelects the Condorcet winner whenever there is one.

An example: theCopeland rule:

C(x) = number of candidatesy such that a majority of voters prefersx to y.

Copeland winner = candidate maximizingC.

a

b

d

c

d

b

c

a

c

a

b

d

majority graph :
a

b

c

d

C(a) = 2

C(b) = 2

C(c) = 1

C(d) = 1

a andb pre-winners

(the winner is obtained

after tie-breaking)

Important note: no scoring is Condorcet-consistent.

12

Simple transferable vote (STV)

if there exists a candidatec ranked first by more than 50% of the votes

then c wins

else Repeat
let d be the candidate ranked first by the fewest voters;

eliminated from all ballots

{votes ford transferred to the next best remaining candidate};

Until there exists a candidatec ranked first by more than 50% of the votes

When there are only 3 candidates, STV coincides withplurality with runoff.

3 4 3 2

a

d

b

c

b

d

a

c

c

d

a

b

d

c

b

a

3 4 3 2

a

b

c

b

a

c

c

a

b

c

b

a

7 5

b

c

c

b

Winner: b

13

1. Introduction to computational voting theory

2. Background

3. Topic 1: computationally hard voting rules

4. Topic 2: voting on combinatorial domains

5. Topic 3: computational aspects of strategyproofness

6. Topic 4: communication issues and incomplete preferences

7. Topic 5: other issues

8. Conclusion

14

A brief refresher on computational complexity

A decision problemis a pairP = 〈IP,YP〉 where

• IP set ofproblem instances

• YP set ofpositive instances

NP = IP\YP set ofnegative instances

A decision problem is usually identified with the language YP of positive instances.

Algorithm for a decision problem:

A decision problemP is solved by an algorithmA if A halts for every instancex∈ IP ,

and returnsYES if and only if x∈YP. We also say that the set (or the language)YP is

recognized byA.

A search problemis a tripleP = 〈IP,SP,R〉 where

• IP set ofproblem instances

• SP set ofpositive solutions

• R⊆ IP×SP [R(x,s) means thats is a solution forx]

15

Complexity classes for decision problems

Let A be an algorithm running on a set of instancesI . Let x∈ I .

• t̂A(x) = running time ofA onx (≈ number of elementary steps);

• the worst-case running time ofA is the functiontA : IN→ IN defined by

tA(n) = max{t̂A(x)|x∈ I , |x| ≤ n}

• the running time ofA is in O(g(n)) if tA(n) is O(g(n)).

[[given two functionsf ,g : IN→ IN, we say thatf (n) is O(g(n)) if there exist

constantsc, a andn0 such that for alln≥ n0, f (n)≤ c.g(n)+a.]]

A decision problem can be solved with timef (n) if there exist an algorithmA that

solves it and whose running time (resp. space) is inO(f (n)).

Deterministic polynomial time:

P = set of all decision problems that can be solved in timenk for somek∈ IN

16

Nondeterministic algorithm: apart from all usual constructs, can execute commands
of the type guessy∈ {0,1}.

Structure of a nondeterministic algorithm = computation tree (guess instructions
corresponding to branching points)6= linear structure of a deterministic algorithm (at
any step, one possible next step).

Nondeterministic problem solution:

P = 〈IP,YP〉 decision problem.

A nondeterministic algorithmA solvesP if, for all x∈ IP:

1. A running onx halts for any possible guess sequence;

2. x∈YP iff there exists a sequence of guesses which leadsA to return the value
YES.

Nondeterministic polynomial time:

NP = set of all decision problems that can be solved by a nondeterministic algorithm
in timenk for somek∈ IN

Equivalently,NP is the set of all decision problems for whicha solution can be

verified in deterministic polynomial time.

17

NP-complete problems

A decision problem isNP-hard if any problem ofNP can be polynomially reduced to

it.

A decision problem isNP-complete if it is inNP and it isNP-hard.

NP-complete problems = “the hardest” among problems inNP

coNP = set of all decision problems whose complement in inNP

P = 〈IP,YP〉; YP is in coNP if and only if IP\ IP is in NP.

18

Oracles and relativized complexity classes

Oracles: letP = 〈IP,SP,R〉 be a function problem. Anoracle for Pis an abstract

device which, for anyx∈ IP , returns a valuef (x) ∈ SPin just one computation step.

An NP-oracle is an abstract device which, for any x ? IP , returns a value f (x) ? SP in
just one computation step.

A decision problem

C complexity class

CNP is the class of all decision problems that can be recognized with complexityC by

an algorithm using oracles for aNP-complete problemP.

The (second level of the) polynomial hierarchy

• ΘP

2 = ∆P

2 (O(logn)) = set of all decision problems that can be solved in

deterministic polynomial time using a logarithmic number of NP-oracles.

• Σp
2 = NPNP = set of all decision problems that can be solved in nondeterministic

polynomial time usingNP-oracles.

• Πp
2 = coΣp

2

19

Computing voting rules

Most voting rules can be computed in polynomial time

Examples:

• positional scoring rules, plurality with runoff:O(np)

• Copeland, maximin, STV:O(np2)

But some voting rules areNP-hard.

20

Hard rules: a classification

• rules based on the majority graph:tournament solutions(among which Slater,

Banks, Tournament Equilibrium Set)

⇒ lecture by Felix Brandt

• rules based on the weighted majority graph: Kemeny

• other rules: Dodgson, Young

21

Hard rules: Kemeny

Looks for rankings that are as close as possible to the preference profile and chooses

the top-ranked candidates in these rankings.

• Kemeny distance:

dK(V,V ′) = number of(x,y) ∈ X 2 on whichV andV ′ disagree

dK(V,〈V1, . . . ,Vn〉) = ∑
i=1,...,n

dK(V,Vi)

• Kemeny consensus= linear order≻∗ such thatdK(≻∗,〈V1, . . . ,Vn〉) minimum

• Kemeny winner= candidate ranked first in a Kemeny consensus

22

Hard rules: Kemeny

A characterization of Kemeny: with each profileP = 〈P1, . . . ,Pn〉 associate the
pairwise comparison matrix(N(x,y))x,y∈X whereN(x,y) is the number of voters who
preferx to y.

Given a rankingR:
K(R) = ∑

(x,y)∈R

N(x,y)

If x > y is in R then this corresponds toN(x,y) agreements (andN(y,x)

disagreements)

P∗ is a Kemeny consensus iffK(P∗) is minimum.

4 voters 3 voters 2 voters

a

b

c

b

c

a

c

a

b

Find the Kemeny winner(s).

23

Hard rules: Kemeny

4 voters 3 voters 2 voters

a

b

c

b

c

a

c

a

b

N a b c

a − 6 4

b 3 − 7

c 5 2 −

Kemeny scores:

abc acb bac bca cab cba

17 12 14 15 13 10

Kemeny consensus:abc; Kemeny winner:a

24

Hard rules: Kemeny

• early results: Kemeny isNP-hard (Orlin, 81; Bartholdiet al., 89; Hudry, 89)

• deciding whether a candidate is a Kemeny winner is∆P

2 (O(logn))-complete

(Hemaspaandra, Spakowski & Vogel, 04): needs logarithmically many oracles.

Membership to∆P

2 (O(logn)):

1. kmin:= 0;kmax:= nm(m−1)
2 ;

2. Repeat
3. k := ⌈ kmin+kmax

2 ⌉;

4. if there exists a rankingRsuch thatK(R)≥ k

5. then kmax:= k

6. elsekmin:= k−1

7. Until kmin= kmax

8. k∗ := kmin(= kmax)

9. guess a rankingR;

10. check thatK(R) = k∗ and thattop(R) = x.

Step 4:NP-oracle [4a. guessR; 4b. check thatK(R)≥ k]

25

Hard rules: Kemeny

Lots of other works on Kemeny, among which

• efficient computation: Davenport and Kalagnanam, 04; Conitzer, Davenport and

Kalagnanam, 06; Betzler, Fellows, Guo, Niedermeier & Rosamond, 09.

• fixed-parameter complexity: Betzler, Fellows, Guo, Niedermeier & Rosamond,

08.

• approximation: Ailon, Charikar & Newman, 05; Kenyon-Mathieu and Schudy,

07.

More general problem:median orders(survey in Hudry (08).

26

Hard rules: Dodgson

For anyx∈ X , D(x) = smallest number of elementary changes needed to makex a

Condorcet winner.

elementary change = exchange of adjacent candidates in a voter’s ranking

Dodgson winner(s): candidate(s) minimizingD(x)

An example (Nurmi, 04):

10 voters 8 voters 7 voters 4 voters

c

b

a

d

d

a

b

c

d

b

a

c

b

a

c

d

Find the Dodgson winner.

27

Hard rules: Dodgson

For anyx∈ X , D(x) = smallest number of elementary changes needed to makex a

Condorcet winner.

elementary change = exchange of adjacent candidates in a voter’s ranking

Dodgson winner(s): candidate(s) minimizingD(x)

An example (Nurmi, 04):

10 voters 8 voters 7 voters 4 voters

c

b

a

d

d

a

b

c

d

b

a

c

b

a

c

d

Dodgson winner:D, althoughD is the Condorcet loser.

Who is the winner if all votes are reversed?

28

Hard rules: Dodgson

Another example (Brandt, 09):

2 2 2 2 2 1 1

d

c

a

b

b

c

a

d

c

a

b

d

d

b

c

a

a

b

c

d

a

d

b

c

d

a

b

c

Replace every voter by three voters:

6 6 6 6 6 3 3

d

c

a

b

b

c

a

d

c

a

b

d

d

b

c

a

a

b

c

d

a

d

b

c

d

a

b

c

29

Hard rules: Dodgson

Another example (Brandt, 09): Dodgson does not satisfyhomogeneity

2 2 2 2 2 1 1

d

c

a

b

b

c

a

d

c

a

b

d

d

b

c

a

a

b

c

d

a

d

b

c

d

a

b

c

Dodgson winner:A

Replace every voter by three voters:

6 6 6 6 6 3 3

d

c

a

b

b

c

a

d

c

a

b

d

d

b

c

a

a

b

c

d

a

d

b

c

d

a

b

c

Dodgson winner:D

30

Hard rules: Dodgson

Although Dodgson has received much attention in the last years, it fails to satisfy
many desirable properties (Brandt, 09): Smith consistency, homogeneity,
monotonicity, independence of clones.

Moreover, computing Dodgson is hard:

• Bartholdi, Tovey & Trick, 89: deciding whetherx is a Dodgson winner is
NP-hard.

• Hemaspaandra, Hemaspaandra & Rothe, 97: deciding whetherx is a Dodgson
winner isΘP

2 -complete (= requires a logarithmic number of calls toNP oracles)

Caragiannis, Kaklamanis, Karanikolas & Procaccia (10):socially desirable

approximations of Dodgson. Example:monotonic approximations= voting rules:

• satisfying monotonicity

• close enough to Dodgson

• (possibly) computable in polynomial time

The approximation of a voting rule is a new voting rule that may be interestingper se!

31

Hard rules: Dodgson

For all candidatesx,y 6= x: De f icit(x,y) = max(0,1+ ⌊N(y,x)−N(x,y)
2 ⌋)

(De f icit(x,y) = number of votes (if any) thatx needs to gain in order to beaty)

Tideman score:

T(x) = ∑
y6=x

De f icit(x,y)

Tideman winner(s)= candidate(s) with the lowest Tideman score

• Tideman winners are computable in timeO(n.p2)

• Tideman satisfies monotonicity and homogeneity

• (after some rescaling of the definition of the Tideman score)Tideman is an
approximation of Dodgson with approximation ratioO (m. logm): T(x)≤ ρ.D(x)

with ρ = O (m. logm) (Caragiannis, Kaklamanis, Karanikolas & Procaccia, 10)

• under the impartial culture assumption (uniform distribution of profiles), the
probability that the Tideman winner and the Dodgson winner coincide converges
asymptotically to 1 as the number of voters tends to infinity (McCabe-Dansted,
Pritchard and Slinko, 06)

32

Hard rules: Dodgson

Recall thatDe f icit(x,y) = max(0,1+ ⌊N(y,x)−N(x,y)
2 ⌋) = number of votes (if any) that

x needs to gain in order to beaty by a majority of votes.

DefineSwap(x,y) = number of votes in whichy is immediately abovex.

• if for every y 6= x, Swap(x,y)≥ De f icit(x,y) then the Dodgson score ofx is

∑y6=xSwap(x,y).

• therefore, ifSwap(x,y)≥ De f icit(x,y) holds for everyx,y, then the Dodgson

winner can be computed in polynomial time.

• under the impartial culture assumption, the probability that

Swap(x,y)≥ De f icit(x,y) holds for everyx,y tends to 1 when the number of

votersn tends to infinity (Homan and Hemaspaandra, 06).

33

Hard rules: Young

For anyx∈ X , Y(x) = smallest number of elementary changes needed to makex a

Condorcet winner.

elementary change = removal of a voter

4 voters 2 voters 3 voters

a

b

c

d

e

b

c

e

d

a

c

e

d

a

b

Find the Young winner(s).

Deciding whetherx is a Young winner isΘP

2 -complete (Rothe, Spakowski & Vogel,

03)

34

Hard rules: Banks

• MP majority graph induced byP;

• x is a Banks winner ifx is undominated in some maximal transitive subset ofMP.

• deciding whetherx is a Banks winner isNP-complete (Woeginger, 2003; Brandt

et al., 2009)

• however, it is possible to find an arbitrary Banks winner in polynomial time

(Hudry, 2004)

Finding a Banks winner in polynomial time by a greedy algorithm:

A := {x} wherex is an arbitrary candidate;

repeat
find y such that the subgraph ofMP restricted toA∪{y} is transitive;

addy to A

until there is no suchy;

return c undominated inA

35

Hard rules: Banks

4 voters 2 voters 3 voters

a

b

c

d

e

b

c

e

d

a

c

e

d

a

b

Find the Banks winner(s).

36

Hard rules: Slater

P = (V1, . . . ,Vn) profile

• MP majority graph induced byP.

• distance of a linear orderV to MP: number of edges inMP disagreeing withV.

• Slater ranking = linear order onX minimising the distance toMP.

• Slater winner: best candidate in some Slater ranking

Complexity:

• weak tournaments (with possible ties):Θ2
p-complete;

• tournaments:NP-hard, inΘ2
p

37

Hard rules: Slater

4 voters 2 voters 3 voters

a

b

c

d

e

b

c

e

d

a

c

e

d

a

b

Find the Slater winner(s).

38

1. Introduction to computational social choice

2. Background

3. Topic 1: computationally hard voting rules

4. Topic 2: voting on combinatorial domains

5. Topic 3: computational aspects of strategyproofness

6. Topic 4: communication and incomplete knowledge

7. Topic 5: other issues

39

Key question:structureof the setX of candidates?

Example 1 choosing a common menu:

X = {asparagus risotto, foie gras}

× {roasted chicken, vegetable curry}

× {white wine, red wine}

Example 2 multiple referendum: a local community has to decide on several

interrelated issues (should we build a swimming pool or not?should we build a

tennis court or not?)

Example 3 choosing a joint plan: the group travel problem (Klamler & Pfirschy).

A set of cities; a set of agents; each of whom has preferences over edges between

cities. The group will travel together and has to reach everycity once.

Example 4 recruiting committee (3 positions, 6 candidates):

X = {A | A⊆ {a,b,c,d,e, f}, |A| ≤ 3}.

Combinatorial domains:V = {X1, . . . ,Xp} set ofvariables, or issues;

X = D1× ...×Dp (whereDi is a finite value domain for variableXi)

40

How should such a vote be conducted?

Some classes of solutions:

1. vote separately on each variable, in parallel.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. sequential voting: decide on every variable one after the other, and broadcastthe

outcome for every variable before eliciting the votes on thenext variable.

7. use acompact preference representation languagein which the voters’

preferences are represented in a concise way.

41

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. use acompact preference representation languagein which the voters’

preferences are represented in a concise way.

7. sequential voting: decide on every variable one after the other, and broadcastthe

outcome for every variable before eliciting the votes on thenext variable.

42

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.: multiple election

paradoxesarise as soon as some voters have preferential dependenciesbetween
attributes.

Example
2 binary variablesS(build a new swimming pool),T (build a new tennis court)

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Problem 1: voters 1-4 feel ill at ease reporting a preference on{S, S̄} and{T, T̄}

Problem 2: suppose they do so by an “optimistic” projection

• voters 1, 2 and 5:S; voters 3 and 4:̄S⇒ decision =S;

• voters 3,4 and 5:T; voters 1 and 2:̄T ⇒ decision =T.

AlternativeST is chosen although it is the worst alternative for all but onevoter.

43

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.multiple election

paradoxesarise as soon as some voters have preferential dependenciesbetween
attributes.

Not too bad when preferences areseparable: the preference over the possibles values

of a variable is independent from the values of other variables

Separability:

V = {X1, . . . ,Xp} set of variables

X = D1× ...×Dp

D−i =× j 6=iD j

for everyXi ∈ V , every~x−i ,~x′−i ∈ D−i , and everyxi ,x′i ∈ Di ,
(~x−i ,xi)� (~x−i ,x′i) if and only if (~x′−i ,xi)� (~x′−i ,x

′
i)

xi is preferred tox′i for some tuple of values~x−i of the other variablesiff xi is preferred
to x′i for any other tuple of values~x′−i of the other variables.

44

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives
explicitly.

V = {X1, . . . ,Xp}; X = D1× ...×Dp

There areΠ1≤i≤p|Di | alternatives.

⇒ as soon as there are more than three or four variables, explicit preference
elicitation is irrealistic.

45

How should such a vote be conducted?

Some classes of solutions:

1. vote separately on each variable, in parallel.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters may vote for.

• arbitrary (who decides which alternatives are allowed?)

• so that this solution be realistic, the number of alternatives the voters can vote for

has to be low. Therefore, voters only express their preferences on a tiny fraction

of the alternatives.

46

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply
a voting rule that needs this information only, such as plurality.

Results are completely nonsignificantas soon as the number of variables is much

higher than the number of voters (2p≫ n).

5 voters, 26 alternatives; rule : plurality

001010: 1 vote; 010111: 1 vote; 011000: 1 vote; 101001: 1 vote; 111000: 1 vote

all other candidates : 0 vote.

47

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically
using a predefineddistance.

48

5 ask voters their preferred alternative(s) and complete them automatically
using a predefineddistance.

• every voter specifies one preferred alternatives~x∗;

• for all alternatives~x,~y∈ D,~x≻i ~y if and only if d(~x,~x∗) < d(~y,~x∗), whered is a

predefined distance onD.

+ cheap in elicitation an computation.

− important domain restriction.

Two examples of such approaches:

• propositional merging (Konieczny & Pino-Perez 98, etc.)

• minimax approval voting

49

Minimax approval voting (Brams, Kilgour & Sanver, 2007)

• n voters,mcandidates,k≤mpositions to be filled

• each voter casts an approval ballotVi = (v1
i , . . . ,v

m
i) ∈ {0,1}m

v j
i = 1 if voter i approves candidatej.

• for every subsetY of k candidates,

– d(Y,Vi) = Hamming distance betweenY andVi (number of disagreements)

– d(Y,(V1, . . . ,Vn)) = maxi=1,...,n d(Y,Vi)

– find Y minimizingd(Y,(V1, . . . ,Vn))

50

Example: n = 4, m= 4, k = 2.

1110 1101 1010 1010 sum max

1100 1 1 2 2 6 2

1010 1 3 0 0 4 3

1001 3 1 3 3 10 3

0110 1 3 2 2 8 3

0101 3 1 4 4 12 4

0011 3 3 2 2 10 3

51

Minimax approval voting

• finding an optimal subset isNP-hard (Frances & Litman, 97)

• (Le Grand, Markakis & Mehta, 07): approximation algorithmsfor minimax

approval voting

1. pick arbitrarily one of the ballotsVj

2. k j ← number of 1’s inVj

3. if k j > k then pick k j −k coordinates inVj and set them to 0;

4. if k j < k then pick k−k j coordinates inVj and set them to 1;

5. return the modified ballotV ′j

The above algorithm is a polynomial 3-approximation of minimax approval (Le

Grand, Markakis & Mehta, 07)

52

Minimax approval voting

The above algorithm is a polynomial 3-approximation of minimax approval (Le

Grand, Markakis & Mehta, 07)

• let V∗ be a minimax committee andOPT = d(V∗,(V1, . . . ,Vn)).

• let Vj the ballot picked by the algorithm.

• d(V ′j ,Vi)≤ d(V ′j ,Vj)+d(Vj ,V∗)+d(V∗,Vi);

• d(V∗,Vi)≤OPT andd(Vj ,V∗)≤OPT;

• by construction ofV ′j , d(V ′j ,Vj)≤ d(V∗,Vj)≤OPT;

• therefored(V ′,Vi)≤ 3OPT

Conclusion:d(V ′,(V1, . . . ,Vn))≤ 3OPT.

Better approximation (ratio 2) in (Caragiannis, Kalaitzis& Markakis, 10)

More generally: multiwinner elections (Meir, Procaccia, Rosenschein & Zohar, 08)

53

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. sequential voting : decide on every variable one after the other, and
broadcast the outcome for every variable before eliciting the votes on the
next variable.

54

Sequential voting

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Fix the orderS> T.

Step 1 elicit preferences on{S, S̄}

if voters report preferences optimistically: 3 :S≻ S̄; 2 : S̄≻ S

Step 2 compute the local outcome and broadcast the result

S

Step 3 elicit preferences on{T, T̄} given the outcome on{S, S̄}

4: S: T̄ ≻ T; 1: S: T ≻ T̄

Step 4 compute the final outcome

ST̄

55

Sequential voting

+ simple elicitation protocol

+ computationally easy (provided local rules are easy to compute)

• restriction-free sequential voting

+ always applicable

− voters may feel ill at ease reporting a preference on some attributes, or

experience regret after the final outcome is known

– the outcome depends on the order in which the attributes are decided

• “safe” sequential voting

56

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Suppose voters behave optimistically, and that the chair knows that.

S> T
3 votes forS, 2 votes forS̄; local outcome: S

givenS = S, 4 votes forT̄, 1 vote forT ⇒ T̄; final outcome: ST̄

T > S
3 votes forT, 2 votes forT̄; local outcome: T

givenT = T, 4 votes forS̄, 1 vote forS⇒ S̄; final outcome: S̄T

The chair’s strategy:

• if she prefersST̄ to S̄T: choose the orderS> T

• if she prefersS̄T to ST̄: choose the orderT > S

Note thatST andS̄T̄ cannot be obtained.

The chair can (sometimes) control the election by fixing the agenda

57

“Safe” sequential voting

O : X1 > .. . > Xp order on variables

At stepi, all voters vote on variableXi , using a local voting ruler i , and the outcome is
communicated to the voters before variableXi+1 is considered.

Requires the domain restriction

(R) the preferences of every voter on Xi are independent from the values of

Xi+1, . . . ,Xn.

+ simple elicitation protocol

+ computationally easy (provided local rules are easy to compute)

+ voters have no problem reporting their preferences, nor do they ever experience
regret after the final outcome is known

− the number of profiles satisfying (R) is exponentially small; however

+ many “practical” domains comply with (R)

main course > first course > wine

+ still: much weaker restriction than separability.

58

“Safe” sequential voting

Conditional preferential independence(Keeney & Raiffa, 76)

{X ,Y ,Z } partition ofV .

DX =×Xi∈X Di etc.

X is preferentially independent ofY (givenZ) iff

for all x,x′ ∈ Dom(X), v,v′ ∈ Dom(Y), w∈ Dom(Z),

(x,y,z)� (x′,y,z) if and only if (x,y′,z)� (x′,y′,z)

given a fixed value z of Z, the preferences over the possibles values of X is

independent from the value of Y

59

CP-nets(Boutilier, Brafman, Hoos and Poole, 99)

Language for specifying preferences on combinatorial domains based on the notion
of conditional preferential independence.

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

X independent ofY andZ; Y independent ofZ

x : y≻ ȳ

∣

∣

∣

∣

∣

∣

if X = x

thenY = y preferred toY = ȳ

everything else (z) being equal (ceteris paribus)

xyz≻ xȳz; xyz̄≻ xȳz̄;

x̄ȳz≻ x̄yz; x̄ȳz̄≻ x̄yz̄

60

CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

≻X: xyz≻ x̄yz, xyz̄≻ x̄yz̄, xȳz≻ x̄ȳz, xȳz̄≻ x̄ȳz̄

≻Y: xyz≻ xȳz, xyz̄≻ xȳz̄, x̄ȳz≻ x̄yz, x̄ȳz̄≻ x̄yz̄

≻Z: xyz≻ xyz̄, xȳz≻ xȳz̄, x̄yz≻ x̄ȳz, x̄ȳz̄≻ x̄ȳz

≻C = transitive closure of≻X ∪ ≻Y ∪ ≻Z

61

CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

≻: xyz
ր

ց

xȳz

xyz̄

ց

ր
xȳz̄→ x̄ȳz̄→ x̄ȳz→ x̄yz→ x̄yz̄

62

X Y Z

1. elicit voters’ preferences onX (possible because their preferences onX are

unconditional);

2. apply local voting rulerX and determine the “local” winnerx∗;

3. elicit voters’ preferences onY givenX = x∗ (possible because their preferences

onY depend only onX);

4. apply local voting rulerY and determiney∗;

5. elicit voters’ preferences onZ givenX = x∗ andY = y∗.

6. apply local voting rulerZ and determinez∗.

7. winner: (x∗,y∗,z∗)

63

Example:rX = rY = majority rule

3 voters 2 voters 2 voters

x̄y≻ x̄ȳ≻ xȳ≻ xy xy≻ xȳ≻ x̄ȳ≻ x̄y xȳ≻ xy≻ x̄y≻ x̄ȳ

For all voters,X is preferentially independent ofY: G = {(X,Y)}

≻X:

3 voters 2 voters 2 voters

x̄≻ x x≻ x̄ x≻ x̄

4 voters unconditionally preferx over x̄⇒ x∗ = rX(≻1, . . . ,≻7) = x

64

Example:rX = rY = majority rule

3 voters 2 voters 2 voters

x̄y≻ x̄ȳ≻ xȳ≻ xy xy≻ xȳ≻ x̄ȳ≻ x̄y xȳ≻ xy≻ x̄y≻ x̄ȳ

x∗ = rX(≻1, . . . ,≻7) = x

≻Y|X=x:

3 voters 2 voters 2 voters

ȳ≻ y y≻ ȳ ȳ≻ y

givenX = x, 5 voters out of 7 prefer ¯y to y⇒ y∗ = rY|X=x(≻1, . . . ,≻7) = ȳ

Seq(rX, rY)(≻1, . . . ,≻7) = (x, ȳ)

65

Question: given some propertyP of voting rules, do we have

r1, . . . , rp satisfyP⇒ Seq(r1, . . . , rp) satisfiesP?

General study in (Lang & Xia, 09); here we just give an examplefor participation

66

Counter-example forparticipation

two variablesX, Y. DX = {x0,x1,x2}; DY = {y, ȳ}.

r1 a scoring rule with score vector(3,2,0), r2 = majority.

r1 andr2 satisfy participation.

V1,V2: x0y≻ x0ȳ≻ x1ȳ≻ x1y≻ x2ȳ≻ x2y

x0≻ x1≻ x2

x0 : y≻ ȳ

x1 : ȳ≻ y

x2 : ȳ≻ y

V3: x1y≻ x2y≻ x0y≻ x1ȳ≻ x2ȳ≻ x0ȳ

x1≻ x2≻ x0 y≻ ȳ

P = {V1,V2}: Seq(r1, r2)(P) = x0y

P′ = {V1,V2,V3}: Seq(r1, r2)(P′) = x1ȳ

But 3 prefersx0y to x1ȳ.

67

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives

explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a

voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a

predefineddistance.

6. sequential voting: decide on every variable one after the other, and broadcastthe

outcome for every variable before eliciting the votes on thenext variable.

7. use acompact preference representation language in which the voters’
preferences are represented in a concise way.

68

7. use acompact preference representation language in which the voters’
preferences are represented in a concise way.

+ no domain restriction, provided the language is totally expressive.

− potentially expensive in elicitation and/or computation:computing the winner is

generallyNP-hard orcoNP-hard.

Examples of such approaches:

• using GAI-nets: (Gonzalès & Perny, 08);

• using CP-nets: (Xia, Conitzer & Lang, 08);

• using weighted logical formulae: (Uckelman, 09).

69

Any preference relation on a combinatorial domain is compatible with some CP-net

(possibly with cyclic dependencies).

Elicit the CP-net corresponding to each voter and aggregate“locally”.

Example 1(swimming pool): 5 voters, 2 binary variablesS, T
2 voters

ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

S T

T : S̄≻ S

T̄ : S≻ S̄

S: T̄ ≻ T

S̄: T ≻ T̄

2 voters

S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

S T

T : S̄≻ S

T̄ : S≻ S̄

S: T̄ ≻ T

S̄: T ≻ T̄

1 voter

ST≻ S̄T≻ST̄ ≻ S̄T̄

S T

S≻ S̄ T ≻ T̄

apply an aggregation function (here majority) on each entryof each table

S T

T : S̄≻ S

T̄ : S≻ S̄

S: T̄ ≻ T

S̄: T ≻ T̄

ST

ST̄

S̄T

S̄T̄

70

Example 2: 3 voters, 2 binary variablesA, B

A B

A≻ Ā
A : B≻ B̄

Ā : B̄≻ B

A B

B : A≻ Ā

B̄ : Ā≻ A
B≻ B̄

A B

Ā≻ A B̄≻ B

apply an aggregation function (here majority) on each entryof each table

A B

B : Ā≻ A

B̄ : A≻ Ā

A : B≻ B̄

Ā : B̄≻ B

AB

AB̄

ĀB

ĀB̄

71

+ always applicable

− elicitation cost: in the worst case, exponential number of queries to each voter

− computation cost: dominance in CP-nets with cyclic dependencies is

PSPACE-complete

− there might be no winner; there might be several winners

72

How should such a vote be conducted?

Some classes of solutions:

1. don’t bother and vote separately on each variable.

2. ask voters to specify their preference relation by ranking all alternatives
explicitly.

3. limit the number of possible alternatives that voters mayvote for.

4. ask voters to report only a small part of their preference relation and appply a
voting rule that needs this information only, such as plurality.

5. ask voters their preferred alternative(s) and complete them automatically using a
predefineddistance.

6. sequential voting: decide on every variable one after the other, and broadcastthe
outcome for every variable before eliciting the votes on thenext variable.

7. use acompact preference representation languagein which the voters’
preferences are represented in a concise way.

Conclusion:either impose a strong domain restriction, or pay a high communication

and computational cost

73

1. Introduction to computational social choice

2. Background

3. Topic 1: computationally hard voting rules

4. Topic 2: voting on combinatorial domains

5. Topic 3: computational aspects of strategyproofness

6. Topic 4: communication and incomplete knowledge

7. Topic 5: other issues

74

Manipulation and strategyproofness

Gibbard (73) and Satterthwaite (75) ’s theorem: if the number of candidates is at least

3, then any nondictatorial, surjective voting rule is manipulable for some profiles.

Barriers to manipulation:

• making manipulationless efficient: make as little as possible of the others’ votes

known to the would-be manipulating coalition

• make manipulationhard to compute.

First papers on the topic: Bartholdi, Tovey & Trick (89); Bartholdi & Orlin (91);

then Conitzer and Sandholm (02), and lots of papers since then.

75

Complexity of manipulation

• CONSTRUCTIVE MANIPULATION EXISTENCE:

GIVEN a voting ruler, a set ofp candidatesX , a candidatex∈ X , and the votes

of voters 1, . . . ,k < n

QUESTION is there a way for votersk+1, . . . ,n to cast their votes such thatx is

elected?

• DESTRUCTIVE MANIPULATION EXISTENCE:

GIVEN a voting ruler, a set ofp candidatesX , a candidatex∈ X , and the votes

of voters 1, . . . ,k < n

QUESTION is there a way for votersk+1, . . . ,n to cast their votes such thatx is

notelected?

76

Complexity of manipulation

Manipulating the Borda rule by a single voter

a

b

d

c

e

b

a

e

d

c

c

e

a

b

d

d

c

b

a

e

Current Borda scores:
a: 10

b: 10

c: 8

d: 7

e: 5

Is there a constructive manipulation by one voter fora? for b? for c? for d? fore?

77

Complexity of manipulation

Manipulating the Borda rule by two voters

Borda + tie-breaking prioritya > b > c > d > e.

Current Borda scores:

a: 12

b: 10

c: 9

d: 9

e: 4

f : 1

Is there a constructive manipulation bytwovoters fore?

78

Complexity of manipulation

Example: manipulating the Borda rule by a single voter

Without loss of generality:

• P profile (without the manipulating voter)

• x1 candidate that the voter wants to see winning

• x2, . . . ,xm other candidates, ranked by decreasing Borda score w.r.t. the current
profile

Algorithm: placex1 on top, thenxm in second position, thenxm−1, . . . , and finallyx2

in the bottom position.

If x1 does not becomes a winner then there exists no manipulation for x.

Consequence: for Borda,CONSTRUCTIVE MANIPULATION EXISTENCE BY ONE

VOTER is in P. (Bartholdi, Tovey & Trick, 89).

• manipulation by coalitions of more than one voter:open problem

• NP-complete forweighted voters, even for 3 candidates (Conitzer & Sandholm,
2002)

79

Complexity of (unweighted) manipulation

From Xiaet al. (09):

Number of manipulators 1 at least 2

Copeland P (1) NP-complete (2)

STV NP-complete (3) NP-complete (3)

veto P (4) P (4)

cup P (5) P (5)

maximin P (1) NP-complete (6)

ranked pairs NP-complete (6) NP-complete (6)

Bucklin P (6) P (6)

Borda P (1) ?

(1) Bartholdiet al. (89); (2) Falisezwskiet al. (08); (3) Bartholdi and Orlin (91);

(4) Zuckermanet al. (08); (5) Conitzeret al. (07); (6) Xiaet al. (09).

80

Complexity of manipulation

An important concern:

• a worst-caseNP-hardness results only says thatsometimes(maybe rarely),

computing a manipulation will be hard

⇒ too weak

• a few preliminarynegativeresults about the average hardness of manipulation

(Conitzer and Sandholm, 06; Procaccia and Rosenschein, 07).

81

Other kinds of strategic behaviour:procedural control

Some voting procedures can be controlled by the authority conducting the election

(i.e. the chair) to achieve strategic results.

Several kinds of control:

• adding / deleting / partitioning candidates

• adding / deleting / partitioning voters

For each type of control and each voting ruler, three possivilities

• r is immune to control: it is never possible for the chairman to change a

dandidatec from a non-winner to a unique winner.

• r is resistant to control: r is not immune and it is computationally hard to

recognize opportunities for control

• r is vulnerable to control: r is not immune and it is computationally easy to

recognize opportunities for control

82

Other kinds of strategic behaviour:bribery

GIVEN: a setC of candidates, a setV = {1, . . . ,n} of voters specified with their

preferences,n integersp1, . . . , pn (pi = price for making voteri change his vote), a

distinguished candidatec, and a nonnegative integerK.

QUESTION: Is it possible to makec a winner by changing the preference lists of

voters while spending at mostK?

(Rothe, Hemaspaandra and Hemaspaandra, 07):

• for plurality: BRIBERY is in P (andNP-complete for weighted voters)

• for approval voting:BRIBERY is in NP-complete, even for unit prices (pi = 1 for

eachi)

variations on bribery: nonuniform bribery (Faliszewski, 08), swap bribery (Elkind,

Faliszewski an Slinko, 09)

83

1. Introduction to computational social choice

2. Background

3. Topic 1: computationally hard voting rules

4. Topic 2: voting on combinatorial domains

5. Topic 3: computational aspects of strategyproofness

6. Topic 4: communication and incomplete knowledge

7. Topic 5: other issues

84

Incomplete knowledge and communication complexity

Given someincompletedescription of the voters’ preferences,

• is the outcome of the voting rule determined?

• if not, whose information about which candidates is needed?

4 voters:c≻ d≻ a≻ b

2 voters:a≻ b≻ d≻ c

2 voters:b≻ a≻ c≻ d

1 voter: ?≻?≻?≻?

plurality ?

Borda ?

85

Incomplete knowledge and communication complexity

Given someincompletedescription of the voters’ preferences,

• is the outcome of the voting rule determined?

• if not, whose information about which candidates is needed?

4 voters:c≻ d≻ a≻ b

2 voters:a≻ b≻ d≻ c

2 voters:b≻ a≻ c≻ d

1 voter: ?≻?≻?≻?

plurality winner already known (c)

Borda ?

86

Incomplete knowledge and communication complexity

Given someincompletedescription of the voters’ preferences,

• is the outcome of the voting rule determined?

• if not, whose information about which candidates is needed?

4 voters:c≻ d≻ a≻ b

2 voters:a≻ b≻ d≻ c

2 voters:b≻ a≻ c≻ d

1 voter: ?≻?≻?≻?

plurality winner already known (c)

Borda
partial scores (for 8 voters):a: 14 ;b: 10 ;c: 14; d: 10

⇒ only need to know the last voters’s preference betweena andc

87

Incomplete knowledge and communication complexity

More general problems to be considered:

• Which elements of information should we ask the voters and when on order to

determine the winner of the election while minimizing communication?

• When the votes are only partially known: is the winner already determined?

Which candidates can still win?

• When only a part of the electorate have expressed their votes, how can we

synthesize the information expressed by this subelectorate as succinctly as

possible?

• When the voters have expressed their votes on a set of candidates and then some

new candidates come in, who among the initial candidates canstill win?

• How should sincerity and strategyproofness be reformulated when agents express

incomplete preferences?

88

Possible and necessary winners

More generally:incomplete knowledgeof the voters’ preferences.

For each voter: apartial order on the set of candidates:

P = 〈P1, . . . ,Pn〉 incomplete profile

Completionof P: full profile T = 〈T1, . . . ,Tn〉 of P, where eachTi is a linear ranking

extendingPi .

Given a voting ruler, an incomplete profileP, and a candidatec:

• c is apossible winnerif there exists a completion ofP in which c is elected.

• c is anecessary winnerif c is elected in every completion ofP.

89

Possible and necessary winners

plurality with

a≻ b,a≻ c b≻ a c≻ a≻ b tie-breaking priorityb > a > c Condorcet

abc cba cab c c

abc bca cab b -

abc bac cab b a

acb cba cab c c

acb bca cab b c

acb bac cab c a

Possible Condorcet winners:{a,c}; possible pluralityb>a>c-winners:{b,c}.

90

Possible and necessary winners

• Konczak & Lang, 05: definitions and first (partly wrong) complexity results

• Walsh, 07; Pini et al., 07: specific study

• Xia & Conitzer, 08: complexity results for most common voting rules

• Betzler, Hemmann & Niedermeyer: parameterized complexity

• Betzler & Dorn, 09: complexity results for (almost) all scoring rules

• Faliszewski et al., 09: swab bribery, generalizing the possible winner problem.

91

Possible and necessary winners

Two particular cases:

possible/necessary winners with respect to addition of voters
A subset of votersA have reported a full ranking; the other ones have not

reported anything.

Links with coalitional manipulation:

• x is a possible winner if the coalitionN\A has a constructive manipulation

for x.

• x is a necessary winner if the coalitionN\A has no destructive manipulation

againstx.

possible/necessary winners with respect to addition of candidates
The voters have reported a full ranking on a subset of candidatesX (and haven’t

said anything about the remaining candidates).

92

Possible and necessary winners with respect to addition of candidates

New candidates sometimes come while the voting process is going on:

• Doodle: new dates become possible

• recruiting committee: a preliminary vote can be done beforethe last applicants

are inrerviewed

Obviously: for any reasonable voting rule, any new candidate must be a possible

winner.

Question:who among the initial candidates can win?

Example :

• n = 12 voters; initial candidates :X = {a,b,c}; one new candidatey.

• voting rule = plurality with tie-breaking prioritya > b > c > y

• plurality scores beforey is taken into account:a 7→ 5, b 7→ 4, c 7→ 3.

Who are the possible winners?

93

Possible and necessary winners with respect to addition of candidates

General result for plurality: ifPX is the profile,X the initial candidates,ntop(PX,x)

the number of voters who rankx in top position inPX; then:x∈ X is a possible

winner forPX with respect to the addition ofk new candidatesiff

ntop(PX,x)≥
1
k
. ∑
xi∈X

max(0,ntop(PX,xi)−ntop(PX,x))

wherentop(PX,x) is the plurality score ofx in PX.

94

Possible and necessary winners with respect to addition of candidates

Example 2:

• n = 4 voters; initial candidates :X = {a,b,c,d}; k new candidatesy1, . . . ,yk.

• voting rule = Borda

• initial profile: P = 〈bacd,bacd,bacd,dacb〉.

Borda scores:a 7→ 8, b 7→ 9, c 7→ 4, d 7→ 3.

Who are the possible winners, depending on the value ofk?

95

Possible and necessary winners with respect to addition of candidates

Example 2:

• n = 4 voters; initial candidates :X = {a,b,c,d}; k new candidatesy1, . . . ,yk.

• voting rule = Borda

• initial profile: P = 〈bacd,bacd,bacd,dacb〉.

A useful lemma:x is a possible winner forPX w.r.t. the addition ofk new candidates

if and only if x is the Borda winner for the profile onX∪{y1, . . . ,yk} obtained from

PX by puttingy1, . . . ,yk right belowx (in an arbitrary order) in every vote ofPX.

Who are the possible winners, depending on the value ofk??

• for anyk≥ 1, a andb are possible winners;

• for anyk≥ 5, a, b andd are possible winners;

• for any value ofk, c is not a possible winner.

More general results in (Chevaleyreet al., 10).

96

Introduction to protocols and communication complexity

Two key references:

• A.C Yao, Some complexity questions related to distributed computing, Proc.

11th ACM Symposium on Theory of Computing, 1979, 209-213

• E. Kushilevitz and N. Nisan, Communication complexity, Cambridge University

Press, 1997.

Communication problem: a set ofn agents has to compute a functionf (x1, . . . ,xn)

given that the input is distributed among the agents: initially, agent 1 knows onlyx1,

. . . , and agentn knowsxn.

Protocol: binary tree where each node is labelled with an agent and an action policy

specifying a bit the agent should communicate, depending onher knowledge.

Informally: a protocol is similar to an algorithm, except that instructions are replaced

by communication actions between agents, and such that communication actions are

based on theprivate informationof the agents.

97

Communication complexity of voting rules

From (Conitzer & Sandholm, 05).

• Voting rule

r : P n→ X

A voting rule does not specify how the votes are elicited fromthe voters by the

central authority.

• Protocol for a voting rule r

Communication protocol for computingr(V1, . . . ,Vn), given thatVi is the private

information of agent (voter)i.

• Communication complexity of a voting rule r: minimum cost of a protocol forr.

98

Communication complexity of voting rules

A protocol for any voting ruler:

step 1 every voteri sendsVi to the central authority

→֒ nlog(p!) bits

step 2 [the central authority sends back the name of the winner to all voters]

→֒ nlogp bits

Corollary The communication complexity of an arbitrary voting ruler is at most

n. log(p!)[+nlogp]

From now on, we shall ignore step 2.

99

Communication complexity of voting rules

Example 1: plurality

A simple protocol:

voters send the name of their most preferred candidate to thecentral authority

→֒ nlogp bits

Corollary The communication complexity of plurality is at mostn. logp

100

Communication complexity of voting rules

Obtaining a lower bound: via thefooling settechnique.

Details on request(off-line)

Proposition: the communication complexity of plurality with runoff is in Θ(n. logp)

(Conitzer & Sandholm, 05)

101

Communication complexity of voting rules

Example 2: plurality with runoff .

A protocol:

step 1 voters send the name of their most preferred candidate to thecentral authority

→֒ n logp bits

step 2 the central authority sends the names of the two finalists to the voters

→֒ 2nlogp bits

step 3 voters send the name of their preferred finalist to the central authority

→֒ n bits

total n(3logp+1) bits (in the worst case)

Corollary: the communication complexity of plurality with runoff is in O(n. logp).

The lower bound matches:

Proposition: the communication complexity of plurality with runoff is in Θ(n. logp)

(Conitzer & Sandholm, 05)

102

Communication complexity of voting rules

Example 3: Single Transferable Vote (STV): a protocol

step 1 voters send their most preferred candidate to the central authority (C)

→֒ n logp bits

step 2 let x be the candidate to be eliminated. All voters who hadx ranked first

receive a message fromC asking them to send the name of their next preferred

candidate. There were at mostn
p such voters

→֒ 2n
p logp bits

step 3 similarly with the new candidatey to be eliminated. At mostn
p−1 voters voted

for y

→֒ 2 n
p−1 logp bits

etc.

total ≤ 2nlogp(1+ 1
p + 1

p−1 + . . .+ 1
2) = O (n.(logp)2).

Lower bound matches (Conitzer & Sandholm, 05)

103

Incomplete knowledge and communication complexity

Example 4: Bucklin rule :

Let q the smallest integer such that there exists a candidatex such that more than half

of the voters rankx among theirq preferred candidates. (Necessarily, 1≤ q≤ p
2 .)

Then the winner is the candidate ranked in theq preferred candidates by the largest

number of voters.

Optimal protocol for Bucklin?

104

Compilation complexity

From the following paper:Y. Chevaleyre, J. Lang, N. Maudet and G. Ravilly-Abadie,

Proc. IJCAI-09.

Context: sometimes the votes do not come all together at the same time

• votes of the citizens living abroad known only a few days after the rest of the

votes;

• choosing a date for a meeting: some participants vote later than others.

⇒ preprocess the information given by the subelectorate so asto prepare the ground

for the time when the last votes are known, usingas little space as possible.

Input only m≤ n votes have been expressed.

P = 〈V1, . . . ,Vm〉 = correspondingpartial prole.

Question what is the minimal size needed to compileP, while still being able to

compute r when the last votes come in?

105

A context where it is useful to compile the vote of a subelectorate:verification of the

outcome of a vote by the population.

• the electorate is split into different districts; each district counts its ballots

separately and communicates the outcome to the Ministry of Innner Affairs,

which, after gathering the outcomes from all districts, determines the final

outcome;

• in each district, the voters can check that the local resultsare sound;

• local results are made public and voters can check the final outcome from these

local outcomes.

space needed to synthesize the votes of a district

= amount of information the district has to send to the central authority

If this amount of information is too large, it is impracticalto publish the results

locally, and therefore, difficult to check the final outcome and voters may be reluctant

to accept the voting rule.

106

Compilation complexity

ρ(σ(P),R) = r(P∪R)

σ compilation function

Example: rB = Borda.

σ(P): vector of partial Borda scores〈sB(x | P)〉x∈X

P = 〈abc,abc,cba,bca〉 7→ σ(P) = 〈a : 3;b : 5;c : 3〉.

ρ(σ(P),R) = argmaxx∈X (sB(x | P)+sB(x | R))

R= 〈cab,abc〉 7→ 〈a : 3+3;b : 5+1;c : 3+2〉 7→ ρ(σ(P),R) = b.

107

Compilation complexity

Size of a compilation function

Let σ be a compilation function forr

Size(σ) = max{|σ(P)| | P partial profile}

Compilation complexity of r:

C(r) = min{Size(σ) | σ compilation function forr}

C(r) is the minimum space needed to compile the partial profileP

108

Compilation complexity and one-round communication complexity

One-round communication complexity:

• two agentsA andB have to compute a functionf .

• each of them knows only a part of the input.

• one-round protocol: A sends only one message toB, and thenB sends the output

to A.

• one-round communication complexityof f : worst-case number of bits of the best

one-round protocol forf .

One-round communication complexity≈ compilation complexity

• A = set of voters having already expressed their votes

• B = set of remaining voters;

• compilation of the votes of A = information that A must send toB.

• minor difference:B does not send back the output toA.

109

Equivalent profiles for a voting rule

r voting rule;

k number of remaining voters.

Two partial profilesP andQ areequivalent for rif no matter the remaining votes,

they will lead to the same outcome:

for everyRwe haver(P∪R) = r(Q∪R)

Example: rP = plurality with tie-breaking priorityb > a > c.

• 〈abc,abc,bac,bac〉 and〈acb,acb,bca,bca〉 are equivalent forrP;

• P1 = 〈abc,abc〉 andP2 = 〈abc,bac〉 are not equivalent forrP: take

R= 〈bca,bca〉, thenrP(P1∪R) = a 6= rP(P2∪R) = b.

110

A useful result (similar result in (Kushilevitz & Nisan, 97)):

• r voting rule.

• m number of initial voters

• p number of candidates.

If the equivalence relation forr hasg(m, p) equivalence classes then

C(r) = ⌈logg(m, p)⌉

Corollary:

• for any voting ruler, C(r)≤mlog(p!);

• for any anonymous voting ruler, C(r)≤min(mlog(p!), p! logm).

• the compilation complexity of a dictatorship is logp;

• the compilation complexity ofr is 0 if and only ifr is constant.

111

Compilation complexity of voting rules:

• plurality: P andP′ are equivalentiff for all x, ntop(P,x) = ntop(P′,x), where
ntop(P,x) be the number of votes inP rankingx first.

• Borda: P andP′ are equivalentiff for all x, scoreB(x,P) = scoreB(x,P′), where
scoreB(x,P) = Borda score ofx obtained from the partial profileP

• rules based on the majority graph: For any Condorcet-consistent rule based on
the (unweighted/weighted) majority graph,P andP′ are equivalentiff M P =M P′ ,
whereM P is theweightedmajority graph associated withP.

• plurality with runoff: P andQ are equivalentiff these two conditions hold:
(a) for everyx, ntop(P,x) = ntop(Q,x); and (b)M P =MQ.

• STV: P andQ are equivalentiff for all subset of candidatesV andx∈V,
ntop(P−V ,x) = ntop(Q−V ,x)

(For any set of candidates that can possibly be eliminated, the plurality scores of
the remaining candidates must be the same inP andQ.)

Results on compilation complexity follow from these results by computing bounds on
the number of equivalence classes.

112

Incomplete knowledge and communication complexity

Other issues:

• voting with partial ballots: strategical issues (Piniet al., 07; Endrisset al., 09)

• communication issues with single-peaked preferences (Trick, 89; Doignon, 05;

Conitzer, 08; Escoffieret al., 08)

• sequential announcements of votes (Pacuit and Parikh, 06; Airiau and Endriss,

09; Elkindet al., 09; Xia and Conitzer, 10)

113

What if there were one more lecture?

Learning voting rules (Procaccia et al., 07/08)

Given a familyF of voting rules (for instance: scoring rules) and a set of

examples(P,x) whereP is a profile andx the winning candidate, find a voting

rule inF fitting the examples as much as possible.

Robustness of voting rules(Procaccia, Rosenschein & Kaminka, 07)

• r voting rule,k∈ IN, P.

• elementary change = permutation of two adjacent candidatesin a voter’s

preferences;

• Dk(P) = set of profiles obtained fromP by k elementary changes.

• k-robustness ofr for P: ρk(r,P) = probability thatr(P′) = r(P) whereP′ is

chosen according to a uniform law onDk(P).

• k-robustness ofr: ρk(r) = minP ρk(r,P)

Group plannning e.g., Ephrati & Rosenschein (93)

etc.

114

