Aggregation Functions for Multicriteria Decision Aid

Jean-Luc Marichal

University of Luxembourg

The aggregation problem

Combining several numerical values into a single one

Example (voting theory)

Several individuals form quantifiable judgements about the measure of an object.

$$\frac{\operatorname{area}(\operatorname{box} 2)}{\operatorname{area}(\operatorname{box} 1)} = ?$$

$$\operatorname{box} 1 \quad \operatorname{box} 2$$

$$x_1, \dots, x_n \quad \longrightarrow \quad F(x_1, \dots, x_n) = x$$

$$\operatorname{where} F = \operatorname{arithmetic mean}$$

$$\operatorname{geometric mean}$$

$$\operatorname{median}$$

٠.

The aggregation problem

Decision making (voters → criteria)

$$x_1, \dots, x_n$$
 = satisfaction degrees (for instance)

	math.	physics	literature	global
student a	18	16	10	?
student b	10	12	18	?
student <i>c</i>	14	15	15	?

Aggregation in multicriteria decision making

- Alternatives $A = \{a, b, c, \ldots\}$
- Criteria $N = \{1, 2, \dots, n\}$
- Profile $a \in A \longrightarrow \mathbf{x}^a = (x_1^a, \dots, x_n^a) \in \mathbb{R}^n$ commensurate partial scores
- Aggregation function $F: \mathbb{R}^n \to \mathbb{R}$ $F: E^n \to \mathbb{R} \ (E \subseteq \mathbb{R})$

Alternative	crit. 1	• • •	crit. n	global score
а	x_1^a		X_n^a	$F(x_1^a,\ldots,x_n^a)$
Ь	x_1^b		x_n^b	$F(x_1^b,\ldots,x_n^b)$
<u>:</u>	:		:	÷

Aggregation in multicriteria decision making

Non-commensurate scales:

		price	consumption	comfort	global
		(to minimize)	(to minimize)	(to maximize)	
Ca	ar a	\$10,000	0.15 <i>ℓpm</i>	good	?
Ca	ar b	\$20,000	0.17 <i>ℓpm</i>	excellent	?
Ca	ar c	\$30,000	0.13 <i>ℓpm</i>	very good	?
ca	ar d	\$20,000	$0.16~\ell$ pm	good	?

Scoring approach

For each $i \in N$, one can define a net score :

$$S_{i}(a) = \left| \{ b \in A \mid b \preccurlyeq_{i} a \} \right| - \left| \{ b \in A \mid b \succcurlyeq_{i} a \} \right|$$
$$\overline{S}_{i}(a) = \frac{S_{i}(a) + (|A| - 1)}{2(|A| - 1)} \in [0, 1]$$

Aggregation in multicriteria decision making

Non-commensurate scales:

	price	consumption	comfort	global
	(to minimize)	(to minimize)	(to maximize)	
car <i>a</i>	\$10,000	0.15 <i>ℓpm</i>	good	?
car b	\$20,000	$0.17~\ell$ pm	excellent	?
car <i>c</i>	\$30,000	0.13 <i>ℓpm</i>	very good	?
car d	\$20,000	0.16 <i>ℓpm</i>	good	?

	price	cons.	comf.	global
car a	1.00	0.66	0.16	?
car b	0.50	0.00	1.00	?
car c	0.00	1.00	0.66	?
car d	0.50	0.33	0.16	?

(satisfaction degrees)

Aggregation properties

- Symmetry. $F(x_1, \ldots, x_n)$ is symmetric
- Increasing monotonicity. $F(x_1, ..., x_n)$ is nondecreasing in each variable
- Strict increasing monotonicity. $F(x_1, ..., x_n)$ is strictly increasing in each variable
- **Idempotency.** F(x, ..., x) = x for all x
- Internality. $\min x_i \leqslant F(x_1, \dots, x_n) \leqslant \max x_i$ Note: id. + inc. \Rightarrow int. \Rightarrow id.

Aggregation properties

Associativity.

$$F(x_1, x_2, x_3) = F(F(x_1, x_2), x_3)$$

= $F(x_1, F(x_2, x_3))$

Decomposability.

$$F(x_1, x_2, x_3) = F(F(x_1, x_2), F(x_1, x_2), x_3)$$

$$= F(x_1, F(x_2, x_3), F(x_2, x_3))$$

$$= F(F(x_1, x_3), x_2, F(x_1, x_3))$$

Bisymmetry.

$$F(F(x_1, x_2), F(x_3, x_4)) = F(F(x_1, x_3), F(x_2, x_4))$$

Theorem 1 (Kolmogorov-Nagumo, 1930)

The functions $F_n: E^n \to \mathbb{R} \ (n \geqslant 1)$ are

- symmetric
- continuous
- strictly increasing
- idempotent
- decomposable

if and only if there exists a continuous and strictly monotonic function $f:E\to\mathbb{R}$ such that

$$F_n(\mathbf{x}) = f^{-1} \left[\frac{1}{n} \sum_{i=1}^n f(x_i) \right] \qquad (n \geqslant 1)$$

Proposition 1 (Marichal, 2000)

Symmetry can be removed in the K-N theorem

f(x)	$F_n(\mathbf{x})$	name
x	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	arithmetic
log x	$\sqrt[n]{\prod_{i=1}^n x_i}$	geometric
x^{-1}	$\frac{1}{\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}}$	harmonic
$x^{lpha}\ (lpha\in\mathbb{R}_0)$	$\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{\alpha}\right)^{\frac{1}{\alpha}}$	root-power

Theorem 2 (Fodor-Marichal, 1997)

The functions $F_n:[a,b]^n o \mathbb{R} \ (n\geqslant 1)$ are

- symmetric
- continuous
- increasing
- idempotent
- decomposable

if and only if there exist $\alpha, \beta \in \mathbb{R}$ fulfilling $a \leqslant \alpha \leqslant \beta \leqslant b$ and a continuous and strictly monotonic function $f : [\alpha, \beta] \to \mathbb{R}$ such that, for any $n \geqslant 1$,

$$F_n(\mathbf{x}) = \begin{cases} G_n(\mathbf{x}) & \text{if } \mathbf{x} \in [a, \alpha]^n \\ H_n(\mathbf{x}) & \text{if } \mathbf{x} \in [\beta, b]^n \end{cases}$$
$$f^{-1} \left[\frac{1}{n} \sum_i f(\text{median}[\alpha, x_i, \beta]) \right] & \text{otherwise}$$

where G_n and H_n are defined by...

Open problem: remove symmetry!

Theorem 3 (Aczél, 1948)

The function $F: E^n \to \mathbb{R}$ is

- symmetric
- continuous
- strictly increasing
- idempotent
- bisymmetric

if and only if there exists a continuous and strictly monotonic function $f:E\to\mathbb{R}$ such that

$$F(\mathbf{x}) = f^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} f(x_i) \right]$$

When symmetry is removed:

There exist $w_1, \ldots, w_n > 0$ fulfilling $\sum_i w_i = 1$ such that

$$F(\mathbf{x}) = f^{-1} \Big[\sum_{i=1}^{n} w_i f(x_i) \Big]$$

f(x)	$F_n(\mathbf{x})$	name
x	$\sum_{i=1}^n w_i x_i$	arithmetic
log x	$\prod_{i=1}^{n} x_i^{w_i}$	geometric
x^{-1}	$\frac{1}{\sum_{i=1}^{n} w_i \frac{1}{x_i}}$	harmonic
$x^{\alpha} \ (\alpha \in \mathbb{R}_0)$	$\left(\sum_{i=1}^n w_i x_i^{\alpha}\right)^{\frac{1}{\alpha}}$	root-power

Associative functions

Theorem 4 (Aczél, 1948)

The functions $F_n: E^n \to E \ (n \geqslant 1)$ are

- continuous
- strictly increasing
- associative

if and only if there exists a continuous and strictly monotonic function $f: E \to \mathbb{R}$ such that

$$F_n(\mathbf{x}) = f^{-1} \Big[\sum_{i=1}^n f(x_i) \Big] \qquad (n \geqslant 1)$$

+ idempotency : \varnothing

Open problem : replace strict increasing monotonicity with nondecreasing monotonicity

Associative functions

Theorem 5 (Fung-Fu, 1975)

The functions $F_n: E^n \to \mathbb{R} \ (n \geqslant 1)$ are

- symmetric
- continuous
- nondecreasing
- idempotent
- associative

if and only if there exists $\alpha \in E$ such that

$$F_n(\mathbf{x}) = \text{median}\left[\bigwedge_{i=1}^n x_i, \bigvee_{i=1}^n x_i, \alpha\right] = \text{median}[x_1, \dots, x_n, \underbrace{\alpha, \dots, \alpha}_{n-1}]$$

where

$$\text{median}[x_1, \dots, x_{2n-1}] = x_{(n)}$$
 $(x_{(1)} \leqslant \dots \leqslant x_{(2n-1)})$

Associative functions

Without symmetry:

Theorem 6 (Marichal, 2000)

The functions $F_n: E^n \to \mathbb{R} \ (n \geqslant 1)$ are

- continuous
- nondecreasing
- idempotent
- associative

if and only if there exists $\alpha, \beta \in E$ such that

$$F_n(\mathbf{x}) = (\alpha \wedge x_1) \vee \left(\bigvee_{i=1}^n (\alpha \wedge \beta \wedge x_i) \right) \vee (\beta \wedge x_n) \vee \left(\bigwedge_{i=1}^n x_i \right)$$

Without symmetry and idempotency: Open problem

Example: grades obtained by students

- on a [0, 20] scale : 16, 11, 7, 14
- on a [0,1] scale : 0.80, 0.55, 0.35, 0.70
- on a [-1,1] scale : 0.60, 0.10, -0.30, 0.40

Definition. $F: \mathbb{R}^n \to \mathbb{R}$ is stable for the positive linear transformations if

$$F(rx_1+s,\ldots,rx_n+s)=r\,F(x_1,\ldots,x_n)+s$$

for all $x_1, \ldots, x_n \in \mathbb{R}$ and all r > 0, $s \in \mathbb{R}$.

Theorem 8 (Aczél-Roberts-Rosenbaum, 1986)

The function $F: \mathbb{R}^n \to \mathbb{R}$ is stable for the positive linear transformations if and only if

$$F(\mathbf{x}) = S(\mathbf{x}) G\left(\frac{x_1 - A(\mathbf{x})}{S(\mathbf{x})}, \dots, \frac{x_n - A(\mathbf{x})}{S(\mathbf{x})}\right) + A(\mathbf{x})$$

where $A(\mathbf{x}) = \frac{1}{n} \sum_{i} x_{i}$, $S(\mathbf{x}) = \sqrt{\sum_{i} [x_{i} - A(\mathbf{x})]^{2}}$, and $G : \mathbb{R}^{n} \to \mathbb{R}$ is arbitrary.

Interesting unsolved problem:

Describe nondecreasing and stable functions

Theorem 9 (Marichal-Mathonet-Tousset, 1999)

The function $F: E^n \to \mathbb{R}$ is

- nondecreasing
- stable for the positive linear transformations
- bisymmetric

if and only if it is of the form

$$F(\mathbf{x}) = \bigvee_{i \in S} x_i$$
 or $\bigwedge_{i \in S} x_i$ or $\sum_{i=1}^n w_i x_i$

where $S \subseteq N$, $S \neq \emptyset$, $w_1, \ldots, w_n > 0$, and $\sum_i w_i = 1$.

Theorem 10 (Marichal-Mathonet-Tousset, 1999)

The functions $F_n: E^n \to \mathbb{R} \ (n \geqslant 1)$ are

- nondecreasing
- stable for the positive linear transformations
- decomposable

if and only if they are of the form

$$F_n(\mathbf{x}) = \bigvee_{i=1}^n x_i$$
 or $\bigwedge_{i=1}^n x_i$ or $\frac{1}{n} \sum_{i=1}^n x_i$

Theorem 11 (Marichal-Mathonet-Tousset, 1999)

The functions $F_n: E^n \to \mathbb{R} \ (n \geqslant 1)$ are

- nondecreasing
- stable for the positive linear transformations
- associative

if and only if they are of the form

$$F_n(\mathbf{x}) = \bigvee_{i=1}^n x_i$$
 or $\bigwedge_{i=1}^n x_i$ or x_1 or x_n

Evaluation of students w.r.t. three subjects : mathematics, physics, and literature.

student	М	Р	L	global
а	0.90	0.80	0.50	?
b	0.50	0.60	0.90	?
С	0.70	0.75	0.75	?

(grades are expressed on a scale from 0 to 1)

Often used: the weighted arithmetic mean

$$WAM_{\mathbf{w}}(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i$$

with $\sum_i w_i = 1$ and $w_i \geqslant 0$ for all $i \in N$

$$\left.\begin{array}{l}
w_M = 0.35 \\
w_P = 0.35 \\
w_L = 0.30
\end{array}\right\} \qquad \Rightarrow \qquad$$

>		

student	global
а	0.74
Ь	0.65
С	0.73

 $a \succ c \succ b$

Suppose we want to favor student c

student	М	Р	L	global
а	0.90	0.80	0.50	0.74
b	0.50	0.60	0.90	0.65
С	0.70	0.75	0.75	0.73

No weight vector (w_M, w_P, w_L) satisfying

$$w_M = w_P > w_L$$

is able to provide $c \succ a$

Proof.

$$c \succ a \iff 0.70w_M + 0.75w_P + 0.75w_L > 0.90w_M + 0.80w_P + 0.50w_L$$

 $\Leftrightarrow -0.20w_M - 0.05w_P + 0.25w_L > 0$
 $\Leftrightarrow -0.25w_M + 0.25w_L > 0$
 $\Leftrightarrow w_L > w_M$

What's wrong?

$$WAM_{\mathbf{w}}(1,0,0) = w_M = 0.35$$

 $WAM_{\mathbf{w}}(0,1,0) = w_P = 0.35$
 $WAM_{\mathbf{w}}(1,1,0) = 0.70 !!!$

What is the importance of $\{M, P\}$?

The Choquet integral

Definition (Choquet, 1953; Sugeno, 1974)

A fuzzy measure on N is a set function $v:2^N \to [0,1]$ such that

- i) $v(\varnothing)=0, v(N)=1$
- ii) $S \subseteq T \Rightarrow v(S) \leqslant v(T)$

$$v(S)$$
 = weight of S
= degree of importance of S

A fuzzy measure is additive if

$$v(S \cup T) = v(S) + v(T)$$
 if $S \cap T = \emptyset$

→ independent criteria

$$v(M, P) = v(M) + v(P) \ (= 0.70)$$

The Choquet integral

Question : How can we extend the weighted arithmetic mean by taking into account the interaction among criteria?

Definition. Let $v \in \mathcal{F}_N$. The Choquet integral of $\mathbf{x} \in \mathbb{R}^n$ w.r.t. v is defined by

$$\mathcal{C}_{\mathbf{v}}(\mathbf{x}) := \sum_{i=1}^{n} \mathsf{x}_{(i)} \left[\mathsf{v} \left((i), \ldots, (n) \right) - \mathsf{v} \left((i+1), \ldots, (n) \right) \right]$$

with the convention that $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$

Example : If $x_3 \leqslant x_1 \leqslant x_2$, we have

$$C_{v}(x_{1}, x_{2}, x_{3}) = x_{3}[v(3, 1, 2) - v(1, 2)] + x_{1}[v(1, 2) - v(2)] + x_{2}v(2)$$

The Choquet integral

Special case:

$$u$$
 additive \Rightarrow $\mathcal{C}_{\nu} = \mathrm{WAM}_{\mathbf{w}}$

Proof.

$$C_{v}(\mathbf{x}) = \sum_{i=1}^{n} x_{(i)} \left[v((i), \dots, (n)) - v((i+1), \dots, (n)) \right]$$

$$= \sum_{i=1}^{n} x_{(i)} v((i))$$

$$= \sum_{i=1}^{n} x_{i} \underbrace{v(i)}_{w_{i}}$$

Linearity w.r.t. the fuzzy measures

There exist 2^n functions $f_T: \mathbb{R}^n \to \mathbb{R}$ $(T \subseteq N)$ such that

$$C_{v}(\mathbf{x}) = \sum_{T \subseteq N} v(T) f_{T}$$

Indeed, one can show that

$$C_{v}(\mathbf{x}) = \sum_{T \subseteq N} v(T) \underbrace{\sum_{K \supseteq T} (-1)^{|K| - |T|} \bigwedge_{i \in K} x_{i}}_{f_{T}(\mathbf{x})}$$

Stability w.r.t. positive linear transformations

For any $\mathbf{x} \in \mathbb{R}^n$, and any r > 0, $s \in \mathbb{R}$,

$$C_v(rx_1+s,\ldots,rx_n+s)=r\,C_v(x_1,\ldots,x_n)+s$$

Example: grades obtained by students

- on a [0, 20] scale: 16, 11, 7, 14
- on a [0,1] scale : 0.80, 0.55, 0.35, 0.70
- on a [-1,1] scale : 0.60, 0.10, -0.30, 0.40

Remark: The grades may be embedded in [0,1]

• Increasing monotonicity For any $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$, one has

$$x_i \leqslant x_i' \ \forall i \in \mathbb{N} \quad \Rightarrow \quad \mathcal{C}_{\nu}(\mathbf{x}) \leqslant \mathcal{C}_{\nu}(\mathbf{x}')$$

• C_v is properly weighted by v

$$\mathcal{C}_{v}(e_S) = v(S)$$
 $(S \subseteq N)$ $e_S = ext{characteristic vector of } S ext{ in } \{0,1\}^n$ $ext{Example}: e_{\{1,3\}} = (1,0,1,0,\ldots)$

Independent criteria

Dependent criteria

$$WAM_{\mathbf{w}}(e_{\{i\}}) = w_i \qquad \qquad C_{v}(e_{\{i\}}) = v(i)$$

$$WAM_{\mathbf{w}}(e_{\{i,j\}}) = w_i + w_j \qquad C_{v}(e_{\{i,j\}}) = v(i,j)$$

Example:

Axiomatization of the class of Choquet integrals

Theorem (Marichal, 2000)

The functions $F_v : \mathbb{R}^n \to \mathbb{R} \ (v \in \mathcal{F}_N)$ are

linear w.r.t. the underlying fuzzy measures v
 F_v is of the form

$$F_{\nu}(\mathbf{x}) = \sum_{T \subseteq N} \nu(T) f_T \qquad (\nu \in \mathcal{F}_N)$$

where f_T 's are independent of v

stable for the positive linear transformations

$$F_v(rx_1+s,\ldots,rx_n+s)=r\,F_v(x_1,\ldots,x_n)+s$$
 for all $\mathbf{x}\in\mathbb{R}^n$, and all $r>0$, $s\in\mathbb{R}$, $v\in\mathcal{F}_N$

- Nondecreasing
- Properly weighted by v

$$F_{v}(e_{S}) = v(S)$$
 $(S \subseteq N, v \in \mathcal{F}_{N})$

if and only if $F_v = \mathcal{C}_v$ for all $v \in \mathcal{F}_N$

Back to the example

Assumptions:

- M and P are more important than L
- M and P are somewhat substitutive

Non-additive model : C_{ν}

$$v(M) = 0.35$$

 $v(P) = 0.35$
 $v(L) = 0.30$
 $v(M, P) = 0.60$ (redundancy)
 $v(M, L) = 0.80$ (complementarity)
 $v(P, L) = 0.80$ (complementarity)
 $v(\emptyset) = 0$
 $v(M, P, L) = 1$

Back to the example

student	M	Р	L	WAM	Choquet
а	0.90	0.80	0.50	0.74	0.71
Ь	0.50	0.60	0.90	0.65	0.67
С	0.70	0.75	0.75	0.73	0.74

Now: $c \succ a \succ b$

An alternative example (Marichal, 2000)

student	М	Р	L	global
а	0.90	0.70	0.80	?
Ь	0.90	0.80	0.70	?
С	0.60	0.70	0.80	?
d	0.60	0.80	0.70	?

Behavior of the decision maker:

When a student is good at M (0.90), it is preferable that (s)he is better at L than P, so

$$a \succ b$$

When a student is not good at M (0.60), it is preferable that (s)he is better at P than L, so

$$d \succ c$$

An alternative example (Marichal, 2000)

Additive model : WAM_w

$$a \succ b \Leftrightarrow w_L > w_P$$

 $d \succ c \Leftrightarrow w_L < w_P$ No solution!

Non additive model : C_{ν}

student	M	Р	L	global
а	0.90	0.70	0.80	0.81
b	0.90	0.80	0.70	0.79
С	0.60	0.70	0.80	0.71
d	0.60	0.80	0.70	0.72

Special cases of Choquet integrals

Weighted arithmetic mean

$$WAM_{\mathbf{w}}(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i, \qquad \sum_{i=1}^{n} w_i = 1, \qquad w_i > 0$$

Proposition

Let $v \in \mathcal{F}_N$. The following assertions are equivalent :

- i) v is additive
- \exists a weight vector **w** such that $C_{\nu} = WAM_{\mathbf{w}}$
- iii) C_{ν} is additive : $C_{\nu}(\mathbf{x} + \mathbf{x}') = C_{\nu}(\mathbf{x}) + C_{\nu}(\mathbf{x}')$

Special cases of Choquet integrals

Ordered weighted averaging (Yager, 1988)

$$OWA_{\mathbf{w}}(\mathbf{x}) = \sum_{i=1}^{n} w_i x_{(i)}, \qquad \sum_{i=1}^{n} w_i = 1, \qquad w_i > 0$$

with the convention that $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$.

Proposition (Grabisch-Marichal, 1995)

Let $v \in \mathcal{F}_N$. The following assertions are equivalent :

- i) v is cardinality-based
- \exists a weight vector \mathbf{w} such that $\mathcal{C}_{\mathbf{v}} = \mathrm{OWA}_{\mathbf{w}}$
- iii) C_v is a symmetric function.

Ordinal scales

Example: Evaluation of a scientific journal paper on importance

Values: 1, 2, 3, 4, 5

or: 2,7,20,100,246 or: -46,-3,0,17,98

Numbers assigned to an ordinal scale are defined up an increasing bijection $\phi:\mathbb{R}\to\mathbb{R}.$

Means on ordered sets

Definition. A function $F: E^n \to \mathbb{R}$ is comparison meaningful if, for any increasing bijection $\phi: E \to E$ and any $\mathbf{x}, \mathbf{x}' \in E^n$,

$$F(x_1, \dots, x_n) \leqslant F(x'_1, \dots, x'_n)$$

$$\updownarrow$$

$$F(\phi(x_1), \dots, \phi(x_n)) \leqslant F(\phi(x'_1), \dots, \phi(x'_n))$$

Example. The arithmetic mean is not comparison meaningful Consider

$$4 = \frac{3+5}{2} < \frac{1+8}{2} = 4.5$$

and any bijection ϕ such that $\phi(1)=1$, $\phi(3)=4$, $\phi(5)=7$, $\phi(8)=8$. We have

$$5.5 = \frac{4+7}{2} \nless \frac{1+8}{2} = 4.5$$

Means on ordered sets

Theorem 12 (Ovchinnikov, 1996)

The function $F: E^n \to \mathbb{R}$ is

- symmetric
- continuous
- internal
- comparison meaningful

if and only if there exists $k \in N$ such that

$$F(\mathbf{x}) = x_{(k)}$$

Note: $x_{(k)} = \text{median}[\mathbf{x}]$ if n = 2k - 1

Lattice polynomials

Definition. A lattice polynomial function in \mathbb{R}^n is defined from any well-formed expression constructed from the variables x_1, \ldots, x_n and the symbols \wedge, \vee .

Example :
$$(x_2 \lor (x_1 \land x_3)) \land (x_4 \lor x_2)$$

It can be proved that a lattice polynomial can always be put in the form

$$L_c(\mathbf{x}) = \bigvee_{\substack{T \subseteq N \\ c(T) = 1}} \bigwedge_{i \in T} x_i$$

where $c: 2^N \to \{0,1\}$ is a nonconstant set function such that $c(\emptyset) = 0$.

In particular

$$x_{(k)} = \bigvee_{\substack{T \subseteq N \\ |T| = n-k+1}} \bigwedge_{i \in T} x_i$$

Axiomatization of lattice polynomials in \mathbb{R}^n

Theorem 13 (Marichal-Mathonet, 2001)

The function $F: E^n \to \mathbb{R}$ is

- continuous
- idempotent
- comparison meaningful

if and only if there exists a nonconstant set function $c: 2^N \to \{0,1\}$, with $c(\emptyset) = 0$, such that $F = L_c$

Note: If E is open, continuity can be replaced with nondecreasing monotonicity

Complete description of comparison meaningful functions : see Marichal-Mesiar-Rückschlossová, 2005

Connection with Choquet integral

Proposition 2 (Murofushi-Sugeno, 1993)

If $v \in \mathcal{F}_{\textit{N}}$ is $\{0,1\}$ -valued then $\mathcal{C}_{\textit{v}} = \textit{L}_{\textit{v}}$

Conversely, we have $L_c = C_c$.

Proposition 3 (Radojević, 1998)

A function $F: E^n \to \mathbb{R}$ is a Choquet integral if and only if it is a weighted arithmetic mean of lattice polynomials

$$C_{v} = \sum_{i=1}^{q} w_{i} L_{c_{i}}$$

This decomposition is not unique!

$$0.2x_1 + 0.6x_2 + 0.2(x_1 \wedge x_2) = 0.4x_2 + 0.4(x_1 \wedge x_2) + 0.2(x_1 \vee x_2)$$

Connection with Choquet integral

Proposition 4 (Marichal, 2001)

Any Choquet integral can be expressed as a lattice polynomial of weighted arithmetic means

$$C_{\nu}(\mathbf{x}) = L_{c}(g_{1}(\mathbf{x}), \ldots, g_{n}(\mathbf{x}))$$

Example (continued)

$$0.2x_1 + 0.6x_2 + 0.2(x_1 \wedge x_2) = (0.4x_1 + 0.6x_2) \wedge (0.2x_1 + 0.8x_2)$$

The converse is not true : $\left(\frac{x_1+x_2}{2}\right) \wedge x_3$ is not a Choquet integral

Unsolved problem : Give conditions under which a lattice polynomial of weighted arithmetic means is a Choquet integral