Preference elicitation for MCDA Robust elicitation of ranking model

Vincent Mousseau

¹LAMSADE, Université Paris-Dauphine, France mousseau@lamsade.dauphine.fr

International Doctoral School, Troina, Italy

COST action "Algorithmic Decision Theory" April 2008

V. Mousseau

▲ 伊 ▶ ▲ 三 ▶ ▲

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example Software demonstration

Conclusions

Problem statement Ordinal regression paradigm

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem statement Ordinal regression paradigm

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem statement Ordinal regression paradigm

Problem statements

Choosing, from a set of potential alternatives, the best alternative or a small sub set of the best alternatives

 Sorting alternatives to pre-defined and (ordered) categories

 Ranking the alternatives from the best to the worst (the ranking can be complete or not)

イロト イポト イヨト イヨト

Problem statement Ordinal regression paradigm

Choice problem statement

★ Ξ > ★ Ξ >

< 🗇 ▶

Problem statement Ordinal regression paradigm

Choice problem statement

Choice set Х Х

→ Ξ → < Ξ →</p>

Problem statement

Choice problem statement Choice set Х Х Rejected objects Х

mousseau@lamsade.dauphine.fr Preference elicitation for MCDA: Robust ranking elicitation

イロト イポト イヨト イヨト

V. Mousseau

Problem statement Ordinal regression paradigm

Problem statements

Assigning alternatives to pre-defined and order categories

V. Mousseau

mousseau@lamsade.dauphine.fr Preference elicitation for MCDA: Robust ranking elicitation

イロト イポト イヨト イヨト

Problem statement Ordinal regression paradigm

Sorting problem statement

★ Ξ > ★ Ξ >

< 🗇 ▶

Problem statement Ordinal regression paradigm

Sorting problem statement

Problem statement Ordinal regression paradigm

Sorting problem statement

Problem statement Ordinal regression paradigm

Problem statements

 Ranking the alternatives from the best to the worst (the ranking can be complete or not)

V. Mousseau

mousseau@lamsade.dauphine.fr Preference elicitation for MCDA: Robust ranking elicitation

イロト イポト イヨト イヨト

Problem statement Ordinal regression paradigm

Ranking problem statement

★ Ξ > ★ Ξ >

< 🗇 ▶

Problem statement Ordinal regression paradigm

Ranking problem statement

Problem statement Ordinal regression paradigm

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIF

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem statement Ordinal regression paradigm

Ordinal regression paradigm

- Traditional aggregation paradigm: The criteria aggregation model is first constructed and then applied on set A to get information about the comprehensive preference
- Disaggregation-aggregation (or ordinal regression) paradigm: Comprehensive preferences on a subset A^R ⊂ A is known a priori, and a consistent criteria aggregation model is inferred from this information to be applied on set A.

< 回 > < 三 > < 三

Problem statement Ordinal regression paradigm

Ordinal regression paradigm

- In UTA^{GMS}, the preference model is a set of additive value functions compatible with a non-complete set of pairwise comparisons of reference alternatives and information about comprehensive and partial intensities of preference
- We focus on the ranking problem statement (but the ideas can be extended to choice and sorting)

▲ □ ▶ ▲ □ ▶ ▲

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model The UTA-GMS method Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

UTA-GMS/GRIP

- Robust elicitation of a ranking model,
- Preference model = set of monotone additive value functions,
- Preference information = pairwise comparisons of alternatives/evaluation vectors and information about intensities of preference.

イロト イポト イヨト イヨト

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Contents Introduction

Problem statement Ordinal regression parad

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA

The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

< 回 > < 三 > < 三

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Consistency management Considering intensity statements: GRIP

Elementary notation

- $A = \{a_1, a_2, \dots, a_i, \dots, a_m\}$ is finite set of alternatives
- ▶ g₁, g₂,..., g_j,..., g_n n criterion functions, F is the set of criteria indices
- ▶ $g_i(a_i)$ is the evaluation of the alternative a_i on criterion g_i
- G_j domain of criterion g_j ,
- ► \succeq weak preference (outranking) relation on *G*: for each $x, y \in G$
 - $x \succeq y \Leftrightarrow "x$ is at least as good as y"
 - $x \succ y \Leftrightarrow [x \succeq y \text{ and } \mathsf{not}(y \succeq x)]$ "x is preferred to y"
 - $x \sim y \Leftrightarrow [x \succeq y \text{ and } y \succeq x]$ "x is indifferent to y"

イロト イポト イヨト イヨト

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model The UTA-GMS method Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Reminder on UTA

- ► For each g_j , $G_j = [\alpha_j, \beta_j]$ is the criterion evaluation scale, $\alpha_j \leq \beta_j$,
- U is an additive value function on G: for each x ∈ G, U(x) = ∑_{j∈F} u_j[g_j(x)],
- ► u_j are non-decreasing marginal value functions, $u_j : G_j \mapsto \mathbb{R}, \forall j \in F$

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Reminder on UTA

The preference information is given in the form of a complete pre-order on a subset of reference alternatives A^R ⊆ A, called reference pre-order.

► $A^R = \{a_1, a_2, ..., a_{m_1}\}$ is rearranged such that $a_k \succeq a_{k+1}, k = 1, ..., m_1 - 1$, where $m_1 = |A^R|$.

< ∃→

V. Mousseau

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Conclusions

Reminder on UTA

• The inferred value of each $a \in A^R$ is :

$$U(a) + \sigma^+(a) - \sigma^-(a),$$

In UTA , the marginal value functions u_i are assumed to be piecewise linear, so that the intervals [α_i, β_i] are divided into γ_i ≥ 1 equal sub-intervals

$$[x_i^0, x_i^1], [x_i^1, x_i^2], \ldots, [x_i^{\gamma_i-1}, x_i^{\gamma_i}],$$

where,

$$\mathbf{x}_{i}^{j} = \alpha_{i} + \frac{j(\beta_{i} - \alpha_{i})}{\gamma_{i}}, j = 0, \dots, \gamma_{i}, i = 1, \dots, n.$$

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Consistency management Considering intensity statements: GRIP

Reminder on UTA

The piecewise linear value model is defined by the marginal values at break points: $u_i(x_i^0) = u_i(\alpha_i), u_i(x_i^1), u_i(x_i^2), \dots, u_i(x_i^{\gamma_i}) = u_i(\beta_i)$

V. Mousseau

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Contents Introduction

Problem statement

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA

The UTA-GMS method

Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Consistency management
Considering intensity statements; GRIP

The UTAGMS method: Main features

UTAGMS method generalizes the UTA method in three aspects:

- The preference information is a partial preorder (not necessary complete): *I* = B^R ⊂ A^R × A^R
- It takes into account all additive value functions compatible with indirect preference information, while UTA is using only one such function.
- The marginal value functions are general monotone non-decreasing functions, and not piecewise linear only.

イロト イポト イヨト イヨト

Introduction Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

General monotone non-decreasing value functions

Introduction Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

General monotone non-decreasing value functions

The marginal utility function $u_i(x_i)$

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIP

UTA^{GMS}

Consider $x, y \in A \setminus A^R$

Let π_i be a permutation on the set of alternatives A^R ∪ {x, y} that reorders them according to increasing evaluation on criterion g_i:

$$g_j(\boldsymbol{a}_{[\pi_i(1)]}) \leq g_j(\boldsymbol{a}_{[\pi_i(1)]}) \leq ... \leq g_j(\boldsymbol{a}_{[\pi_i(\omega-1)]}) \leq g_j(\boldsymbol{a}_{[\pi_i(\omega)]})$$

where $\omega = |A^R| + 2$, $|A^R| + 1$ or $|A^R|$ depending on $g_i(x)$ and $g_i(y)$,

The characteristic points of u_i(x_j), i = 1, ..., m, are then fixed according to this reordering

イロト 不得 トイヨト イヨト

General monotone non-decreasing value functions

The marginal utility function $u_i(x_i)$

V. Mousseau

Introduction Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

General monotone non-decreasing value functions

The marginal utility function $u_i(x_i)$

V. Mousseau

Introduction Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

General monotone non-decreasing value functions

The marginal utility function $u_i(x_i)$

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIP

UTA^{GMS}

For any pair of alternatives (a, b) ∈ A, and for available preference information represented by B^R, preference of a over b is determined by compatible utility functions U verifying set E(a, b) of constraints:

$$\begin{array}{c} U(c) \geq U(d) + \varepsilon \iff c \succ d \\ U(c) = U(d) \iff c \sim d \end{array} \right\} \text{ for all } (c, d) \in B^R \\ u_i(x_i^j) - u_i(x_i^{j-1}) \geq 0, \ i = 1, ..., n, \ j = 1, ..., \omega + 1 \\ u_i(g_i^0) = 0, \ i = 1, ..., n \\ \sum_{i=1}^n u_i(g_i^{\omega+1}) = 1, \end{array} \right\} E(a, b)$$

イロト イ押ト イヨト イヨト

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIP

The UTAGMS method: Main features

The method produces two rankings in the set of alternatives A, such that for any pair of alternatives $a, b \in A$,

- In the necessary order, a is ranked at least as good as b if and only if, U(a) ≥ U(b) for all value functions compatible with the preference information.
- In the possible order, a is ranked at least as good as b if and only if, U(a) ≥ U(b) for at least one value function compatible with the preference information.

イロト イポト イヨト イヨト
Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIP

V. Mousseau

mousseau@lamsade.dauphine.fr Preference elicitation for MCDA: Robust ranking elicitation

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

V. Mousseau

mousseau@lamsade.dauphine.fr Preference elicitation for MCDA: Robust ranking elicitation

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions

Computing necessary and possible relations: \succeq^N, \succeq^P

•
$$d(x,y) = Min_{U \in U}U(x) - U(y)$$
 and
 $D(x,y) = Max_{U \in U}U(x) - U(y)$
where
 $U = \{$ value fct compatible with the DM's statements

$$> x \succeq^P y \Leftrightarrow D(x,y) \ge 0$$

•
$$x \succeq^N y \Leftrightarrow d(x, y) \ge 0$$

イロト イポト イヨト イヨト

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIF

Elaboration of the final rankings

- for the necessary preference relation being a partial preorder (supported by all compatible value functions)
 - ▶ preference: $x \succ^N y$ if $x \succeq^P y$ and *noty* $\succeq^N x$
 - indifference: $x \sim^N y$ if $x \succeq^N y$ and $y \succeq^N x$
 - incomparability: x?y if not $x \succeq^N y$ and not $y \succeq^N x$
- for the possible preference relation being complete (supported by at least one compatible value function)

•
$$x \succ^{P} y$$
 if $x \succeq^{P} y$ and not $y \succeq^{P} x$
• $x \sim^{P} y$ if $x \succeq^{P} y$ and $y \succeq^{P} x$

くロト (得) (ほ) (ほ)

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Properties of relations \succeq^N , \succeq^P

•
$$d(x, y) = Min\{U(x) - U(y)\} = -Max\{-(U(x) - U(y))\} = -Max\{U(y) - U(x)\} = -D(y, x)$$

►
$$(x, y) \in B^R \Rightarrow x \succeq^N y$$
,

$$\triangleright \ x \succeq^N y \Rightarrow x \succeq^P y,$$

- ▶ \succeq^N is a partial preorder (reflexive and transitive),
- In absence of preference information: necessary ranking = weak dominance relation, possible ranking is complete,
- For complete pairwise comparisons: necessary ranking = possible ranking

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method

Illustrative example

Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Illustrative example

20 alternatives, 5 criteria (all alternatives are efficient).

$s_1 = (14.5, 147, 4, 1014, 5.25)$	$s_{11} = (15.75, 164.375, 41.5, 311, 6.5)$
$s_2 = (13.25, 199.125, 4, 1014, 4)$	$s_{12} = (13.25, 181.75, 41.5, 311, 4)$
$s_3 = (15.75, 164.375, 16.5, 838.25, 5.25)$	$s_{13} = (12, 199.125, 41.5, 311, 2.75)$
$s_4 = (12, 181.75, 16.5, 838.25, 4)$	$s_{14} = (17, 147, 16.5, 662.5, 5.25)$
$s_5 = (12, 164.375, 54, 838.25, 4)$	$s_{15} = (15.75, 199.125, 16.5, 311, 6.5)$
$s_6 = (13.25, 199.125, 29, 662.5, 5.25)$	$s_{16} = (13.25, 164.375, 54, 311, 4)$
$s_7 = (13.25, 147, 41.5, 662.5, 5.25)$	$s_{17} = (17, 181.75, 16.5, 486.75, 5.25)$
$s_8 = (17, 216.5, 16.5, 486.75, 1.5)$	$s_{18} = (14.5, 164.375, 41.5, 838.25, 4)$
$s_9 = (17, 147, 41.5, 486.75, 5.25)$	$s_{19} = (15.75, 181.75, 41.5, 135.25, 5.25)$
$s_{10} = (15.75, 216.5, 41.5, 662.5, 1.5)$	$s_{20} = (15.75, 181.75, 41.5, 311, 2.75)$

イロト イポト イヨト イヨト

Introduction Elementary notation/Remin Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity stater

Illustrative example

First information: $s_1 \succ s_2$.

イロト イポト イヨト イヨト

Introduction Elementary notation/Reminder on Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Consistency management Considering intensity statements:

Illustrative example

Second information: $s_4 \succ s_5$.

э

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Consistering intensity statements: GRIP

Illustrative example

Third information: $s_8 \succ s_{10}$.

э

Introduction
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Group Ranking
Conclusions
Group Ranking
Considering intensity statements: GRIP

Accounting for confidence on preference statements

- ▶ Preference information = nested partial preorders $B_1^R \subset B_2^R \subset ... \subset B_p^R$ with decreasing credibility,
- From B^R_i to B^R_{i+1}, we add new constraints and reduce the set of compatible value functions U(B^R_{i+1}) ⊂ U(B^R_i),
- ► If $Min_{U \in U(B_i^R)}(u(x) u(y)) > 0$, then $Min_{U \in U(B_{i+1}^R)}(u(x) u(y)) > 0$,
- ► $\gtrsim^{N} (B_{1}^{R}), \succeq^{N} (B_{2}^{R}), ..., \succeq^{N} (B_{p}^{R})$ define a set of nested partial preorders.

・ロト ・ 四ト ・ モト ・ モト

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Contents Introduction

Problem statement

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example

Inconsistency management

Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Inconsistency management

When DM's statement are not representable in the additive model

 \rightarrow inconsistency,

- DM's statements induce linear constraints on the variables (marginal values of alternatives)
- When such inconsistency occurs, we should check how to "solve" inconsistency,
- Which modification of the DM's input will lead to representable preferences ?
- Are they different ways to do so ?
- What is the minimum number of constraints to delete ?

イロト イ押ト イヨト イヨト

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Inconsistency management

- solution of minimal cardinality is not necessarily the most interesting one for the DM,
- The knowledge of the various ways to solve inconsistency is useful for the DM,
- This permits to:
 - help the DM to understand the conflicting aspects of his/her statement,
 - create a context in which the DM car learn about his/her preferences,
 - make the elicitation process more flexible,

イロト イポト イヨト イヨト

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIP

Inconsistency resolution via constraints deletion

m constraints induced by the DM's statements

$$\begin{cases} \sum_{j=1}^{n} \alpha_{1}^{j} \mathbf{x}_{j} \geq \beta_{1} \\ \vdots \\ \sum_{j=1}^{n} \alpha_{m-1}^{j} \mathbf{x}_{j} \geq \beta_{m-1} \\ \sum_{j=1}^{n} \alpha_{m}^{j} \mathbf{x}_{j} \geq \beta_{m} \end{cases}$$
[1]

- ▶ $I = \{1, ..., m\}$; subset S ⊂ I solves [1] iff $I \setminus S \neq \emptyset$
- ▶ We search for $S_1, S_2, ..., S_p \subset I$ such that : (i) S_i resolves [1], $i \in \{1, 2, ..., p\}$; (ii) $S_i \nsubseteq S_j, i, j \in \{1, ..., p\}, i \neq j$; (iii) $|S_i| \le |S_j|, i, j \in \{1, 2, ..., p\}, i < j$; (iv) if ∃ S that resolves [1] s.t. S ⊈ S_i , $\forall i = 1, 2, ..., p$, then $|S| > |S_p|$.

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Inconsistency management

Let
$$y_i \ (\in \{0,1\}, i \in I)$$
, s.t. :
 $y_i = 1$ if constraint *i* is removed
 $= 0$ otherwise

$$\mathbf{P}_{1} \begin{cases} Min \quad \sum_{i \in I} y_{i} \\ \text{s.t.} \quad \sum_{j=1}^{n} \alpha_{ij} \mathbf{x}_{j} + M \mathbf{y}_{i} \ge \beta_{i}, \quad \forall i \in I \\ \mathbf{x}_{j} \ge \mathbf{0}, \quad j = 1, \dots, n \\ \mathbf{y}_{i} \in \{0, 1\}, \quad \forall i \in I \end{cases}$$

- S₁ = {i ∈ I : y_i^{*} = 1} corresponds to (one of the) subset(s) of constraints resolving [1] of smallest cardinality,
- We define P_2 adding to P_1 the constraint $\sum_{i \in S_1} y_i \le |S_1| - 1$

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Inconsistency management

- ▶ P_{k+1} is defined adding to P_k the constraint $\sum_{i \in S_k} y_i \le |S_k| 1$
- We compute S_1, S_2, \ldots, S_k , and stop when $|S_{k+1}| > \Omega$,

```
Begin

\begin{array}{c} k \ \leftarrow 1 \\ \text{moresol} \ \leftarrow \text{true} \\ \text{While moresol} \\ \text{Solve } PM_k \\ \text{If } (PM_k \text{ has no solution}) \text{ or } (PM_k \text{ has an optimal value } > \Omega) \\ \text{Then moresol} \ \leftarrow \text{false} \\ \text{Else} \\ - S_k \leftarrow \{i \in I: y_i^* = 1\} \\ - \text{Add constraint } \sum_{i \in S_k} y_i \leq |S_k| - 1 \text{ to } PM_k \text{ so as to define } PM_k \\ - k \ \leftarrow k+1 \\ \text{End while} \\ \text{End} \end{array}
```

(ロ) (同) (三) (三) (三) (○) (○)

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

Inconsistency management

- Each S_i corresponds to a set of DM's preference statements (presented to the DM),
- Sets S_i represent (for the DM) "incompatible" comparisons, each one specifies a way to solve inconsistency,
- Deleting/modifying the smallest set of preference assertions might not be the best idea
- Consider the confidence statements to ranking inconsistency resolutions.

イロト 不得 とくほ とくほう

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Contents Introduction

Problem statement Ordinal regression parad

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management

Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

< 同 > < 三 > < 三

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

The GRIP method: Main features

GRIP extends UTA^{GMS}: additional preference information in form of comparisons of intensities of preference between some pairs of reference alternatives.

1) Comprehensive, on all criteria, "*x* is preferred to *y* at least as much as *w* is preferred to *z*".

$$ightarrow (x,y) \succsim^* (w,z) \ \Leftrightarrow \ U(x) - U(y) \ge U(w) - U(z)$$

2) Partial, on each criterion, "x is preferred to y at least as much as w is preferred to z, on criterion g_i ∈ F".
→ (x, y) ≿_i* (w, z) ⇔ U_i(x) - U_i(y) ≥ U_i(w) - U_i(z)

イロト 不得 とくほ とくほう

Introduction Elementary notation/Reminder on UTA
Robust elicitation of a ranking model
Group Ranking
Software demonstration
Conclusions
Considering intensity statements: GRIP

The GRIP method: Preference Information DM is expected to provide the following preference information,

• A partial pre-order \succeq on A^R ,

 $x \succeq y \Leftrightarrow x ext{ is at least as good as } y.$ $\rightarrow x \succeq (y) \Leftrightarrow U(x) \ge U(y)$

▶ A partial pre-order \succeq^* on $A^R \times A^R$,

 $(x,y) \gtrsim^* (w,z) \Leftrightarrow$

x is preferred to y at least as much as w is preferred to z

 $ightarrow (x,y) \succsim^* (w,z) \ \Leftrightarrow \ U(x) - U(y) \ge U(w) - U(z)$

A partial pre-order ≿^{*}_i on A^R × A^R, (x, y) ≿^{*}_i (w, z) ⇔ x is preferred to y at least as much as w is preferred to z on criterion g_i.

 $\rightarrow (x,y) \succeq_i^* (w,z) \Leftrightarrow U_i(x) - U_i(y) \ge U_i(w) - U_i(z)$

Introduction Elementary notation/Reminder on UTA Robust elicitation of a ranking model Group Ranking Software demonstration Conclusions Considering intensity statements: GRIP

The GRIP method: Output

If the set of compatible value functions is not empty, we compute:

►
$$\succeq^{N}$$
: $x \succeq^{N} y \Leftrightarrow min_{U \in U}(U(x) - U(y)) \ge 0$

►
$$\succeq^{P}$$
: $x \succeq^{P} y \Leftrightarrow max_{U \in \mathcal{U}}(U(x) - U(y)) \ge 0$

$$\succ \succeq^{*N}: (x,y) \succeq^{*N} (w,z) \Leftrightarrow \min_{U \in \mathcal{U}} ((U(x) - U(y)) - (U(w) - U(z))) \ge 0$$

$$\succ \succeq^{*P}: \\ (x,y) \succeq^{*N} (w,z) \Leftrightarrow max_{U \in \mathcal{U}}((U(x) - U(y))(U(w) - U(z))) \ge 0$$

イロト イポト イヨト イヨト

UTAGMS-Group Illustrative example

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking UTA^{GMS}-Group

Illustrative example

Software demonstration

Conclusions

V. Mousseau

・ 同 ト ・ ヨ ト ・ ヨ ト

UTAGMS-Group Illustrative example

Ordinal regression for group ranking: UTA^{GMS}-Group

- Set of DMs: $\mathcal{D} = \{d_1, ..., d_p\}$
- Preference information provided by d_h, h = 1, ..., p: B^R(d_h) a partial preorder on a set of reference actions,

V. Mousseau

ヘロン 人間 とくほ とくほ とう

UTAGMS-Group Illustrative example

UTA^{GMS}-Group

- We consider the set of value functions for each $d_h \in \mathcal{D}^* \subseteq \mathcal{D}$ stemming from UTA-GMS,
- For each d_h ∈ D*, 4 situations are interesting for (x, y) ∈ A:
 x ≥^{N,N} (D*)y: x ≥^N y for all d_h ∈ D*,
 x ≥^{N,P} (D*)y: x ≥^N y for at least one d_h ∈ D^D*,
 x ≥^{P,N} (D*)y: x ≥^P y for all d_h ∈ D*,
 x ≥^{P,P} (D*)y: x ≥^P y for at least one d_h ∈ D*,

イロト イポト イヨト イヨト

UTAGMS-Group Illustrative example

UTA^{GMS}-Group

Properties

- ▶ $\succeq^{N,N}(\mathcal{D}^*)$ is a partial preorder
- ► $\succeq^{N,P} (\mathcal{D}^*)$ is not necessarily transitive
- ▶ $\succeq^{P,P}(\mathcal{D}^*)$ is strongly complete

►
$$x \succeq^{N,N} (\mathcal{D}^*) y \Rightarrow x \succeq^{N,P} (\mathcal{D}^*) y$$

►
$$x \succeq^{N,P} (\mathcal{D}^*) y \Rightarrow x \succeq^{P,P} (\mathcal{D}^*) y$$

When $\mathcal{D}^* \subset \mathcal{D}^{**}$, it holds

►
$$\mathbf{x} \succeq^{N,N} (\mathcal{D}^{**}) \mathbf{y} \Rightarrow \mathbf{x} \succeq^{N,N} (\mathcal{D}^{*}) \mathbf{y}$$

► $\mathbf{x} \succeq^{N,P} (\mathcal{D}^{**}) \mathbf{y} \Rightarrow \mathbf{x} \succeq^{N,P} (\mathcal{D}^{*}) \mathbf{y}$
► $\mathbf{x} \succeq^{P,N} (\mathcal{D}^{**}) \mathbf{y} \Rightarrow \mathbf{x} \succeq^{P,N} (\mathcal{D}^{*}) \mathbf{y}$
► $\mathbf{x} \succeq^{P,P} (\mathcal{D}^{**}) \mathbf{y} \Rightarrow \mathbf{x} \succeq^{P,P} (\mathcal{D}^{*}) \mathbf{y}$

<ロト < 同ト < 回ト < 回ト = 三

UTAGMS-Group Illustrative example

UTA^{GMS}-Group

• Given $\mathcal{D}^* \subseteq \mathcal{D}$, a value function *U* is compatible with \mathcal{D}^* if:

$$\mathcal{U}_{\mathcal{D}^*} \left\{ \begin{array}{l} U(c) > U(d) \Leftrightarrow c \succ d \\ U(c) = U(d) \Leftrightarrow c \sim d \\ u_i(g_i(a_{\tau_i(j)})) - u_i(g_i(a_{\tau_i(j-1)})) \ge 0, \ i = 1, ..., n, \ j = 2, ..., m \\ u_i(g_i(a_{\tau_i(1)})) \ge 0, u_i(g_i(a_{\tau_i(m)})) \le u_i(\beta_i), \ i = 1, ..., n, \\ u_i(\alpha_i) = 0, \ i = 1, ..., n \\ \sum_{i=1}^n u_i(\beta_i) = 1, \end{array} \right.$$

where τ_i is the permutation that reorders alternatives according to their increasing evaluation on g_i .

ヘロン 人間 とくほ とくほ とう

э

UTAGMS-Group Illustrative example

UTA^{GMS}-Group

- If U_{D*} ≠ Ø, one obtains two rankings such that for any pair of actions (x, y) ∈ A:
 - x ≿^N (D*)y: x is ranked at least as good as y iff U^{D*}(x) ≥ U^{D*}(y) for all U compatible with the preference information (≿^N being a partial preorder)
 - x ≿^P (D*)y: x is ranked at least as good as y iff U^{D*}(x) ≥ U^{D*}(y) for at least one U compatible with the preference information (≿^P being a strongly complete and negatively transitive binary relation)
- ► However, the set U_{D*} of compatible value function can be empty...

・ロト ・ 同ト ・ ヨト ・ ヨト

UTAGMS-Group Illustrative example

UTA^{GMS}- Group

Suppose $\mathcal{U}_{\mathcal{D}^*} = \emptyset$

- U_{D*} = intersection of sets of compatible value functions for all d_h ∈ D* (each one being non-empty).
- Pairwise comparisons of two (or more) DMs are conflicting.
- Identifying which are these conflicting comparisons amounts at solving inconsistency
- This leads to know which comparison to remove to obtain a consistent collective model.
- Performing these computations ∀D^{*} ⊆ D allows to identify coalitions of convergent DMs.

イロト イポト イヨト イヨト

UTAGMS-Group Illustrative example

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group

Illustrative example

Software demonstration

Conclusions

V. Mousseau

< 🗇 🕨

→ Ξ → < Ξ →</p>

UTAGMS-Group Illustrative example

UTA^{GMS}- Group: Illustrative example

• Group ranking with 3 DMs d_1 , d_2 and d_3 ,

	g ₁ (a _i)	g ₂ (a _i)	g ₃ (a _i)	g ₄ (a _i)	g ₅ (a _i)
a ₁	2	0	0	5	3
a ₂	1	3	0	5	2
a ₃	3	1	1	4	3
a_4	0	2	1	4	2
a ₅	1	1	4	3	2
a ₆	3	3	2	3	3
a ₇	0	0	3	3	3
a ₈	4	4	1	2	0
ag	3	0	3	2	3
a ₁₀	3	4	3	3	0
a ₁₁	3	1	3	1	4
a ₁₂	3	2	3	1	2
a ₁₃	3	3	3	1	1
a ₁₄	1	0	1	3	3
a ₁₅	1	3	1	1	4
a ₁₆	4	1	4	1	2
a ₁₇	1	2	1	2	3
a ₁₈	3	1	3	4	2
a ₁₉	3	2	3	0	3
200	3	2	3	1	1

empty dominance relation.

★ E > < E >

UTAGMS-Group Illustrative example

UTA^{GMS}- Group: Illustrative example

Statements of DMs:

- $d_1: a_1 \succ a_2, a_6 \succ a_7 \text{ and } a_{17} \succ a_{20}$
- d_2 : $a_9 \succ a_{13}$, $a_4 \succ a_5$ and $a_{14} \succ a_7$
- d_3 : $a_4 \succ a_3$, $a_{15} \succ a_{11}$ and $a_8 \succ a_{10}$
- $\mathcal{U}_{\{d_1,d_3\}} = \mathcal{U}_{\{d_1,d_2,d_3\}} = \emptyset$, i.e., d_1 and d_3 statements contradict:
 - d_1 : $a_1 \succ a_2 \Rightarrow a_3 \succ a_4$
 - d_3 : $a_4 \succ a_3 \Rightarrow a_2 \succ a_1$
- ▶ If $(d_1 \text{ removes } a_1 \succ a_2)$ or $(d_3 \text{ removes } a_4 \succ a_3)$ then $\mathcal{U}_{\{d_1, d_2, d_3\}} \neq \emptyset$.

・ロト ・ 同ト ・ ヨト ・ ヨト

UTAGMS-Group Illustrative example

UTA^{GMS}- Group: Illustrative example

Although $\mathcal{U}_{\{d1,d2,d3\}} = \emptyset$, the following relations are not empty:

- ► $\succeq^{N,N} (\{d_1, d_2, d_3\}) = \{(a_6, a_7)\}, a_6 \succeq^N a_7 \text{ for all } d_h$
- ► $\gtrsim^{N,N} (\{d_1, d_2\}) = \{(a_6, a_7), (a_9, a_{13})\},\$
- ► $≿^{N,N}(\{d_1, d_3\}) = \{(a_6, a_7), (a_{17}, a_{20})\},\$
- ► $∑^{N,N} (\{ d_2, d_3 \}) = \{ (a_6, a_7), (a_{11}, a_{15}) \},$
- ► $x \succeq^{N,P} (\{d_1, d_2, d_3\})(d1, d2, d3)y$: $x \succeq^N y$ for at least one d_h
- ► $x \succeq^{P,N} (\{d_1, d_2, d_3\})(d1, d2, d3)y$: $x \succeq^{P} y$ for all d_h
- ► $x \succeq^{P,P} (\{d_1, d_2, d_3\})(d1, d2, d3)y$: $x \succeq^{P} y$ for at least one d_h

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

UTAGMS-Group Illustrative example

UTA^{GMS}- Group: Illustrative example

If d₃ removes a₄ ≻ a₃ then U_{d1,d2,d3} ≠ Ø leading to the collective necessary ranking:

э

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

-∢ ≣ ▶

- 10
Software demonstration

Software demonstration: Visual-UTA 2.0

- AGRITEC is a medium size firm (350 persons approx.) producing some tools for agriculture,
- The C.E.O., M^r Becault, intends to double the production and multiply exports by 4 within 5 years.
- ► He wants to hire a new international sales manager.
- A recruitment agency has interviewed 17 potential candidates which have been evaluated on 3 criteria (sales management experience, international experience, human qualities) evaluated on a [0,100] scale.

(4 個) トイヨト イヨト

Software demonstration

	Crit 1	Crit 2	Crit 3
Alexievich	4	16	63
Bassama	28	18	28
Calvet	26	40	44
Dubois	2	2	68
El Mrabat	18	17	14
Ferret	35	62	25
Fleichman	7	55	12
Fourny	25	30	12
Frechet	9	62	88
Martin	0	24	73
Petron	6	15	100
Psorgos	16	9	0
Smith	26	17	17
Varlot	62	43	0
Yu	1	32	64

V. Mousseau

(신문) (신문)

< 何

Software demonstration

it0 without preference information,

- it1 Ferret ~ Frechet > Fourny > Fleichman,
- it2 Ferret ~ Frechet > Martin > Fourny ~ El Mrabat > Fleichman, \rightarrow inconsistency: Ferret ~ Frechet vs Fourny ~ El Mrabat
- it3 Ferret ~ Frechet > Martin > Fourny > Fleichman,

イロト イポト イヨト イヨト

Contents Introduction

Problem statement

Ordinal regression paradigm

Robust elicitation of a ranking model

Elementary notation/Reminder on UTA The UTA-GMS method Illustrative example Inconsistency management Considering intensity statements: GRIP

Group Ranking

UTA^{GMS}-Group Illustrative example

Software demonstration

Conclusions

V. Mousseau

- ∢ ⊒ →

-≣->

Conclusion

- UTA-GMS/GRIP:
 - General additive value function,
 - Intuitive information required from the DM,
 - Robust elicitation of a ranking model,
 - Necessary and Possible rankings,
 - Inconsistency management.

< ∃ >

Conclusion

Insufficient attention is devoted in MCDA to develop elicitation tools an methodologies which should contribute to the definition of a doctrine for MCDA practitioners.

More research is needed to :

- develop methodologies/tools to organize the interaction with DMs in a given MCAP,
- test the operational validity of the developed tools.

・ 同 ト ・ ヨ ト ・ ヨ ト