

























|   |                                                          |           |          |         |        |  |  |   |                                                  |     |         | 14 |
|---|----------------------------------------------------------|-----------|----------|---------|--------|--|--|---|--------------------------------------------------|-----|---------|----|
|   | 2.1 Lorenz-optimal paths                                 |           |          |         |        |  |  |   |                                                  |     |         |    |
|   |                                                          |           |          |         |        |  |  |   |                                                  |     |         |    |
|   | Pareto s-Pareto Lorenz SSD EU Tcheb OWA WOWA RDU Choque  |           |          |         |        |  |  |   |                                                  |     |         | 1  |
|   | Pareto ε-Pareto Lorenz SSD EU Tcheb OWA WOWA RDU Choquet |           |          |         |        |  |  |   |                                                  |     | Choquet |    |
|   |                                                          |           |          |         |        |  |  |   |                                                  |     |         |    |
|   | Paths                                                    |           |          | 1       |        |  |  |   |                                                  |     |         |    |
|   | Trees                                                    |           |          |         |        |  |  |   |                                                  |     |         |    |
|   | Assign                                                   | Assign    |          |         |        |  |  |   |                                                  |     |         | -  |
|   | Knapsack                                                 |           |          |         |        |  |  |   |                                                  |     |         |    |
|   |                                                          |           |          |         |        |  |  |   |                                                  |     |         |    |
| Ľ | Laboratoi                                                | re d'Info | ormatiqu | e de Pa | aris 6 |  |  | Ŷ | CENTRE NATIONA<br>DE LA RECHERCH<br>SCIENTIFIQUE | L U |         | C  |



|                                                                                                                                             | 16 |
|---------------------------------------------------------------------------------------------------------------------------------------------|----|
| Generalized Lorenz dominance                                                                                                                |    |
| DEFINITION (L-DOMINANCE)                                                                                                                    |    |
| $\forall x, y \in \mathbb{R}^m_+, \ x \succeq_L y \iff L(x) \succeq_P L(y)$                                                                 |    |
| where $L(x) = (x_{(1)}, x_{(1)} + x_{(2)}, \dots, x_{(1)} + x_{(2)} + \dots + x_{(m)})$<br>with $x_{(1)} \ge x_{(2)} \ge \dots \ge x_{(m)}$ |    |
| $(11, 9, 10) >_{L} (6, 10, 15)$ because $(11, 21, 30) >_{P} (15, 25, 31)$<br>THEOREM (Hardy, Littlewood and Polya, 1929, Chong, 1976)       |    |
| For all $x, y \in \mathbb{R}^m_+$ , if $x \succ_P y$ , or if $x$ obtains from $y$ by an admissible transfer then $x \succ_L y$ .            |    |
| Conversely, if $x \succ_L y$ , there exists a sequence of admissible transfers and/or Pareto improvements to transform y into x.            |    |
| <ul> <li>Lorenz dominance refines Pareto dominance</li> <li>Favours well-balanced solutions (transfer principle)</li> </ul>                 |    |
| Laboratoire d'Informatique de Paris 6                                                                                                       |    |







| Ν | <b>lumeri</b><br>(randor | cal test | s for L-c | optimal<br>sity ~ 50% | paths |  |
|---|--------------------------|----------|-----------|-----------------------|-------|--|
|   |                          |          | _         |                       |       |  |
|   | m                        | #nodes   | #L-opt    | <i>time</i> (s)       |       |  |
|   |                          | 1000     | 2.20      | 0.12                  |       |  |
|   | 2                        | 3500     | 2.25      | 1.75                  |       |  |
|   |                          | 6000     | 2.45      | 5.75                  |       |  |
|   |                          | 1000     | 5.10      | 0.25                  |       |  |
|   | 5                        | 3500     | 5.70      | 4.14                  |       |  |
|   |                          | 6000     | 6.60      | 13.69                 |       |  |
|   |                          | 1000     | 10.75     | 0.55                  |       |  |
|   | 10                       | 3500     | 14.15     | 9.47                  |       |  |
|   |                          | 6000     | 13.5      | 30.97                 |       |  |
|   |                          |          |           |                       |       |  |
|   |                          |          |           |                       |       |  |











$$P \text{ formulation of OWA-optimization}$$

$$y = (y_1, \dots, y_n) \quad y_{(1)} \ge y_{(2)} \dots \ge y_{(n)}$$

$$OWA(y) = \sum_{k=1}^n w_i y_{(k)} = \sum_{k=1}^n w_k' L_k(y) \quad w' = (w_1 - w_2, \dots, w_{n-1} - w_n, w_n) > 0$$

$$L_k(y) = \max_{k=1}^n \alpha_i^k y_i \qquad \min_{k=k} kr_k + b_i^k \ge y_i \qquad \text{dual}$$

$$0 \le \alpha_i^k \le 1 \quad i = 1 \dots n \qquad b_i^k \ge 0 \quad i = 1 \dots n$$

$$\min_{k=1}^p w_k' \left( kr_k + \sum_{i=1}^n b_i^k \right) \qquad (Ogryczak, 07)$$

$$r_k + b_i^k \ge y_i$$

$$b_i^k \ge 0$$

$$Were expression of the transformation of transformation of the transformation of the transformation of the transformation of the transformation of transformation of the transformation of transformation of the transformation of trans$$



|          |          |          |            |           |         |       |         |           |                                                    |         | 28             |
|----------|----------|----------|------------|-----------|---------|-------|---------|-----------|----------------------------------------------------|---------|----------------|
| N        | umer     | rical t  | ests       | with      | Cple    | ex f  | for O   | WA a      | assig                                              | nmer    | nt             |
|          |          |          |            |           | -       |       |         |           | _                                                  |         |                |
|          | n =      | 100      | 200        | 300       | 40      | 0     | 500     | 600       | 700                                                | 800     | 900            |
| t ((     | OWA)     | .98      | 2.37       | 10.6      | 23      | .0    | 32.4    | 57.7      | 84.5                                               | 158     | 227            |
| Times    | (in sec  | onds) fo | or fair as | ssignme   | ent pro | blen  | ns with | n agents  | s, costs                                           | in {1,  | ., 20}         |
|          |          | ,        |            | C C       |         |       |         | C C       |                                                    | •       |                |
|          |          |          |            |           |         |       |         |           |                                                    |         |                |
| n =      | 100      | 200      | 300        | 400       | 500     | 600   | 0 700   | ) 800     | 900                                                | 1000    | ) 1100         |
| t        | .23      | 1.58     | 4.8        | 10        | 20      | 37    | 57      | 93        | 151                                                | 222     | 361            |
| Times    | (in seco | nds) foi | r paper    | assignn   | nent p  | roble | ems wit | h n revie | ewers, 3                                           | Bn pape | rs             |
| costs ii | 1 {1,,   | 5}, mat  | rix den    | sity 20%  | , max   | nb o  | of pape | r per ag  | ent = 5.                                           |         |                |
|          | •        |          |            | -         |         |       |         |           |                                                    |         |                |
|          |          |          |            |           |         |       |         |           |                                                    |         |                |
|          | atoire o | Inform   | atique     | la Paris  | 6       |       |         | cy.       | CENTRE NATIONAL<br>DE LA RECHERCHE<br>SCIENTIFIQUE | UT      | PMC            |
| Labor    | arone u  | morm     | unque c    | io i arro | 0       |       |         | -         |                                                    | PA      | RISUNIVERSITAS |

|  |                                                          |           |          |         |        |  |  |    |               |       |              | 29   |
|--|----------------------------------------------------------|-----------|----------|---------|--------|--|--|----|---------------|-------|--------------|------|
|  | 2.3 Choquet-optimal spanning trees                       |           |          |         |        |  |  |    |               |       |              |      |
|  | [Galand, Perny, Spanjaard, 08]                           |           |          |         |        |  |  |    |               |       |              |      |
|  |                                                          |           |          |         |        |  |  |    |               |       |              |      |
|  | Pareto s-Pareto Lorenz SSD EU Tcheb OWA WOWA RDU Choquet |           |          |         |        |  |  |    |               |       |              |      |
|  |                                                          |           |          |         |        |  |  |    |               |       |              |      |
|  | Paths 1                                                  |           |          |         |        |  |  |    |               |       |              |      |
|  | Trees 3                                                  |           |          |         |        |  |  |    |               |       |              |      |
|  |                                                          |           |          |         |        |  |  |    |               |       |              |      |
|  | <b>A</b> = = : = = =                                     |           |          |         |        |  |  |    |               |       |              |      |
|  | Assign                                                   |           |          |         |        |  |  | 2  |               |       |              |      |
|  | Knansack                                                 |           |          |         |        |  |  |    |               |       |              |      |
|  | парзаск                                                  |           |          |         |        |  |  |    |               |       |              |      |
|  |                                                          |           |          |         |        |  |  |    |               |       |              |      |
|  |                                                          |           |          |         |        |  |  |    |               |       |              | J    |
|  | 6                                                        |           |          |         |        |  |  | cy | CENTRE NATION | U     | <b>2</b> mc  | С    |
|  | 📕 Laboratoi                                              | re d'Info | ormatiqu | e de Pa | aris 6 |  |  |    | SCIENTIPIQUE  | 10.01 | PARISUNIVERS | ITAS |





















|                                                   |                              |         |               | Ν        | lume          | erical   | tests         | 5        |               |          | 4 |  |  |
|---------------------------------------------------|------------------------------|---------|---------------|----------|---------------|----------|---------------|----------|---------------|----------|---|--|--|
| TAB.: Branch&Bound approach : execution times (s) |                              |         |               |          |               |          |               |          |               |          |   |  |  |
| ]                                                 | 2 dim. 3 dim. 5 dim. 10 dim. |         |               |          |               |          |               |          |               |          |   |  |  |
|                                                   |                              |         | $\lambda_i^*$ | $\phi_i$ | $\lambda_i^*$ | $\phi_i$ | $\lambda_i^*$ | $\phi_i$ | $\lambda_i^*$ | $\phi_i$ |   |  |  |
| ·                                                 |                              | 10      | 0             | 0        | 0.01          | 0.03     | 0.06          | 0.29     | 2.21          | 6.2      |   |  |  |
|                                                   |                              | 15      | 0.01          | 0.11     | 0.23          | 9.45     | 2.41          | 804      | 36.8          | >1h      |   |  |  |
|                                                   | $V_1$                        | 20      | 1.03          | >1h      | 8.68          | 2726     | 31.4          | >1h      | >1h           | >1h      |   |  |  |
|                                                   |                              | 25      | 4.02          | >1h      | 14.9          | >1h      | 137.3         | >1h      | >1h           | >1h      |   |  |  |
|                                                   |                              | 30      | 13.4          | >1h      | 60.7          | >1h      | >1h           | >1h      | >1h           | >1h      |   |  |  |
|                                                   |                              | 10      | 0             | 0        | 0.01          | 0.03     | 0.1           | 0.11     | 4.23          | 12       |   |  |  |
|                                                   |                              | 15      | 0.01          | 0.16     | 0.1           | 9.63     | 2.36          | 3.04     | 1950          | 1987     |   |  |  |
|                                                   | <i>V</i> <sub>2</sub>        | 20      | 0.48          | 40.13    | 0.86          | 63       | 72.1          | >1h      | >1h           | >1h      |   |  |  |
|                                                   |                              | 25      | 2.04          | >1h      | 5.57          | >1h      | 985.7         | >1h      | >1h           | >1h      |   |  |  |
|                                                   |                              | 30      | 5.11          | >1h      | 48.6          | >1h      | 3035          | >1h      | >1h           | >1h      |   |  |  |
|                                                   |                              |         |               |          |               |          |               |          |               |          |   |  |  |
|                                                   | ratoi                        | ire d'l | nformat       | ique de  | Paris 6       |          |               | O        |               |          |   |  |  |



























