Measurement of Pollution




*There are many pollutants in the air.
*Is 1t possible to find one combined index of air
pollution that takes into account all of them?




*[s an airplane louder than a motorcycle?
*[s 1t noisier?
*What 1s the difference?




*Given two devices to measure changes 1n water
pollution level, which one does a better job?




*We will observe that all of these questions have
something to do with measurement.

*The answers are very relevant to
public and private sector decision

making.

*We will apply measurement
theory to measurement of air,
water, and noise pollution.
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*Measurement has something to do with
numbers.

*Our approach: “Representational theory of
measurement”

*Assign numbers to “objects” being measured 1n such a

way that certain empirical relations are “preserved.”

*In measurement of temperature, we preserve a
relation “warmer than.”

*In measurement of mass, we preserve a relation
“heavier than.”




A: Set of Objects
R: Binary relation on A4

aRb ) a is “warmer than” b
aRb i a is “heavier than” b

fo A ¥
aRb ¥] f(a) > f(b)

R could be preference. Then f1s a utility function (ordinal
utility function).
R could be “louder than.” Then fis a measure of loudness.




A: Set of Objects
R: Binary relation on A4

aRb Y} a is “warmer than” b
aRb Y} a is “heavier than” b

fr A M)
aRb ] f(a) > f(b)

With mass, there 1s more going on. There is an operation

of combination of objects and mass is additive. a¥}b
means a combined with b.

f(a¥}b) = f(a) + f(b).




*This can all be generalized using a formalism
called a homomorphism.

It will suffice to think of a homomorphism as a
way of assigning numbers to objects being
measured so that certain relations and operations

among objects are reflected in comparable relations
among the assigned numbers.

*Even more basically: Homomorphisms will be
“acceptable” ways to assign numbers.

*We will be particularly interested in finding ways
to transform one homomorphism (acceptable way
to measure) into another.




*Empirical Relational System A

Set of objects 4 and relations R and operations {¥] on A.
*Numerical Relational System B

Set of objects B where B 1s a set of real numbers, plus a
relation R* corresponding to each R on A and an operation

¥}* corresponding to each {¥] on A.

«Homomorphism from A intoB

A function f:4 ¥

B such that all relations and

operations among €l

ements 1n 4 are reflected 1in

corresponding relations and operations among elements in

B, e.g.,

aRb (%) fla)R*f(b)

J(a¥)b) = f(a)]71(D).
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Admissible Transformations

*An admissible transformation sends one acceptable scale
into another.

Centigrade {¥] Fahrenheit
Kilograms {¥j Pounds

*In most cases one can think of an admissible
transformation as defined on the range of a
homomorphism.

*Suppose f1s a homomorphism fromA intoB .

o Y

if

A(A)

W

B 1s called an admissible transformation of f

4

)4

f1s again a homomorp‘hism filBm  into




Admissible Transformations ¥/

Centigrade Wi(x)=(9/5)x + 32

Kilograms {¥] Wi(x)=2.2x




*A classification of scales 1s obtained by studying
the class of admissible transformations associated

with the scale.
*This defines the scale type. (S.S. Stevens)




Class of Adm. Transfs. Scale Type Example

¥i(x) = (Wjx, (¥] >0 ratio Mass
Temp. (Kelvin)
Time (intervals)
Loudness (sones)?

Brightness (brils)?

interval Temp (F,C)
Time (calendar)
IQ tests (standard




lass of Adm. Transfs. Scale Type Example

¥y M) () ) O)

strictly increasing  ordinal Preference?
Hardness
Grades of leather,
IQ tests (raw

absolute  Counting
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*In measurement theory, we speak of a statement as being
meaningful 11 1ts truth or falsity i1s not an artifact of the
particular scale values used.

*The following definition 1s due to Suppes 1959 and

Suppes and Zinnes 1963.

Definition: A statement involving numerical scales 1s
meaningful if 1ts truth or falsity 1s unchanged after any (or
all) of the scales 1s transformed (independently?) by an
admissible transformation.




*A slightly more informal definition:

Alternate Definition: A statement involving
numerical scales 1s meaningful if 1ts truth or falsity
1s unchanged after any (or all) of the scales 1s
(independently?) replaced by another acceptable
scale.

*In some practical examples, for example those
involving preference judgments or judgments
“louder than” under the “semiorder’” model, 1t 1s
possible to have to scales where one can’t go from
one to the other by an admissible transformation, so
one has to use this definition.




*We will avoid the long literature of more
sophisticated approaches to meaningfulness.

*Situations where this relatively simple-minded
definition may run into trouble will be disregarded.

*Emphasis 1s to be on applications of the
“invariance’ motivation behind the theory of
meaningfulness.




“This talk will be three times as long as the next
talk.”

*[s this meaningful?




“This talk will be three times as long as the next
talk.”

*[s this meaningful? A
&

I hope not!




“This talk will be three times as long as the next
talk.”

*[s this meaningful?




“This talk will be three times as long as the next talk.”

*[s this meaningful?

*We have a ratio scale (time intervals).

(1)

fla) = 3f(b).

*This 1s meaningful 1f f 1s a ratio scale. For, an

admissible transformation 1s
want (1) to hold

(2)

1ff

(¥

W

Pa) = 3(

*But (2) becomes

3)
(1)

(3) since

W

W

(x) = ¥jx, (¥ >0. We

D(b)




“The high temperature today was five percent
higher than the high temperature yesterday.”

*[s this meaningful?

o

FRIT SAT SUN MON TUE WED

® ¢ 6 & 0 &
104° 102° 97° 94° 94° 092°




“The high temperature today was five percent
higher than the high temperature yesterday.”

fa) = 1.05/(b)

*Meaningless. It could be true with Fahrenheit and
false with Centigrade, or vice versa.




In general:

*For ratio scales, i1t 1s meaningful to compare ratios:

Aa)f(b) > fc)/fd)
*For 1nterval scales, 1t 1s meaningful to compare
intervals:

fa) - [(b) > flc) - Ad)

*For ordinal scales, 1t 1s meaningful to compare
S1Z€:

fa) > f(b)




“I weigh 1000 times what the Statue of Liberty
weighs.”

*[s this meaningful?




“I weigh 1000 times what the Statue of Liberty
weighs.”

*Meaningful. It involves ratio scales.
It 1s false no matter what the unit.

*Meaningfulness is different from truth.

It has to do with what kinds of assertions
1t makes sense to make, which assertions
are not accidents of the particular choice
of scale (units, zero points) in use.
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*Study two groups of machines.

*f(a) 1s the loudness of machine a.

*Data suggests that the average loudness of machines in
the first group is higher than the average loudness of
machines in the second group. R

a, a,, ..., a, machines in first group

by, b,, ..., b, machines in second group.
1 X 1 X
(1) — f(g)>_—- f(b)

n m
=1 i=1

*We are comparing arithmetic means.




Statement (1) 1s meaningful iff for all admissible
transformations of scale {¥j, (1) holds iff

1 X 1 X
2) _ 0 ef(a) >

_ ' xf(b)
=1 L

*Some argue that loudness (sones) define a ratio scale.
(More on this later.)

*Thus, (¥ > (), so (2) becomes
1 X0
(3) . )> @ (b)

i=1

> (0 implies (1) {¥] (3). Hence, (1) 1s




*Note: (1) is still meaningful if f is an interval scale.

*For example, we could be comparing temperatures f(a).

*Here, (Wj(x)= ¥jx + {¥], (¥] > 0. Then (2) becomes

1 X _ X _
4 = @)+ 1> [&({H)+ ]

n .
|=1 |=1

*This readily reduces to (1).

However, (1) is meaningless if f is just an ordinal
scale.




*To show that comparison of arithmetic means can be
meaningless for ordinal scales, suppose we are asking
experts for a subjective judgment of loudness.

*Suppose f(a) 1s measured on an ordinal scale, e.g., 5-

point scale: 5=extremely loud, 4=very loud, 3=loud,
2=slightly loud, 1=quuiet.

In such a scale, the numbers may not mean anything;
only their order matters.

Group 1: 5, 3,1 average 3
Group 2: 4,4, 2 average 3.33

*Conclude: average loudness of group 2 machines 1s
higher.




*Suppose f(a) 1s measured on an ordinal scale, e.g., 5-
point scale: 5=extremely loud, 4=very loud, 3=loud,
2=slightly loud, 1=quuiet.

In such a scale, the numbers may not mean anything; only

their order matters.

Group 1: 5, 3,1 average 3
Group 2: 4,4, 2 average 3.33 (greater)

* Admissible transformation: 5 (¥ 100, 4 ¥i 75, 3 | 65,
2 (¥ 40, 1 {¥j 30
*New scale conveys the same information. New scores:

Group 1: 100, 65, 30 average 65
Group 2: 75,75,40 average 63.33

Conclude: average loudness of group 1 machines 1s higher.




*Thus, comparison of arithmetic means can be
meaningless for ordinal data.

*Of course, you may argue that in the 5-point scale, at least
equal spacing between scale values 1s an inherent property
of the scale. In that case, the scale 1s not ordinal and this

example does not apply.

*Note: Comparing medians is meaningful with ordinal
scales: To say that one group has a higher median than
another group is preserved under admissible
transformations.




*Suppose each of » individuals is asked to rate each of
a collection of alternative machines as to their relative
loudness.

 Or we rate alternatives on different criteria or against
different benchmarks. (Similar results with performance
ratings, importance ratings, brightness ratings, etc.)

*Let f(a) be the rating of alternative a by

individual i (under criterion i). Is 1t meaningful to assert
that the average rating of alternative a 1s higher than the
average rating of alternative b?




*Let f(a) be the rating of alternative a by
individual i (under criterion 7). Is it meaningful to assert
that the average rating of alternative a 1s higher than the

average rating of alternative b?

A similar question arises in performance ratings,
brightness ratings, importance ratings, etc.

1 X 1 X

(1) ﬁi=1fi(a)> ﬁi=1fi(b)




[f each f. 1s a ratio scale, then we consider for
1 X

1 X
(2) ﬁ CI:Dci(a)> N

i=1 =1

®¥; (b)

*Clearly, (1) {¥j (2), so (1) 1s meaningful.

*Problem: £, f,, ..., f, might have independent units. In
this case, we want to allow independent admissible
transformations of the f.. Thus, we must consider

Xn xXn
©) 1 ®f (a) > %

n

i=1 =

®f;(b)

1

It 1s easy to see that there are

W

fails. Thus, (1) 1s meaningless.

.o that (1) holds and (3)




Motivation for considering different (¥ :

l.

n=2, f(a)=weightota, f,(a) = height of a. Then (1)
says that the average of a's weight and height 1s greater
than the average of b's weight and height. This could be
true with one combination of weight and height scales and

false with another.

. # /}
~ LY , -




Motivation for considering different (¥ :

l.

n=2, f(a)=weightota, f,(a) = height of a. Then (1)
says that the average of a's weight and height 1s greater
than the average of b's weight and height. This could be
true with one combination of weight and height scales and

false with another.

: " }
. . ¥ ’ >

i
e Conclusion: Be cgreful when comparin
arithmetic mean gatings.

.ym = e }\




In this context, it 1s safer to compare geometric means
(Dalkey).

P P P P
T f@> T MmN T ®f(@> " T ®f (D

I |:1 |i=1

all (wi.> 0.

*Thus, 1f each f; 1s a ratio scale, 1f individuals can change
loudness rating scales (performance rating scales,
importance rating scales) independently, then comparison
of geometric means is meaningful while comparison of

arithmetic means is not.




In a study of air pollution and related energy use in San
Diego, a panel of experts each estimated the relative
importance of variables relevant to energy demand using

the magnitude estimation procedure. Roberts (1972, 1973).
*Magnitude estimation: Most important gets score of 100.
If half as important, score of 50. And so on.

[f magnitude estimation leads to a ratio scale -- Stevens
presumes this -- then comparison of geometric mean
importance ratings 1s meaningful.

However, comparison of arithmetic means may not be.
Geometric means were used.




Magnitude Estimation by One Expert of Relative
Importance for Energy Demand of Variables Related to
Commuter Bus Transportation in a Given Region

Variable Rel. Import. Rating
1. No. bus passenger mi. annually 80
2. No. trips annually 100
3. No. miles of bus routes 50
4. No. miles special bus lanes 50
5. Average time home to office 70
6. Average distance home to office 65
7. Average speed 10
8. Average no. passengers per bus 20
9. Distance to bus stop from home 50
10. No. buses 1n the region 20
11. No. stops, home to office 20
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*Various pollutants are present in the air:

«Carbon monoxide (CO), hydrocarbons (HC), nitrogen
oxides (NOX), sulfur oxides (SOX), particulate matter
(PM).

*Also damaging: Products of chemical reactions among
pollutants. E.g.: Oxidants such as ozone produced by HC
and NOX reacting in presence of sunlight.

*Some pollutants are more serious 1n presence of others,
e.g., SOX are more harmful in presence of PM.

*Can we measure pollution with one overall measure?




*To compare pollution control policies, need to compare
effects of different pollutants. We might allow increase of
some pollutants to achieve decrease of others.

*One single measure could give indication of how bad
pollution level is and might help us determine if we have
made progress.

Combining Weight of Pollutants:
*Measure total weight of emissions of pollutant i over
fixed period of time and sum over 1.

e(i,t, k) = total weight of emissions of pollutant i (per cubic
meter) over fth time period and due to Ath source or
measured 1n kth location. At K) = o(i: t: k)




« Early uses of this simple index A 1n the early 1970s led
to the conclusions:

(A) Transportation 1s the largest source of air pollution, with
stationary fuel combustion (especially by electric power
plants) second largest.

(B) Transportation accounts for over 50% of all air
pollution.
(C) CO accounts for over half of all emitted air pollution.

* Are these meaningful conclusions?




« Early uses of this simple index A 1n the early 1970s led
to the conclusions:

(A) Transportation 1s the largest source of air pollution, with
stationary fuel combustion (especially by electric power

plants) second largest.

* Are these meaningful conclusions?

A(t; k) > A(t; k9




« Early uses of this simple index A 1in the early 1970s led
to the conclusions:

(B) Transportation accounts for over 50% of all air
pollution.

» Are these meaningful conclusions?= .EF ‘—v

— :l',l
X _—i, |

At k) > A(tk)  —

_

k6 k,




« Early uses of this simple index A 1in the early 1970s led
to the conclusions:

(C) CO accounts for over half of all emitted air pollution.

* Are these meaningful conclusions?

e(i; t; k) > ofj; t;k) PR il

v/‘ = [-n N 2 i *
) On e ’ 1!.;:

.“

M0n0x1de =

tik tk j&i
aﬁ




A(t; k) > A(t; k9

X
Ak ) >  Atk)

k6 k,
X X X
e(i;t; k) > e(j;t; k)

t:k tk j6i

All these conclusions are meaningful 1f we measure all e
(i,t,k) 1n same units of mass (e.g., milligrams per cubic
meter) and so admissible transformation means multiply e
(i,t,k) by same constant.




*These comparisons are meaningful in the technical sense.

*But: Are they meaningful comparisons of pollution level
in a practical sense?

* A unit of mass of CO is far less harmful than a unit of mass
of NOX. U.S. Environmental Protection Agency standards

based on health effects for 24 hour period allow 7800 units
of CO to 330 units of NOX.

*These are Minimum acute toxicity effluent tolerance
factors (MATE criteria).

«Tolerance factor 1s level at which adverse effects are
known. Let {¥j(i) be tolerance factor for ith pollutant.

*Severity factor: ¥}(CO)/{¥j(@) or 1/{¥](i)




*One 1dea (Babcock and Nagda, Walther, Caretto and
Sawyer): Weight the emission levels (1n mass) by severity
factor and get a weighted sum. This amounts to using the

indices

Degree of hazard: a].—;e(' T k)

and the combined index

Pindex: B(t;K) = 1K)

1 .
Pkt
*Under pindex, transportation 1s still the largest source of
pollutants, but now accounting for less than 50%. Stationary
sources fall to fourth place. CO drops to bottom of list of

pollutants, accounting for just over 2% of the total.




*These conclusions are again meaningful if all emission
weights are measured 1n the same units. For an admissible
transformation multiplies (¥ and e by the same constant
and thus leaves the degree of hazard unchanged and pindex

unchanged. —
*Pindex was introduced in the San Francisco

Bay Area 1n the 1960s.

*But, are comparisons using pindex meaningful in the
practical sense?




*Pindex amounts to: For a given pollutant, take the
percentage of a given harmful level of emissions that 1s
reached 1n a given period of time, and add up these
percentages over all pollutants. (Sum can be greater than

100% as a result.)

[f 100% of the CO tolerance level 1s reached, this 1s known
to have some damaging effects. Pindex implies that the
effects are equally severe if levels of five major pollutants
are relatively low, say 20% of their known harmftul levels.




*Severity tonnage of pollutant i due to a given source 1s
actual tonnage times the severity factor 1/{¥](i).

In early air pollution measurement literature, severity
tonnage was considered a measure of how severe pollution
due to a source was.

*Data from Walther 1972 suggests the following. Interestmg
exercise to decide which of these {
conclusions are meaningful. t




1. HC emissions are more severe (have greater severity
tonnage) than NOX emissions.

2. Effects of HC emissions from transportation are more

severe than those of HC emissions from industry. (Same for
NOX.).

3. Effects of HC emissions from transportation are more

severe than those of CO emissions from industry.

4. Effects of HC emissions from transportation are more

than 20 times as severe as effects of CO emissions from
transportation.

5. The total effect of HC emissions due to all sources is

more than § times as severe as total effect of NOX emissions
due to all sources.
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How do we evaluate alternative possible water testing
systems? Or pollution control systems for oil, chemicals, ...
* A number of systems are tested on different benchmarks.
*Their scores on each benchmark are normalized relative to
the score of one of the systems.

*The normalized scores of a system are combined by some
averaging procedure.

*If the averaging is the arithmetic mean, then the statement
“one system has a higher arithmetic

mean normalized score than another

system” 1s meaningless:

The system to which scores are

normalized can determine which

has the higher arithmetic mean.




*Similar methods are used in comparing performance of
alternative computer systems or other types of machinery.
*The following example has numbers taken out of the
computer science literature from an article comparing
computer systems. However, the same applies to pollution
control equipment or other types of equipment.

*The example 1s due to Fleming and Wallace (1986).
- e AUy

L~ ————




Equipment Evaluation

Evaluation of Water Testing Equipment

E F & H |
R 66 39,449 772

244 70 153 33,527 368

70 135 66,000 369

Data from Heath, Comput. Archit. News (1984)




Equipment Evaluation

Normalize Relative to System R

E F & H
417 R 66 39,449

R 100 100 100 1.00

244 70 153 33,527

M 59 84 232 8 .48

70 135 66,000 369

Z 3 8 205 167 45




Equipment Evaluation

Take Arithmetic Mean of Normalized Scores
Arithmetic

E F G H I
417 83 66 39449 772

R 1.00
1.00 1.00 1.00 1.00  1.00

244 70 153 33,527 368
59 .34 RY .85 48

M 1.01

70 135 66,000 369

1.
Z 3 8 205 167 45 07




Equipment Evaluation

Take Arithmetic Mean of Normalized Scores
Arithmetic

E F G H I
417 83 66 39449 772
1.00  1.00 1.00 1.00 1.00

1.00

244 70 153 33,527 368
59 .34 RY .85 48

70 135 66,000 369
32 .85 2.05 1.67 45

Conclude that system Z is best




Equipment Evaluation

Now Normalize Relative to System M

E F & H |
R 66 39,449 772

43 1.18  2.10

153 33,527 368
1.00 1.00  1.00

135 66,000 369
.88 1.97 1.00




Equipment Evaluation

Take Arithmetic Mean of Normalized Scores

Arithmetic
Mean

E F & H
R 66 39,449 772
43 1.18  2.10

1.32

153 33,527 368
1.00 1.00  1.00

135 66,000 369
.88 1.97 1.00




Equipment Evaluation

Take Arithmetic Mean of Normalized Scores

Arithmetic
Mean

E F & H
417 R 66 39,449 772
1.71 1.19 43 1.18  2.10

1.32

244 70 153 33,527 368
1.00  1.00 1.00 1.00  1.00

134 70 135 66,000 369
S5 1.00 .88 1.97 1.00

1.08

Conclude that system R is best




Equipment Evaluation

So, the conclusion that a given system 1s best by
taking arithmetic mean of normalized scores 1s

meaningless 1n this case.
Above example from Fleming and Wallace

(1986), data from Heath (1984)

Sometimes, geometric mean 1s helpful.
Geometric mean 1s




Equipment Evaluation

Normalize Relative to System R
Geometric
E F G H o (Mean
417 83 66 39,449 772

100 100 100 100 100 100

244 70 153 33,527 368
59 .34 RY .85 48

.86

70 135 66,000 369
32 .85 2.05 1.67 45

Conclude that system R is best




Equipment Evaluation

Now Normalize Relative to System M

E F & H |
417 R 66 39,449 772

1.71 1.19 43 1.18  2.10

244 70 153 33,527 368
1.00  1.00 1.00 1.00  1.00

134 70 135 66,000 369
S5 1.00 .88 1.97 1.00

Still conclude that system R is best

Geometric
Mean

1.17

99




Equipment Evaluation

In this situation, it 1s easy to show that the conclusion
that a given system has highest geometric mean
normalized score is a meaningful conclusion.

Even meaningful: A given system has geometric mean
normalized score 20% higher than another machine.

Fleming and Wallace give general conditions under
which comparing geometric means of normalized
scores 1S meaningful.

Research area: what averaging procedures make sense
in what situations? Large literature.




Equipment Evaluation

Message from measurement theory:

Do not perform arithmetic operations on
data without paying attention to whether
the conclusions you get are meaningful.




Equipment Evaluation

We have seen that in some situations, comparing
arithmetic means 1s not a good 1dea and
comparing geometric means 1s.

We will see that there are situations where the
reverse 1s true.

Can we lay down some guidelines as to when to
use what averaging procedure?

More on this later.
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*Some early warning signs of climate change include
extreme heat events, commonly associated with air

pollution events:
—1995 extreme heat event in Chicago

» 514 heat-related deaths " Oppressive heat settles In Europe

Officials wamed citizens, especially the elderly, to stay indoors and
drink plenty of water during the summer’s second major heat wave.

» 3300 excess emergency EATK e ot g e Summners second e
S E— ||

Wednesday,
10am. ECT 15C 21 27 38

admissions
—2003 heat wave 1n Europe
» 35,000 deaths

NOTE: Average temperatures from highest to lowest elevation
SOURCE: Weather Underground




*We anticipate an increase in number and severity of
extreme events due to global warming.

*More heat waves and associated air pollution events.

*More floods, hurricanes.




*One response to such extreme pollution events:
evacuation of most vulnerable individuals to climate
controlled environments.

*Modeling challenges:

—Where to locate the evacuation centers? ;% K

—Whom to send where?

—Goals include minimizing travel time, keeping facilities to
their maximum capacity, etc.

—Relevance of mathematical tools of operations research —
location theory, assignment problems, etc.




T

T

[
[ |




Numbers = some
sort of weights or
lengths

X 2 Yy

* Problem: Find the shortest path from x to z in the network.
* Widely applied problem.
v'US Dept. of Transportation alone uses it billions of
times a year.




X 9) Yy

The shortest path from x to z is the path x to y to z.

Is this conclusion meaningful?

It 1s 1f the numbers define a ratio scale.

The numbers define a ratio scale if they are distances.




 However, what 1f the numbers define an interval scale?




e Consider the admissible transformation {¥j(x) = 3x + 100.




X 106 Y

Consider the admissible transformation {¥j(x) = 3x +

100.
Now we get the above numbers on the edges.

Now the shortest path 1s to go directly from x to z.
The original conclusion was meaningless.




The shortest path problem can be formulated as a linear
programming problem.

Thus: The conclusion that A is the solution to a linear
programming problem can be meaningless if cost
parameters are measured on an interval scale.

How many people realize that?

Note that linear programming 1s widely used 1n practical
applications, e.g., to solve problems like:
v’ Optimizing inventories of pollution control equipment
v’ Assigning workers to pollution control jobs
v’ Optimizing the size of a pollution control facility
v'Determining the amount to invest in alternative
pollution control measures
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A spanning tree 1s a tree using the edges of the graph and
containing all of the vertices.

It 1s minimum 1f the sum of the numbers on the edges
used 1s as small as possible.




Minimum spanning trees arise 1n many applications.
One example: Given a road network, find usable roads
that allow you to go from any vertex to any other vertex,
minimizing the lengths of the roads used.

This problem also arises in extreme events due to global
warming: Find a usable road network for emergency
vehicles 1n case extreme events leave flooded roads.
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 Red edges define a minimum spanning tree.
* Is it meaningful to conclude that this is a minimum
spanning tree?
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e (Consider the admissible transformation
100.
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Consider the admissible transformation

W

100.
We now get the above numbers on edges.
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e The minimum spanning tree 1s the same.
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Is this an accident?

No: By Kruskal’s algorithm for finding the minimum
spanning tree, even an ordinal transformation will leave
the minimum spanning tree unchanged.
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* Kruskal’s algorithm:

v Order edges by weight.
v' At each step, pick least-weight edge that does not
create a cycle with previously chosen edges.




* Many practical decision making problems
involve the search for an optimal solution as in
Shortest Path and Minimum Spanning Tree.

e Little attention is paid to the possibility that the
conclusion that a particular solution is optimal
may be an accident of the way things are
measured.
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— Intensity (energy transported)
— Frequency (in cycles per second)
— Duration

A sound also has psychological characteristics:
— How loud does 1t seem?

— What emotional meaning does it portray?

— What images does 1t suggest?




Since middle of 19" century, scientists have tried to
study the relationships between physical
characteristics of stimuli like sounds and their
psychological characteristics.

Psychophysics 1s the discipline that studies
psychological sensations such as loudness, brightness,

apparent length, apparent duration, and their relations
to physical stimuli.

Not all psychological characteristics have clear
relationships to physical ones. E.g., emotional
meaning.

However, some seem to.

We will concentrate on loudness.




Loudness of a sound 1s different from its disturbing
effect.

This disturbing effect 1s called noise.

We will concentrate on loudness and equate noise with
loudness.

Noise has more than just disturbing effects.
It has physiological effects too:

» Affects hearing

» Affects cardiovascular system

* May be related to stomach problems

* May even be related to infertility




e Subjective judgments of loudness depend on physical
intensity and frequency.
e Equal loudness contour:

Intensity of
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Audiogram

50 100 200 500 1,000 2,000 5,000 10,000
Frequency (Hz)

e Duration of a sound may also enter into loudness.




To simplify matters, one tries to eliminate all physical
factors but one.

Deal with pure tones, sounds of constant intensity at a
fixed frequency.

Present them for fixed duration of time.

Let I(a) denote the intensity of pure tone a.

I(a) 1s proportional to the root-mean-square pressure p
(a).

The common unit of measurement of intensity 1s the
decibel (dB).

This 1s 10 log,,(/1,), where [, 1s a reference sound.

A sound of 1 dB is essentially the lowest audible
sound.




Some Sample Decibel Levels:

Uncomfortably Loud:
Oxygen torch (121 dB)
Snowmobile (113 dB)
Riveting machine (110 dB)

Rock band (108-114 dB)
Jet takeoff at 1000 ft. (110 dB)




Some Sample Decibel Levels:

Very Loud:
Electric furnace (100 dB)
Power mower (96 dB)

Rock drill at 50 ft. (95 dB)

Motorcycle at 50 ft. (90 dB)
Smowmobile at 50 ft. (90 dB)
Food blender (88 dB)




Some Sample Decibel Levels:

Moderately Loud:
Power mower at 50 ft. (85 dB)
Diesel truck at 50 ft. (85 dB)
Diesel train at 50 ft. (85dB)

Garbage disposal (80 dB)

Washing machine (78 dB)
Dishwasher (75 dB)

Passenger car at 50 ft. (75 dB)

Air conditioning unit at 50 ft. (60 dB)




Loudness of a sound a = L(a).

Unit of measurement of loudness = the sone

(1 sone = loudness of 1000 cps pure tone at 40 dB)
Loudness 1s a psychological scale.

What is the relation between L(a) and the physical
intensity of a, I(a)?

This relation usually called the psychophysical law.

L(a) = ¥j([(a))

¥ 1s called the psychophysical function.

A basic goal of psychophysics is to find the general
form of the psychophysical function that applies in
many cases.




Fechner’s Law
« First attempt to specity (¥ for large class of
psychological variables: Gustav Fechner (1860).
* Fechner argued that:

Yi(x)=clogx+k

¢, k constant.

e This is called Fechner’s Law
« For loudness, this would say: ' -

L(a)=clog l(a) + k

» Decibel scale 1s a special case of Fechner’s Law:
Base of log 1s 10, ¢ =10, k=-10 log,, {,.




If L(a) = dB(a), then a doubling of the dB level of a
sound should lead to a doubling of the perceived
loudness.

So, 100 dB should sound twice as loud as 50 dB.
Is this the case?




Fletcher and Munson (1933)

Assumption: loudness proportional to number of
auditory nerve impulses reaching the brain

Thus: sound delivered to 2 ears should appear twice
as loud as same sound delivered to 1 ear.

F & M found that to sound equally loud, a pure tone
delivered to 1 ear had to be about 10 dB higher than 1f
it were delivered to 2 ears.

They concluded: subjective loudness doubles for
each 10 dB increase in pressure.

Thus, an increase from 50 dB to 60 dB doubles
loudness, not an increase from 50 dB to 100 dB.




Fletcher and Munson (1933)

This shows that dB does not measure loudness.

Much data supports the F & M results.

It also implies that Fechner’s Law
L(a)=clogl(a) + k
can’t hold.




The Power Law

 S.S. Stevens (many papers): The fundamental

psychophysical law for many psychological and
physical variables is a power law:.

(x) = cxk

Many experiments have estimated that for loudness
and 1ntensity, the exponent k& 1s approximately 0.3.
Is this consistent with the Fletcher-Munson
observation?




The Power Law
* Note that 0.3{¥}{¥] log,,2

« Power law:
L(x) = cl(x) %9102

dB(x) = 10 log,, [L(x)/1,]
](x) — ]0 10(1/10)dB(x)

(%) L(x)= Clologmz[lo(l/lO)dB(x)] 109102

If dB(b) = dB(a) + 10, then letting x = b 1n lhs of (**)
and taking dB(x) = dB(a) + 10 in rhs, we find that

L(b) = 2L(a)




The Power Law
Data seems suggests that the power law holds for
more than 2 dozen variables (at least approximately
and 1n limited intervals), including:
Brightness (in brils)

Smell F;: . r |

Judged duration
Presure on palm
Judged heaviness
Force of handgrip
Vocal effort

Taste (1n gusts) o /
Judged temperature @ | \/




The Power Law

Power law fairly widely accepted for certain
psychological/physical variables.

It fails for things like pitch as function of frequency,
apparent inclination, etc.

We will discuss a theory that allows us to derive the
power law.
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*Sometimes arithmetic means are not a good idea.
* Sometimes geometric means are.

*Are there situations where the opposite 1s the case? Or
some other method is better?

*Can we lay down some guidelines about when to use what
averaging or merging procedure?

*Methods we will describe will help and also help with the
possible psychophysical laws.




*Can we lay down some guidelines about when to use what
averaging or merging procedure?

Let a, a,, ..., a, be “scores” or ratings, e.g., scores on
benchmarks for water or air pollution equipment, loudness
ratings, etc.

lLet u=F(aa,y, ...,a,)

[ 1s an unknown averaging function — sometimes called a
merging function, and u 1s the average or merged score.




* Approaches to finding acceptable merging
functions F

*(1) axiomatic
*(2) scale types

*(3) meaningfulness




An Axiomatic Approach

Theorem (Fleming and Wallace). Suppose F:(
has the following properties:

(1). Reflexivity: F(a,a,...,a) = a

(2). Symmetry: F(a,,a,,...,a,) = F(ay
for all permutations (¥} of {1,2,...,n}

(3). Multiplicativity:.
F(a,b,,a,b,,...,a,b,) = F(a,a,,....,a) F(b,,b,,....b,)

Then F' 1s the geometric mean. And conversely.




A Functional Equations Approach Using Scale
Type or Meaningfulness Assumptions

Unknown function u = F(a,,a,,...,a,)

We will use an idea due to R. Duncan Luce that he called
the “Principle of Theory Construction™

(We will disregard some of the
restrictions on applicability of
this principle, including those
given by Luce.)




A Functional Equations Approach Using Scale
Type or Meaningfulness Assumptions

Unknown function u = F(a,,a,,...,a,)

Luce's 1dea (“Principle of Theory Construction”): 1f you
know the scale types of the a; and the scale type of ©# and
you assume that an admissible transformation of each of the
a; leads to an admissible transformation of u, you can
derive the form of F.




A Functional Equations Approach

Example: u = F(a). Assume a and u are ratio scales.

* Admissible transformations of scale: multiplication by a
positive constant.

*Multiplying the independent variable by a positive constant

¥} leads to multiplying the dependent variable by a positive
constant 4 that depends on {¥].

*This leads to the functional equation:
(&) F({¥ja) = A} F(a), A(¥)) > 0.




*This leads to the functional equation:
(&) F((Wja) =A%) F(a), (¥] >0, A({¥

By solving this functional equation, Luce proved tl
following theorem:

Theorem (Luce 1959): Suppose the averaging function £ 1s

continuous and suppose a takes on all positive real values
and F takes on positive real values. Then

F(a) = ca”

Thus, if both the independent and dependent variables are
ratio scales, the only possible way to relate them is by a
power law.




Theorem (Luce 1959): Suppose the averaging function F' 1s
continuous and suppose a takes on all positive real values
and F takes on positive real values. Then

F(a) = ca”

Thus, in psychophysical scaling, if both the physical and
psychological variables are ratio scales, the only possible
way to relate them is by a power law.

W] (x) = cxt




Thus, in psychophysical scaling, if both the physical
and psychological variables are ratio scales, the only
possible way to relate them is by a power law.

W] (x) = cx*

* The functional equations approach can be viewed as a
derivation of the power law 1n psychophysics. In particular,
it holds 1f loudness defines a ratio scale.

* So how do you know that loudness defines a ratio scale?
* One of Stevens’ arguments: Because subjects can do
“magnitude estimation” and are comfortable with ratios of
sounds (a sounds twice as loud as b).




e This result 1s also very general.

e It can be interpreted as limiting 1n very strict ways the
“possible scientific laws”

e Other examples of power laws:

— V=(4/3)¥}r* Volume V, radius r are ratio scales

— Newton’s Law of gravitation: F = G(mm*/r?),
where F' 1s force of attraction, G 1s gravitational
constant, m,m™ are fixed masses of bodies being
attracted, 7 1s distance between them.

Ohm’s Law: Under fixed resistance, voltage 1s
proportional to current (voltage, current are ratio
scales)




A Functional Equations Approach Cont’d

Example: a,, a,, ..., a, are independent ratio scales, u 1s a
ratio scale.

F( ) a,14),ay,---,1%),a,) = MU,

>0, (¥} >0, {¥j depends on a,, a,, ...,

*Thus we get the functional equation:

(%) F(0451a1,08020, -+, (4),a,) = A,

@),




A Functional Equations Approach

(*) F(Mja.04),a,-.-,1%],a,) = AX] 1,00, - - -4, ) (ay,a,,

a,),

AR, [8),,...,[6] ) >0

Theorem (Luce 1964): If F: ({¥]7)” (¥] ¥} 1s continuous
and

91 g%
satisfies (*), th(en  th2re ar e T >, 311?%2,9 ¢, so that




Theorem (Aczél and Roberts 1989): If in addition F

satisfies reflexivity and symmetry, then

)4

=1 and ¢, =¢, =

...=c,=1/n, so F 1s the geometric mean.

Janos Acz¢l
“Mr. Functional Equations”

‘?\'2'.
&




Sometimes You Get the Arithmetic Mean

Example: a,, a,, ..., a, interval scales with the same unit

n

and independent zero points; u# an interval scale.

Functional Equation:

(kR F(ja,H¥
A, 01,1055 - -
4

W

*d

..,

A(Y




Functional Equation:

ey F(Mja, ¥
A, 401,05, - -
W

W

*d

..,

A(¥], 0

Solutions to (****) (Even Without Continuity Assumed)

(Aczél, Roberts, and Rosenbaum)X?
F(a;ay; :;a,) = iat+tbhb

=1

., b arbitrary constants




Theorem (Aczel and Roberts):

(1). If in addition F' satisfies reflexivity, then
4 = 1, b= 0:

i=1 5 |

(2). If in addition F' satisfies reflexivity and symmetry,
then (¥j= 1/n foralli, and b =0, 1.e., F 1s the arithmetic

mean.




Meaningfulness Approach

*While it is often reasonable to assume you know the scale
type of the independent variables a,, a,, a,, 1t 1s not so
often reasonable to assume that you know the scale type of
the dependent variable u.

* However, 1t turns out that you can replace the assumption
that the scale type of u 1s xxxxxxx by the assumption that

a certain statement involving u 1s meaningful.




Back to Earlier Example: a,, a,, ..., a, are independent
ratio scales. Instead of assuming u 1s a ratio scale, assume
that the statement

F(a,ay, ..., a)=kF(b,, b,, ..., b )

1s meaningtul for all a, a,, ..., a,, by, b,, ..., b, and k> 0.

Then we get the same results as before:

Theorem (Roberts and Rosenbaum 1986): Under these
hypotheses and continuity of F,

F(a;a i a,) = , aftaz:ah:

If in addition F' satisfies reflexivity and symmetry, then F
1s the geometric mean.




*Averaging of measurements or judgments or estimates 1s
commonly carried out in a variety of applied areas.

It 1s certainly relevant not only to air, water, and noise
pollution, but to decision making about other kinds of
pollution, such as visual pollution, thermal pollution, land
llution, radioactive pollution, etc.

hus 1s 1t important in many applications to know what
averaging procedures lead to meaningful conclusions.
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There 1s much more anamr similar nature that

can be done with the principles of measurement
theory. There are important challenges for researchers.




