Chapter 1: Introduction

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Outline

- Constraint Programming
- 2 Chapter Overview
- 3 Chapter Details

What we want to introduce

- Constraint Programming
- Using ECLiPSe Language
- With Saros Eclipse IDE

Outline

- Constraint Programming
- Chapter Overview
- Chapter Details

Constraint Programming (CP)

- Solve hard combinatorial problems
- With minimal programming effort
- Exploit strategies and heuristics
- Understand and control problem solving

ECLiPSe Language

- Open source constraint programming language
- Flexible toolkit to develop/use constraints
- Contains different constraint solvers
- Here: Use of finite domains/(mixed) integer programming

Aims and Outcomes

- Understand what constraint programming is
- How constraint programs can be applied to a problem
- Which application problems are good candidates for CP
- How to write/run/analyze simple ECLiPSe programs

You should already know about...

- No hard requirements
- Basic understanding of programming assumed
- Useful to have some background in one of:
 - Network Management
 - Integer Programming
 - Combinatorial Optimization

Choices of materials

Slides PDF files for computer viewing

- Contains animations of visualization
- Large file sizes

Handout PDF files for printing

- 2 slides per page
- Does not contain all animations

Transcript Text of presentation as articles

Video Video presentation with audio (640x480 pixels)

iPhone Video presentation tuned for iPhone display (480x320 pixels)

Outline

- Constraint Programming
- 2 Chapter Overview
- Chapter Details

Chapters

Introduction (You are here) First Steps - Hello World Application Overview Basic Constraint Reasoning Global Constraints Search Strategies Optimization Symmetry Breaking Choosing the Model **Customizing Search** Limits of Propagation Systematic Development Visualization Techniques Finite Set and Continuous Variables **Network Applications** More Global Constraints Adding Material

Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout
Video	iPhone	Slides	Handout

Applications

Application Overview SEND+MORE=MONEY Sudoku N-Queens Routing and Wavelenght Assignment Balanced Incomplete Block Designs Handout Sports Scheduling **Progressive Party** Handout Costas Array Handout SONET/SDH Ring Design **Network Applications** Handout Car Sequencing

Outline

- Constraint Programming
- Chapter Overview
- Chapter Details

Introduction

- Aims and Outcomes
- Overview of chapters
- Hyperlinks to all materials

First Steps - Hello World

- How to install ECLiPSe and Saros
- Writing a first program
- Running the program
- Where to find information

Application Overview

- Why constraint programming is interesting
- Solving industrial problems with CP
- Main application areas
 - Assignment
 - Scheduling
 - Network problems
 - Transportation
 - Personnel Assignment

Basic Constraint Reasoning - SEND+MORE = MONEY

- Finite Domain variables
- CP: Variables + Constraints + Search
- Bounds reasoning on arithmetic constraints
- Simple visualizers

Global Constraints - Sudoku

- Modellimg the Sudoku puzzle
- One model, different behaviours
- Global constraint: alldifferent
- Bounds and domain consistency
- A domain consistent alldifferent

Search Strategies - N Queens

- How to search for a solution
- Variable and value choice
- How to avoid deep backtracking
- Partial search strategies

Optimization - Routing and Wavelength Assignment

- Optimization
- Graph algorithms library
- Integer Programming with eplex
- Problem decomposition
- Routing and Wavelength Assignment in Optical Networks

Symmetry Breaking - Balanced Incomplete Block Designs

- Balanced Incomplete Block Designs
- Planning Experiments and Testing Features
- Problems with highly symmetrical structure
- Symmetry Breaking with lex constraints

Choosing the Model - Sports Scheduling

- Complex sports scheduling problem
- How to decide which model to use
- Improving reasoning by channeling

Customizing Search - Progressive Party

- Scheduling Meetings between Teams
- Teams only meet once
- Capacity Limits
- Build customized search routines tailored to problem
- Problem decomposition: decide which problem to solve

Limits of Propagation - Costas Array

- Antenna/Sonar Design
- Hard Benchmark Problem
- Naive Enumeration works best
- When clever reasoning doesn't pay off
- Cautionary Tale

Systematic Development

- Developing Programs
- Testing
- Profiling
- Documentation

Handout

Visualization Techniques

- How to visualize constraint programs
- Variable Visualizers
- Understanding Search Trees
- Constraint Visualizers
- Complex Visualizations

Finite Set and Continuous Variables - SONET Design Problem

- Finite set variables
- Continuous domains
- Optimization from below
- Advanced symmetry breaking
- SONET design problem without inter-ring traffic

Network Applications

- Overview of Network Applications
- Traffic Placement
- Capacity Management
- Network Design
- Using Advanced Techniques

More Global Constraints - Car Sequencing

- New global constraints: gcc and sequence
- Choosing a better search strategy

Handout

Adding Material

- How to add new chapters
- Copying template files
- Configuring templates
- Adding frames to body
- Integrating with other chapters

To continue

- Branch from here to all materials
- Choose presentation form which suits you

