
Induction of Rules

JERZY STEFANOWSKI
Institute of Computing Sciences

Poznań University of Technology

Doctoral School , Catania-Troina, April, 2008

Outline of this lecture
1. Rule representation
2. Various algorithms for rule induction.
3. MODLEM → exemplary algorithm for inducing a minimal

set of rules.
4. Classification strategies
5. Descriptive properties of rules.
6. Explore → discovering a richer set of rules.
7. Association rules
8. Logical relations
9. Final remarks.

Rules - preliminaries
• Rules → popular symbolic representation of knowledge

derived from data;
• Natural and easy form of representation → possible

inspection by human and their interpretation.

• Standard form of rules
IF Conditions THEN Class

• Other forms: Class IF Conditions; Conditions → Class
Example: The set of decision rules induced from PlaySport:

if outlook = overcast then Play = yes

if temperature = mild and humidity = normal then Play = yes

if outlook = rainy and windy = FALSE then Play = yes

if humidity = normal and windy = FALSE then Play = yes

if outlook = sunny and humidity = high then Play = no

if outlook = rainy and windy = TRUE then Play = no

Rules – more preliminaries
• A set of rules – a disjunctive set of conjunctive rules.
• Also DNF form:

• Class IF Cond_1 OR Cond_2 OR … Cond_m
• Various types of rules in data mining

• Decision / classification rules

• Association rules

• Logic formulas (ILP)

• Other → action rules, …
• MCDA → attributes with some additional preferential

information and ordinal classes.

Why Decision Rules?Why Decision Rules?
• Decision rules are more compact.
• Decision rules are more understandable and natural for human.
• Better for descriptive perspective in data mining.
• Can be nicely combined with background knowledge and more

advanced operations, …

Example: Let X ∈{0,1}, Y ∈{0,1},
Z ∈{0,1}, W ∈{0,1}. The rules are:

if X=1 and Y=1 then 1

if Z=1 and W=1 then 1

Otherwise 0;

X

0

Y

1 0

1 Z

1 0

0W

1 0

1 0

Z

1 0

0W

1 0

1 0

1

Decision rules vs. decision trees: Decision rules vs. decision trees:

+ +

+
+ +
+

+

+
++ +

+ -

-

-

- -
- -

-

-

-
-

-
-

Decision boundaries of decision trees

+ +

+
+ +
+

+

+
++ +

+ -

-

-

- -
- -

-

-

-
-

-
-

Decision boundaries of decision rules

• Trees – splitting the data space (e.g. C4.5)

• Rules – covering parts of the space (AQ, CN2, LEM)

Rules – more formal notations
• A rule corresponding to class Kj is represented as

if P then Q
where P = w1 and w2 and … and wm is a condition
part and Q is a decision part (object x satisfying P is
assigned to class Kj)

• Elementary condition wi (a rel v), where a∈A and v
is its value (or a set of values) and rel stands for an
operator as =,<, ≤, ≥ , >.

• [P] is a cover of a condition part of a rule → a subset
of examples satisfying P.

• if (a2 = small) and (a3 ≤ 2) then (d = C1) {x1,x7}

Rules - properties

• B → a set of examples from Kj.
• A rule if P then Q is discriminant in DT iff

[P]=⎧⎫ [wi]⊆ B,
• otherwise (P∩B≠∅) the rule is partly discriminating

• Rule accuracy (or confidence) |[P∩K]|/|[P]|

• Rule cannot not have a redundant condition part,
i.e. there is no other P* ⊂ P such that [P*] ⊆ B.

• Rule sets induced from DT
• Minimal set of rules

• Other sets of rules (all rules, satisfactory)

An example of rules induced from data table

Minimal set of rules
• if (a2 = s) ∧ (a3 ≤ 2) then (d = C1)

{x1,x7}

• if (a2 = n) ∧ (a4 = c) then (d = C1)
{x3,x4}

• if (a2 = w) then (d = C2) {x2,x6}

• if (a1 = f) ∧ (a4 = a) then (d = C2)
{x5,x8}

Partly discriminating rule:
• if (a1=m) then (d=C1)

{x1,x3,x7 | x6} 3/4 C2a3sfx8

C1b2smx7

C2c2wmx6

C2a2nfx5

C1c2nfx4

C1c3nmx3

C2b1wfx2

C1a1smx1

da4a3a2a1id.

How to learn decision rules?

• Typical algorithms based on the scheme of a sequential
covering and heuristically generate a minimal set of rule
covering examples:
• see, e.g., AQ, CN2, LEM, PRISM, MODLEM, Other ideas – PVM,

R1 and RIPPER).

• Other approaches to induce „richer” sets of rules:
• Satisfying some requirements (Explore, BRUTE, or modification

of association rules, „Apriori-like”).

• Based on local „reducts” → boolean reasoning or LDA.

• Specific optimization, eg. genetic approaches.

• Transformations of other representations:

• Trees → rules.

• Construction of (fuzzy) rules from ANN.

Covering algorithms

• A strategy for generating a rule set directly from data:

• for each class in turn find a rule set that covers all examples
in it (excluding examples not in the class).

• The main procedure is iteratively repeated for each class.

• Positive examples from this class vs. negative examples.

• This approach is called a covering approach because at
each stage a rule is identified that covers some of the
instances.

• A sequential approach.

• For a given class it conducts in a stepwise way a general
to specific search for the best rules (learn-one-rule) guided
by the evaluation measures.

Original covering idea (AQ, Michalski 1969, 86)
for each class Ki do

Ei := Pi U Ni (Pi positive, Ni negative example)

RuleSet(Ki) := empty

repeat {find-set-of-rules}

find-one-rule R covering some positive examples

and no negative ones

add R to RuleSet(Ki)

delete from Pi all pos. ex. covered by R

until Pi (set of pos. ex.) = empty

Find one rule:

Choosing a positive example called a seed.

Find a limited set of rules characterizing
the seed → STAR.

Choose the best rule according to LEF criteria.

+ +

+
+ +
+

+

+
++ +

+ -

-

-

- -
- -

-

-

-
-

-
-

Another variant – CN2 algorithm
• Clark and Niblett 1989; Clark and Boswell 1991

• Combine ideas AQ with TDIDT (search as in AQ, additional evaluation
criteria or prunning as for TDIDT).

• AQ depends on a seed example

• Basic AQ has difficulties with noise handling
• Latter solved by rule truncation (pos-pruning)

• Principles:

• Covering approach (but stopping criteria relaxed).

• Learning one rule – not so much example-seed driven.

• Two options:
• Generating an unordered set of rules (First Class, then

conditions).
• Generating an ordered list of rules (find first the best condition

part than determine Class).

General schema of inducing minimal set of rules

• The procedure conducts a general to specific (greedy) search
for the best rules (learn-one-rule) guided by the evaluation
measures.

• At each stage add to the current condition part next elementary
tests that optimize possible rule’s evaluation (no backtracking).

Procedure Sequential covering (Kj Class; A attributes; E examples,
τ - acceptance threshold);
begin

R := ∅; {set of induced rules}
r := learn-one-rule(Yj Class; A attributes; E examples)
while evaluate(r,E) > τ do
begin

R := R ∪ r;
E := E \ [R]; {remove positive examples covered by R}
r := learn-one-rule(Kj Class; A attributes; E examples);

end;
return R
end.

The contact lenses data

NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic

NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic

NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung

NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung
SoftNormalNoMyopeYoung

NoneReducedNoMyopeYoung

Recommended
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

Example: contact lens data 2

• Rule we seek:

• Possible conditions:

4/12Tear production rate = Normal

0/12Tear production rate = Reduced

4/12Astigmatism = yes

0/12Astigmatism = no

1/12Spectacle prescription = Hypermetrope

3/12Spectacle prescription = Myope

1/8Age = Presbyopic

1/8Age = Pre-presbyopic

2/8Age = Young

If ?
then recommendation = hard

ACK: slides coming from witten&eibe WEKA

Modified rule and covered data
• Condition part of the rule with the best elementary

condition added:

• Examples covered by condition part:

NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung

Recommended
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

If astigmatism = yes
then recommendation = hard

Further specialization, 2

• Current state:

• Possible conditions:

4/6Tear production rate = Normal

0/6Tear production rate = Reduced

1/6Spectacle prescription = Hypermetrope

3/6Spectacle prescription = Myope

1/4Age = Presbyopic

1/4Age = Pre-presbyopic

2/4Age = Young

If astigmatism = yes
and ?

then recommendation = hard

Two conditions in the rule

• The rule with the next best condition added:

• Examples covered by modified rule:

NoneNormalYesHypermetropePre-presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

If astigmatism = yes
and tear production rate = normal

then recommendation = hard

Further refinement, 4
• Current state:

• Possible conditions:

• Tie between the first and the fourth test
• We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope

3/3Spectacle prescription = Myope

1/2Age = Presbyopic

1/2Age = Pre-presbyopic

2/2Age = Young

If astigmatism = yes
and tear production rate = normal
and ?

then recommendation = hard

The result

• Final rule:

• Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

• These two rules cover all “hard lenses”:
• Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

Thnaks to witten&eibe

Learn-one-rule as search (Play sport data)

Play tennis = yes IF true

Play tennis = yes
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes
IF Humidity=normal,

Wind=weak

Play tennis = yes
IF Humidity=normal,

Wind=strong

Play tennis = yes
IF Humidity=normal,

Outlook=sunny

Play tennis = yes
IF Humidity=normal,

Outlook=rain

...

In Mitchell’s book – examples of weather / Play tennis decision

Learn-one-rule as heuristic search

Play tennis = yes
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes
IF Humidity=normal,

Wind=weak

Play tennis = yes
IF Humidity=normal,

Wind=strong

Play tennis = yes
IF Humidity=normal,

Outlook=sunny

Play tennis = yes
IF Humidity=normal,

Outlook=rain

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)

Play tennis = yes IF true

A simple covering algorithm

• Generates a rule by adding tests that maximize
rule’s accuracy

• Similar to situation in decision trees: problem of
selecting an attribute to split on

• But: decision tree inducer maximizes overall purity

• Each new term reduces

rule’s coverage:

space of
examples

rule so far

rule after
adding new
term

Evaluation of candidates in Learning One RuleEvaluation of candidates in Learning One Rule

• When is a candidate for a rule R treated as “good”?
• High accuracy P(K|R);
• High coverage |[P]I = n.

• Possible evaluation functions:
• Relative frequency:

• where nK is the number of correctly classified examples form
class K, and n is the number of examples covered by the rule →
problems with small samples;

• Laplace estimate:
Good for uniform prior distribution of k classes

• m-estimate of accuracy: (nK (R)+mp)/(n(R)+m),

where nK is the number of correctly classified examples, n is the
number of examples covered by the rule, p is the prior probablity of
the class predicted by the rule, and m is the weight of p (domain
dependent – more noise / larger m).

kRn
RnK

+
+

)(
1)(

)(
)(

Rn
RnK

Other evaluation functions of rule R and class K

Assume rule R specialized to rule R’
• Entropy (Information gain and others versions).

• Accuracy gain (increase in expected accuracy)

P(K|R’) – P(K|R)

• Many others

• Also weighted functions, e.g.

))|()|((
)(
)'(),('' RKPRKP

Rn
RnRRWAG

K

K −⋅=

))|(log)|((log
)(
)'(),(2

'
2

' RKRK
Rn
RnRRWIG

K

K −⋅=

MODLEM − Algorithm for rule induction

• MODLEM [Stefanowski 98] generates a minimal set of rules.
• Its extra specificity – handling directly numerical attributes

during rule induction; elementary conditions, e.g. (a ≥ v),
(a < v), (a ∈ [v1,v2)) or (a = v).

• Elementary condition evaluated by one of three measures:
class entropy, Laplace accuracy or Grzymala 2-LEF.

obj. a1 a2 a3 a4 D
x1 m 2.0 1 a C1 if (a1 = m) and (a2 ≤ 2.6) then (D = C1) {x1,x3,x7}
x2 f 2.5 1 b C2 if (a2 ∈ [1.45, 2.4]) and (a3 ≤ 2) then (D = C1)
x3 m 1.5 3 c C1 {x1,x4,x7}
x4 f 2.3 2 c C1 if (a2 ≥ 2.4) then (D = C2) {x2,x6}
x5 f 1.4 2 a C2 if (a1 = f) and (a2 ≤ 2.15) then (D = C2) {x5,x8}
x6 m 3.2 2 c C2
x7 m 1.9 2 b C1
x8 f 2.0 3 a C2

Procedure Modlem

Set of positive examples

Looking for the best rule

Testing conjunction

Finding the most discrimantory
single condition

Extending the conjunction

Testing minimality

Removing covered examples

Find best condition

Preparing the sorted value list

Looking for the best cut point
between class assignments

Testing each candidate

Return the best evaluated condition

An Example (1)

Class (Decision = r)
E = {1, 2, 6, 7, 12, 14, 17}

List of candidates
(Age=m) {1,6,12,14,17+; 3,8,11,16-}
(Age=sr) {2,7+; 5,9,13-}
(Job=u) {1,6+; 11-}
(Job=p) {2+, 3,4,8,9,13,15,16-}
(Job=b) {7,12,14,17+; ∅}
(Pur=K) {1,17+; ∅}
(Pur=S) {2+;13,15-}
{Pur=W} {6+, 9-}
{Pur=D} {7,14+; 4,8,10,11-}
{Pur=M} {12+;5,16-}

rK8000bm17
dM37005pm16
dS500021pst15
rD7000bm14
pS250017psr13
rM10000bm12
pD15000um11
pD11000est10
dW160011psr9
pD14003pm8
rD6000bsr7
rW7000um6
pM160014psr5
dD230016pst4
dM26004pm3
rS14002psr2
rK5000um1

Dec.PurposeIncomePeriodJobAgeNo.

An Example (2)

• Numerical attributes: Income

(Income < 1050) {1,6,7,12,14,17+;∅}

(Income < 1250) {1,6,7,12,14,17+;10-}

(Income < 1450) {1,2,6,7,12,14,17+;8,10-}

Period
(Period < 1) {1,6,7,14,17+;10,11-}

(Period < 2.5) {1,2,6,7,12,14,17+;10,11-}

500 5000250016001500140011001000600 700 800 2300 2600 3700

1+ 7+ 6+
14+

17+ 12+ 10- 2+
8-

11- 9-
5-

4- 13- 3- 10- 15-

Example (3) - the minimal set of induced rule

1. if (Income<1050) then (Dec=r) [6]

2. if (Age=sr) and (Period<2.5) then (Dec=r) [2]

3. if (Period∈[3.5,12.5)) then (Dec=d) [2]

4. if (Age=st) and (Job=p) then (Dec=d) [3]

5. if (Age=m) and (Income∈[1050,2550)) then (Dec=p) [2]

6. if (Job=e) then (Dec=p) [1]

7. if (Age=sr) and (Period≥12.5) then (Dec=p) [2]
• For inconsistent data:

• Approximations of decision classes (rough sets)

• Rule post-processing (a kind of post-pruning) or extra testing
and earlier acceptance of rules.

Mushroom data (UCI Repository)
• Mushroom records drawn from The Audubon Society Field

Guide to North American Mushrooms (1981).
• This data set includes descriptions of hypothetical samples

corresponding to 23 species of mushrooms in the Agaricus and
Lepiota Family. Each species is identified as definitely edible,
definitely poisonous, or of unknown edibility.

• Number of examples: 8124.
• Number of attributes: 22 (all nominally valued)
• Missing attribute values: 2480 of them.
• Class Distribution:

-- edible: 4208 (51.8%)

-- poisonous: 3916 (48.2%)

MOLDEM rule set (Implemented in WEKA)
=== Classifier model (full training set) ===

Rule 1.(odor is in: {n, a, l})&(spore-print-color is in: {n, k, b, h, o, u, y, w})&(gill-size = b)
=> (class = e); [3920, 3920, 93.16%, 100%]

Rule 2.(odor is in: {n, a, l})&(spore-print-color is in: {n, h, k, u}) => (class = e); [3488,
3488, 82.89%, 100%]

Rule 3.(gill-spacing = w)&(cap-color is in: {c, n}) => (class = e); [304, 304, 7.22%,
100%]

Rule 4.(spore-print-color = r) => (class = p); [72, 72, 1.84%, 100%]
Rule 5.(stalk-surface-below-ring = y)&(gill-size = n) => (class = p); [40, 40, 1.02%,

100%]
Rule 6.(odor = n)&(gill-size = n)&(bruises? = t) => (class = p); [8, 8, 0.2%, 100%]
Rule 7.(odor is in: {f, s, y, p, c, m}) => (class = p); [3796, 3796, 96.94%, 100%]

Number of rules: 7
Number of conditions: 14

Approaches to Avoiding Approaches to Avoiding OverfittingOverfitting

• Pre-pruning: stop learning the decision rules
before they reach the point where they
perfectly classify the training data

• Post-pruning: allow the decision rules to
overfit the training data, and then post-prune
the rules.

PrePre--PruningPruning

The criteria for stopping learning rules can be:

• minimum purity criterion requires a certain
percentage of the instances covered by the
rule to be positive;

• significance test determines if there is a
significant difference between the distribution
of the instances covered by the rule and the
distribution of the instances in the training
sets.

PostPost--PruningPruning

1. Split instances into Growing Set and Pruning Set;

2. Learn set SR of rules using Growing Set;

3. Find the best simplification BSR of SR.

4. while (Accuracy(BSR, Pruning Set) >

Accuracy(SR, Pruning Set)) do
4.1 SR = BSR;

4.2 Find the best simplification BSR of SR.

5. return BSR;

Applying rule set to classify objects
• Matching a new object description x to condition parts of

rules.

• Either object’s description satisfies all elementary
conditions in a rule, or not.

IF (a1=L) and (a3≥ 3) THEN Class +

x → (a1=L),(a2=s),(a3=7),(a4=1)

• Two ways of assining x to class K depending on the set
of rules:

• Unordered set of rules (AQ, CN2, PRISM, LEM)

• Ordered list of rules (CN2, c4.5rules)

Applying rule set to classify objects
• The rules are ordered into priority decision list!

Another way of rule induction – rules are learned by first
determining Conditions and then Class (CN2)

Notice: mixed sequence of classes K1,…, K in a rule list
But: ordered execution when classifying a new instance: rules

are sequentially tried and the first rule that ‘fires’ (covers the
example) is used for final decision

Decision list {R1, R2, R3, …, D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in input data)

Priority decision list (C4.5 rules)

Specific list of rules - RIPPER (Mushroom data)

Learning ordered set of rules
• RuleList := empty; Ecur:= E

• repeat
• learn-one-rule R
• RuleList := RuleList ++ R
• Ecur := Ecur - {all examples covered by R}

(Not only positive examples !)

• until performance(R, Ecur) < ThresholdR

• RuleList := sort RuleList by performance(R,E)

• RuleList := RuleList ++ DefaultRule(Ecur)

CN2 – unordered rule set

Applying unordered rule set to classify objects
• An unordered set of rules → three situations:

• Matching to rules indicating the same class.

• Multiple matching to rules from different classes.

• No matching to any rule.
• An example:
• e1={(Age=m), (Job=p),(Period=6),(Income=3000),(Purpose=K)}

• rule 3: if (Period∈[3.5,12.5)) then (Dec=d) [2]

• Exact matching to rule 3. → Class (Dec=d)
• e2={(Age=m), (Job=p),(Period=2),(Income=2600),(Purpose=M)}

• No matching!

Solving conflict situations
• LERS classification strategy (Grzymala 94)

• Multiple matching
• Two factors: Strength(R) – number of learning examples

correctly classified by R and final class Support(Yi):

• Partial matching
• Matching factor MF(R) and

• e2={(Age=m), (Job=p), (Period=2),(Income=2600),(Purpose=M)}

• Partial matching to rules 2 , 4 and 5 for all with MF = 0.5

• Support(r) = 0.5⋅2 =1 ; Support(d) = 0.5⋅2+0.5⋅2=2

• Alternative approaches – e.g. nearest rules (Stefanowski 95)

• Instead of MF use a kind of normalized distance x to conditions of r

∑ Yifor R rules matching)(RStrength

∑ ⋅Yifor R rules match.partially)()(RStrengthRMF

Some experiments

• Analysing strategies (total accuracy in [%]):

• Comparing to other classification approaches

• Depends on the data

• Generally → similar to decision trees

87.3 90.9 96.4 bearings

90.8 93.5 98.0buses

74.1 82.4 83.8 oncology

67.6 73.6 85.2 lymphograpy

34.4 44.8 53.3 imidasolium

51.2 59.3 67.1 breast cancer

81.082.8 88.9 concretes

59.8 70.5 77.1 hsv2

71.8 79.5 89.4 election

79.2 85.7 87.9 large soybean

exactmultiple all data set

Variations of inducing minimal sets of rules

• Sequential vs. simultaneous covering of data.

• General-to-specific vs. specific-to-general; begin
search from single most general vs. many most
specific starting hypotheses.

• Generate-and-test vs. example driven (as in AQ).

• Pre-pruning vs. post-pruning of rules

• What evaluation functions to use?

• …

Different perspectives of rule application

• In a descriptive perspective

• To present, analyse the relationships between
values of attributes, to explain and understand
classification patterns

• In a prediction/classification perspective,

• To predict value of decision class for new
(unseen) object)

Perspectives are different;
Moreover rules are evaluated in a different ways!

Evaluating single rules

• rule r (if P then Q) derived from DT, examples U.

• Reviews of measures, e.g.
• Yao Y.Y, Zhong N., An analysis of quantitative measures associated with rules, In: Proc. the 3rd

Pacific-Asia Conf. on Knowledge Discovery and Data Mining, LNAI 1574, Springer, 1999, pp. 479-488.

• Hilderman R.J., Hamilton H.J, Knowledge Discovery and Measures of Interest. Kluwer, 2002.

• Support of rule r Coverage

• Confidence of rule r and others …

nn¬QnQ

n¬Pn¬P¬Qn¬PQ¬P
nPnP¬QnPQP

¬QQ

n
n

QPG PQ=∧)(

P

PQ

n
n

PQAS =)|(

Q

PQ

n
n

QPAS =)|(

Descriptive requirements to single rules

• In descriptive perspective users may prefer to discover
rules which should be:

• strong / general – high enough rule coverage AS(P|Q) or
support.

• accurate – sufficient accuracy AS(Q|P).

• simple (e.g. which are in a limited number and have short
condition parts).

• Number of rules should not be too high.

• Covering algorithms biased towards minimum set of rules
- containing only a limited part of potentially `interesting'
rules.

• We need another kind of rule induction algorithms!

Explore algorithm (Stefanowski, Vanderpooten)

• Another aim of rule induction

• to extract from data set inducing all rules that satisfy some
user’s requirements connected with his interest (regarding,
e.g. the strength of the rule, level of confidence, length,
sometimes also emphasis on the syntax of rules).

• Special technique of exploration the space of possible
rules:

• Progressively generation rules of increasing size using in the
most efficient way some 'good' pruning and stopping
condition that reject unnecessary candidates for rules.

• Similar to adaptations of Apriori principle for looking
frequent itemsets [AIS94]; Brute [Etzioni]

Explore – some algorithmic details
procedure Explore (LS: list of conditions;

SC: stopping conditions; var R:
set_of_rules);

begin
R ← ∅;
Good_Candidates(LS,R); {LS - ordered
list of c1,c2,..,cn}
Q ← LS; {create a queue Q}
while Q ≠∅ do
begin
select the first conjunction C from Q ;
Q← Q\{C};
Extend(C,LC); {LC - list of extended
conjunctions}
Good_Candidates(LC,R);
Q ← Q∪C; {place all conjunctions from
LC at the end of Q}
end

end.

procedure Extend(C : conjunction, var L : list of
conjunctions);

{This procedure puts in list L extensions of
conjunction C that are possible candidates
for rules}

begin
Let k be the size of C and h be the highest index

of elementary conditions involved in C;
L← {C∧ch+i where ch+i∈LS and such that all the

k subconjunctions of C ∧ch+i of size k and
involving ch+i belong to Q , i=1,..,n-h}

end
procedure Good_Candidates(LC : ist of

conjunctions, var R - set of rules);
{This procedure prunes list LC discarding:
- conjunctions whose extension cannot give rise

to rules due to SC,
- conjunctions corresponding to rules which are

already stored in R

Various sets of rules (Stefanowski and Vanderpooten 1994)

• A minimal set of rules (LEM2):

• A „satisfactory” set of
rules (Explore):

A diagnostic case study
• A fleet of homogeneous 76 buses (AutoSan H9-21) operating in an

inter-city and local transportation system.
• The following symptoms characterize these buses :

s1 – maximum speed [km/h],

s2 – compression pressure [Mpa],

s3 – blacking components in exhaust gas [%],
s4 – torque [Nm],
s5 – summer fuel consumption [l/100lm],
s6 – winter fuel consumption [l/100km],
s7 – oil consumption [l/1000km],
s8 – maximum horsepower of the engine [km].

Experts’ classification of busses:
1. Buses with engines in a good technical state – further use (46 buses),
2. Buses with engines in a bad technical state – requiring repair (30 buses).

LEM2 algorithm – (sequential covering)

• A minimal set of discriminating decision rules

1. if (s2≥2.4 MPa) & (s7<2.1 l/1000km) then
(technical state=good) [46]

2. if (s2<2.4 MPa) then (technical state=bad) [29]

3. if (s7≥2.1 l/1000km) then (technical state=bad) [24]

• The prediction accuracy (‘leaving-one-out’ reclassification
test) is equal to 98.7%.

Another set of rules (EXPLORE)
All decision rules with min. SC1 threshold (rule coverage > 50%):

1. if (s1>85 km/h) then (technical state=good) [34]

2. if (s8>134 kM) then (technical state=good) [26]

3. if (s2≥2.4 MPa) & (s3<61 %) then (technical state=good) [44]

4. if (s2≥2.4 MPa) & (s4>444 Nm) then (technical state=good) [44]

5. if (s2≥2.4 MPa) & (s7<2.1 l/1000km) then (technical state=good) [46]

6. if (s3<61 %) & (s4>444 Nm) then (technical state=good) [42]

7. if (s1≤77 km/h) then (technical state=bad) [25]

8. if (s2<2.4 MPa) then (technical state=bad) [29]

9. if (s7≥2.1 l/1000km) then (technical state=bad) [24]

10. if (s3≥61 %) & (s4≤444 Nm) then (technical state=bad) [28]

11. if (s3≥61 %) & (s8<120 kM) then (technical state=bad) [27]

The prediction accuracy - 98.7%

Descriptive vs. classification properties (Explore)

• Tuning a proper value of
stopping condition SC
(rule coverage) leads to
sets of rules which are
„satisfactory” with respect
to a number of rules,
average rule length and
average rule strength
without decreasing too
much the classification
accuracy.

Where are we now?
1. Rule representation
2. Various algorithms for rule induction.
3. MODLEM → exemplary algorithm for inducing a minimal

set of rules.
4. Classification strategies
5. Descriptive properties of rules.
6. Explore → discovering a richer set of rules.
7. Association rules
8. Logical relations
9. Final remarks.

Association rules

• Transaction data
• Market basket analysis

• {Cheese, Milk} → Bread [sup=5%, conf=80%]
• Association rule:

„80% of customers who buy cheese and milk also buy
bread and 5% of customers buy all these products
together”

TID Produce
1 MILK, BREAD, EGGS
2 BREAD, SUGAR
3 BREAD, CEREAL
4 MILK, BREAD, SUGAR
5 MILK, CEREAL
6 BREAD, CEREAL
7 MILK, CEREAL
8 MILK, BREAD, CEREAL, EGGS
9 MILK, BREAD, CEREAL

Why is Frequent Pattern or Association Mining an
Essential Task in Data Mining?

• Foundation for many essential data mining tasks

• Association, correlation, causality

• Sequential patterns, temporal or cyclic association, partial
periodicity, spatial and multimedia association

• Associative classification, cluster analysis, fascicles
(semantic data compression)

• DB approach to efficient mining massive data

• Broad applications

• Basket data analysis, cross-marketing, catalog design, sale
campaign analysis

• Web log (click stream) analysis, DNA sequence analysis, etc

Basic Concepts: Frequent Patterns and
Association Rules

• Itemset X={x1, …, xk}
• Find all the rules X Y with min

confidence and support

• support, s, probability that a
transaction contains X∪Y

• confidence, c, conditional
probability that a transaction
having X also contains Y.

Let min_support = 50%,
min_conf = 50%:

A C (50%, 66.7%)
C A (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id

Mining Association Rules—an Example

For rule A ⇒ C:

support = support({A}∪{C}) = 50%

confidence = support({A}∪{C})/support({A}) =
66.6%

Min. support 50%
Min. confidence 50%

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id

50%{A, C}
50%{C}
50%{B}
75%{A}

SupportFrequent pattern

Generating Association Rules
• Two stage process:

• Determine frequent itemsets e.g. with the Apriori
algorithm.

• For each frequent item set I
• for each subset J of I

• determine all association rules of the form:
I-J => J

• Main idea used in both stages : subset property

• Focus on computational efficiency, access to data,
scalability, …

Apriori: A Candidate Generation-and-test Approach

• Any subset of a frequent itemset must be frequent
• if {beer, diaper, nuts} is frequent, so is {beer, diaper}
• Every transaction having {beer, diaper, nuts} also contains

{beer, diaper}

• Apriori pruning principle: If there is any itemset which is
infrequent, its superset should not be generated/tested!

• Method:
• generate length (k+1) candidate itemsets from length k

frequent itemsets, and

• test the candidates against DB

• The performance studies show its efficiency and scalability
• Agrawal & Srikant 1994, Mannila, et al. 1994

The Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2
2nd scan

C3 L33rd scan

B, E40
A, B, C, E30

B, C, E20
A, C, D10
ItemsTid

1{D}
3{E}

3{C}
3{B}
2{A}

supItemset

3{E}
3{C}
3{B}
2{A}

supItemset

{C, E}
{B, E}
{B, C}
{A, E}
{A, C}
{A, B}

Itemset1{A, B}
2{A, C}
1{A, E}
2{B, C}
3{B, E}
2{C, E}

supItemset

2{A, C}
2{B, C}
3{B, E}
2{C, E}

supItemset

{B, C, E}
Itemset

2{B, C, E}
supItemset

Example: Generating Rules from an Itemset

• Frequent itemset from Play data:

• Seven potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4

4/6

4/6

4/7

4/8

4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes

If Humidity = Normal and Play = Yes then Windy = False

If Windy = False and Play = Yes then Humidity = Normal

If Humidity = Normal then Windy = False and Play = Yes

If Windy = False then Humidity = Normal and Play = Yes

If Play = Yes then Humidity = Normal and Windy = False

If True then Humidity = Normal and Windy = False and Play = Yes

Weka associations
File: weather.nominal.arff
MinSupport: 0.2

Weka associations: output

Learning First Order Rules
• Is object/attribute table sufficient data representation?

• Some limitations:
• Representation expressivness – unable to express

relations between objects or object elements. ,

• background knowledge sometimes is quite complicated.

• Can learn sets of rules such as

• Parent(x,y) → Ancestor(x,y)

• Parent(x,z) and Ancestor(z,y) → Ancestor(x,y)
• Research field of Inductive Logic Programming.

Why ILP? (slide of S.Matwin)

• can’t represent this graph as a fixed length vector of attributes
• can’t represent a “transition” rule:

A can-reach B if A link C, and C can-reach B

without variables

0

1

2

3 4

5

6

• expressiveness of logic as representation (Quinlan)

7

8

Application areas
• Medicine
• Economy, Finance
• Environmental cases
• Engineering

• Control engineering and robotics
• Technical diagnostics
• Signal processing and image analysis

• Information sciences
• Social Sciences
• Molecular Biology
• Chemistry and Pharmacy
• …

Where to find more?
• T. Mitchell Machine Learning New York: McGraw-Hill, 1997.
• I. H. Witten & Eibe Frank Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations San Francisco: Morgan Kaufmann, 1999.
• Michalski R.S., Bratko I., Kubat M. Machine learning and data mining; J. Wiley. 1998.
• Clark, P., & Niblett, T. (1989). The CN2 induction algorithm.Machine Learning, 3, 261–283.
• Cohen W. Fast effective rule induction. Proc. of the 12th Int. Conf. on Machine Learning

1995. 115–123
• R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, The multi-purpose incremental learning

system AQ15 and its testing application to three medical domains, Proceedings of i4AAI
1986, 1041-1045, (1986).

• J.W. Grzymala-Busse, LERS-A system for learning from example-s based on rough sets,
In Intelligent`Decision Support: Handbook of Applications and Advances of Rough Sets
Theory, (Edited by R.Slowinski), pp. 3-18

• Michalski R.S.: A theory and methodology of inductive learning. W Michalski R.S,
Carbonell J.G., Mitchell T.M. (red.) Machine learning: An Artificiall Intelligence Approach,
Morgan Kaufmann Publishers, Los Altos (1983),.

• J.Stefanowski: On rough set based approaches to induction of decision rules, w: A.
Skowron, L. Polkowski (red.), Rough Sets in Knowledge Discovery Vol 1, Physica Verlag,
Heidelberg, 1998, 500-529.

• J.Stefanowski, The rough set based rule induction technique forclassification problems, w:
Proceedings of 6th European Conference on Intelligent Techniques and Soft Computing,
Aachen, EUFIT 98, 1998, 109-113.

• J. Furnkranz . Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):3–54,
1999.

Where to find more - 2
• P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In

Proceedings of the 5th European Working Session on Learning (EWSL-91), pp. 151–163,
1991.

• Grzymala-Busse J.W.: Managing uncertainty in machine learning from examples.
Proceedings of 3rd Int. Symp. on Intelligent Systems, Wigry 1994 .

• Cendrowska J.: PRISM, an algorithm for inducing modular rules. Int. J. Man-Machine
Studies, 27 (1987), 349-370.

• Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization.
Proc. of the 15th Int. Conf. on Machine Learning (ICML-98) (pp. 144–151).

• J. Furnkranz and P. Flach. An analysis of rule evaluation metrics. In Proceedings of the
20th International Conference on Machine Learning (ICML-03), pp. 202–209,

• S. M. Weiss and N. Indurkhya. Lightweight rule induction. In Proc. of the 17th Int.
Conference on Machine Learning (ICML-2000), pp. 1135–1142,

• J.Stefanowski, D.Vanderpooten: Induction of decision rules in classification and discovery-
oriented perspectives, International Journal of Intelligent Systems, vol. 16 no. 1, 2001, 13-
28.

• J.W.Grzymala-Busse, J.Stefanowski: Three approaches to numerical attribute
discretization for rule induction, International Journal of Intelligent Systems, vol. 16 no. 1,
2001, 29-38.

• P. Domingos. Unifying instance-based and rule-based induction. Machine Learning,
24:141–168, 1996.

• R. Holte. Very simple classification rules perform well on most commonly used datasets.
Machine Learning, 11:63–91, 1993.

Any questions, remarks?

