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Lets go back to 15th Century

Electing the Doge

Thirty members of the Great Council, chosen by lot,

were reduced by lot to nine; the nine chose forty and
the forty were reduced by lot to twelve, who chose
twenty-five. The twenty-five were reduced by lot to
nine and the nine elected forty-five. Then the forty-
five were once more reduced by lot to eleven, and
the eleven finally chose the forty-one who actually
elected the doge.
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Enter Lewis Carrol

Charles Dodgson came up with a voting system (per-
haps in order to “win” a vote on a belfry in Oxford,
but also spurred by decisions on studentships) that
involved finding the best way to flip adjacent candi-
dates in preference orders to get a Condorcet winner
(a candidate who beats every other candidate one-
on-one).
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What is Operations Research?

Operations Research is the art and science of making better decisions
through mathematical models.

Generally involves models with objectives, variables, and constraints and
techniques such as linear and integer programming (and constraint
programming, though most in CP identify with computer science, rather
than OR)

Much overlap with a CS view, particularly the part of CS that is willing
to solve NP-complete problems (SAT, CP), but I will point out some
directions that are more OR-ish.
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Voting through Operations Research Eyes

See voting rule as an algorithm

Pretty obvious now, but new idea 20 years ago.

20 years? Really? But (I’ll claim) this acts like a five year old idea

And then I’ll give you some more recent stuff (including results from
last week)
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INTRODUCTION

Problem: Given n alternatives, and v voters, each with an preference
ordering on the alternatives, aggregate them into either
(a) a “winner” or winners, or
(b) a total ordering of the alternatives (where the “winner” is the first in
the ordering).

Huge number of voting rules. A voting rule should be “fair”, decisive,
and practical.
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EXAMPLE

Suppose the preferences are:

3 voters a � b � e � c � d
2 voters c � a � e � b � d
4 voters d � b � e � c � a
1 voter d � a � e � b � a
2 voters c � a � e � b � d

Who should be the winner?

d with the most first place votes?
e who no one dislikes too much?
a with the most first or second place votes?
Result from run-off elections (how?)?
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VOTING THEORY ISSUES

Devise a voting rule that seems “fair” (for a suitable definition of
fairness).

Unanimity: A voting system satisfies unanimity if whenever every voter
prefers candidate c to d , then d is not the winner.

Independence of Irrelevant Alternatives: A voting system satisfies
independence of irrelevant alternatives if the decision of c versus d
depends only on the relative ranking of c and d in the voter preference
profiles.
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IMPOSSIBILITY THEOREMS

Theorem (Arrow): The only voting rule that satisfies Unanimity and
Independence of Irrelevant Alternatives is Dictatorship

Many, many efforts build on this: is IIA relevant? should we allow any
possible input? etc. etc.



ALGORITHMIC QUESTION

How quickly can we determine the result under a particular voting rule?

n candidates, v voters.

Plurality: O(n)
Borda and many others: O(nv)

Even low order polynomials would be a problem (U.S. election with an
θ(v3) algorithm?).
Can it get worse?



CONDORCET CRITERION

Definition: Given a voting instance, if a candidate c is preferred to each
other candidate by a majority of voters, then c is the Condorcet winner.

If every instance had a Condorcet winner, then choosing it would satisfy
Unanimity and IIA, but some instances do not
(a � b � c , b � c � a, c � a � b).



(Re-)ENTER LEWIS CARROLL

Dodgson’s Rule: The winner of an election is the candidate who
requires the fewest preference switches (adjacent) to become the winner.

Theorem (Bartholdi, Tovey, and Trick (BTT), 1989): It is NP-Hard
to determine the winner under Dodgson’s Method.



IMPRACTICALITY THEOREM

Kemeny’s Rule involves finding an ordering that is “closest” to the
voters’ preferences (so if a beats b by 3 votes, then it costs 3 to reverse
this). This rule is also hard to calculate.

Definition. A voting system satisfies neutrality if it is symmetric in its
treatment of the candidates.

Definition. A voting system satisfies consistency if, when two disjoint
sets of voters agree on a candidate c , the union of voeters will also
choose c .

Impracticality Theorem (BTT, 1989). For any voting system that
satisfies
(a) neutrality
(b) consistency
(c) Condorcet winner
it is NP-Hard to determine the winner.
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IMPLICATIONS

There exist algorithms for fixed number of candidates.

Can run into problems if number of candidates and voters is
reasonably large

Gives limits to how quick can be solved (Saari and Merlin reduce

Kemeny rule from obvious n!

(
n
2

)
v algorithm to O(n! + nv)

algorithm. No use trying to reduce the n!.

Heuristics probably not useful in many applications.

Difficult to analyze aspects that require characterization of Kemeny
or Dodgson winner for arbitrary sizes
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VOTING THEORY ISSUE: MANIPULABILITY

Sometimes a voter can get a preferred result by misrepresenting his
preferences. (Example: plurality election between a, b, and c . Without
you a and b are tied, and c way behind. You prefer c but instead vote to
break tie between a and b).

Definition. A voting system satisfies non-manipulability if no voter can
ever get a preferred result by misrepresenting his preferences.

Many impossibility theorems (example: No voting system satisfies
anonymity, neutrality, Condorcet winner, and non-manipulability). Many,
many papers on this: what if everyone is changing? Weakening of
conditions, etc.



ALGORITHMIC ISSUE

Can it ever be hard to manipulate?

Yes!

Definition. The Copeland score of a candidate is the number of pairwise
contests won minus the number lost.
Definition. The Second order Copeland score of a candidate is the sum
of the Copeland scores of each defeated candidate.

Theorem (BTT 1989). It is NP-complete for a voter to determine how
to manipulate an election under second order Copeland score.

There are others, with Single Tranferable Vote the most natural
(Bartholdi and Orlin).
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IMPLICATIONS

There exist algorithms for fixed number of candidates or for fixed
number of voters (depending on rule).

Can run into problems if number of candidates and voters is
reasonably large

Difficult to analyze manipulable instances since no characterization
of such.

Heuristics probably are useful.

Likelihood of manipulation now depends on both opportunity and
the recognition of the opportunity.

Matches up with intuitive feel for difficulty of problem.
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HEURISTICS

Easy to come up with heuristics. For instance, a voter trying to elect c
might try the following:

Inititialize Place c at the top of the preference order

Iterate Determine if any candidate can be placed in the next
lower position (independent of other choices) without
preventing c from winning. If so, place such a candidate in
the next position; otherwise claim c cannot win

Algorithmic issue: For which rules is this heuristic guaranteed to work
(i.e. will always correctly determine if c can win)?
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HEURISTIC ANALYSIS

Denote an ordering P, where iPj mean i is ordered before j .

Theorem (BTT 1989). Greedy-Manipulation will find an ordering P
that will make candidate c a winner or conclude that it is impossible for
any voting scheme that can be represented as a function S(P) : C →R
that is both
– “responsive”: a candidate with the largest S(P, i) is a winner.
– “monotone”: for any two preference orders P and P ′ and for any
candidate i , {j : iP ′j} ⊆ {j : iPj} implies that S(P ′, i) ≤ S(P, i).

Shows Plurality, Borda, Copeland, and many others are manipulable
quickly.



MANIPULATION BY GROUPS

Suppose you lead a group of 100 people and wish to tell them how to
vote in order to get your prefered candidate c to win.

Plurality: Easy! Vote for candidate c . Don’t even need to know others
preferences: if it works, fine; otherwise you can’t make c the winner
(need more knowledge to elect your highest possible candidate).

Borda: Much harder. Clearly put c in first slot. But who in second (who
will get n − 1 points)? May have to have some people put a1 in second
slot and others put a2 in second slot.

Manipulating Borda count by Groups is NP-complete (and needs multiple
profiles).



MANIPULATION BY CHAIRS

Chairs of committees may have a number of powers:

Changing the Candidates

Adding Candidates

Deleting Candidates

Partitioning Candidates

Changing the Voters

Adding Voters

Deleting Voters

Partitioning Voters

Many “fairness conditions” address the question of whether a voting rule
is vulnerable to these sort of manipulations.
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COMPARISON of PLURALITY and CONDORCET

Can also ask the algorithmic question: how can a chair determine how to
optimally use power (BTT 1992).

Control by . . . Plurality Condorcet
adding candidates resistant immune
deleting candidates resistant vulnerable
partitioning candidates resistant vulnerable
adding voters vulnerable resistant
deleting voters vulnerable resistant
partitioning voters vulnerable resistant



CONCLUSIONS

1 Algorithmic issues abound in voting theory.

2 Voting rules differ in their computational needs

3 Complexity analysis can point possible directions for research

4 Many issues left to explore! And they have been over the last years,
including

More detailed complexity classes
Average case behavior
Other hard/easy problems
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Currently the Winner NP-completeness and the Manipulation
NP-completeness papers are number 5 and 8 all-time from Social Choice
and Welfare in terms of google scholar citations (164 and 150). Only 3
papers in JET from 1989 have more cites.

Controlling an election is at 71, by far most cited ever in Mathematics
and Computer Modeling.

Thanks!

Don’t give up on what you think is a good, but unrecognized, research
direction. Its day may come.
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PRESENT: Agenda Control
Another type of chair manipulation

Suppose you give the chair the opportunity to determine the agenda in
pairwise comparisons

“b will go against c and the winner will go against a”

“a will go against b, a will go against c and the winners will go against
each other”

Requirements: Pairwise comparisons; every candidate appears at least
once; agenda set before preferences are known (unlike previous types of
manipulation which assumed knowledge of others’ preferences).

Big Open problem: n candidates. a is chair’s favorite candidate: can the
chair set the agenda so that a wins as long as a is in the top cycle?

Medium open problem: 5 candidates. a is chair’s favorite candidate: can
the chair set the agenda so that a wins as long as a is in the top cycle?
We’ll see the 3 and 4 candidate cases.
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Implementable Rules

Voting trees, with candidates at leaves.
Winner is determined by working up from leaves, using majority voting to
choose between the two candidates.
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Implementable Rules

Given a set of tournaments T , a voting tree defines a rule over T .
Over all tournaments on 4 candidates with all candidates in top cycle,
the previous tree gives the following rule:

(This is actually the Copeland rule with 2nd-order Copeland tiebreaking)

Question

What rules are implementable by voting trees?

In the economics literature, this is known as implementation by
backwards induction and is a key open problem in mechanism design.
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Implementable Rules

Assumption: all candidates appear in tree (rule is onto).
Clearly, rule must choose from top cycle of each tournament (including
choosing Condorcet winner if it exists)
Sufficient?

all 16 pairs of winners are
implementable.

only (a, a), (b, b), (c , c), (d , d) and
(a, b) are implementable.
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Pairwise Conjecture

Conjecture (Pairwise Conjecture)

A rule defined over all tournaments of n candidates is implementable if
and only if it is implementable over all pairs of tournaments. (Srivasta
and Trick, 1996)

Srivastava and Trick also give necessary and sufficient conditions for a
rule to be implementable over a pair of tournaments.

If true, then this implies there is an agenda-control tree for all n.



Computational Procedure

After thirteen years, little progress on conjecture (but no
counterexamples either!)

Want a computational procedure to provide verification (or find
counterexample)

Algorithm to generate all small rules over small number of candidates
(number of rules increases quickly with number of candidates)



Computational Procedure: Dynamic Programming

Complete enumeration to generate minimum size trees for each rule.
Generate all trees of size up to N
Generate N + 1 size trees by combining

There has to be a better way!



Rules on 3 Candidates

There are 8 tournaments on 3 candidates, so there are 38 = 6561 rules
over these tournaments. Of these, only 9 rules are Condorcet. The
Pairwise conjecture requires each of these 9 to be implementable, and the
computational procedure shows that to be the case.



Tournaments on 3 Candidates

Always choose Condorcet candidate if it exists. Else:

a b c
Type I: Choose a

——————————————————–

a b a c
Type II: Choose candidate that beats a

——————————————————–

a b c b c

Type III: Choose candidate
that loses to a



Structure of 4 Candidate Tournaments



Number of Rules on 4 Candidates

There are 26 = 64 tournaments on 4 candidates, so 464 = 3.4 ∗ 1038

rules.

This is reduced to 42438 = 1.8 ∗ 1018 rules that choose from the top
cycle (including Condorcet winners).

Since the 24 tournaments with four candidates can be divided into
pairs for which only 5 of the 16 possible pairs of winners is
implementable, if the Pairwise Conjecture is true, there are 51238 =
1,601,806,640,625 implementable rules.

If we ignore the tournaments with just 3 candidates in the top cycle
(but still require Condorcet rules), that gives 512 = 244,140,625
which is at least conceivable for our computational approach to find.

Of these 4096 choose among the Copeland winners, and 1 chooses
only Copeland losers (interesting to find these).
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Results so far

We have found about 66,835,958 rules so far, 3933 of the Copeland
winner (out of 4096), and the Copeland Loser Rule (up to 31 leaves in
the tree).

Size Number Copeland
4 15 3
5 102 0
6 424 0
7 1104 0
8 2377 19
9 5486 4

10 11232 18
11 21768 36
12 40420 36
13 70600 96
14 116670 60
15 187560 96
16 294510 240
17 439102 192

Size Number Copeland
18 633986 138
19 895648 292
20 1231551 368
21 1655920 148
22 2188704 240
23 2829882 318
24 3595685 276
25 4464020 296
26 5428012 224
27 6468312 220
28 7542497 366
29 8613668 88
30 9610118 76
31 10486540 84



Smallest Rule, Choice from Copeland Winners

b c a d



4 Node, Top Cycle, Lexicographic Tiebreak

Always choose a

a

d
a c a b c

d a b
b

d a c

Compare with 3 candidate case! Agenda manipulation possible, but
obvious due to complexity of the result.



4 Node, Copeland winner, 2nd Order Copeland tiebreak

Always choose w1 (neutral rule)

b c a d b d a c



Copeland Loser in Top Cycle, 2nd Order Copeland tiebreak

Always choose l2 (neutral rule)

b
c d

a
c d b d b c a

b d
c

b
a d

b
a c

d
a

b c



Copeland Winner in Top Cycle, Copeland loser tiebreak

Always choose w2 (neutral rule)

Not yet found.



Sample 31 node tree

“Mainly” choose w2 (correct 18 out of 24 times)

a b

d

a

b
c

b d

c

b

b d a
c d

c d

b

d

a
c

a b

a

a c
d

b
a

c d



Conclusions and Future Directions

Rules get very complicated very quickly (not surprising literature has
few rules)

Computational procedure reasonable approach for 4 candidates

Improving procedure: use of symmetry

Characterization of rules with small trees

Bounds on tree size

Would appreciate someone proving or disproving Pairwise
Conjecture!
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FUTURE: Future Directions

Lots more complexity in economics and finance

Hiding toxic assets in finance: Arora, Barak, Brunemeier and Ge
(2009): important since choice of instance is endogenous.

Need for more algorithms

Polyhedral characterizations of voting rules (cf. Groetschel and
Wakabayashi on linear ordering polytope)
Integer/constraint programming approaches to hard problems
Faster algorithms for mechanism design

More and more realistic preference restrictions (beyond single
peakedness)

Need for more computational work (cf. Walsh’s tutorial on
Tuesday): where is the complexity?

Need for more real instances: does any of this happen in practice?

Breaking out of OR/CS and changing economics/finance. We have
useful formalisms of “bounded rationality”.
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Questions or Comments?
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