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What is the problem?

You are told
The elevators are slow and we waste a lot of time ...

1 more powerful engines?
2 more elevators?
3 dedicated elevators?
4 rescheduling of functioning?

What about putting mirrors at the sides of the elevators?
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Deciding ...

Decision Maker
Decision Process
Cognitive Effort
Responsibility
Decision Theory
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... and Aiding to Decide

A client and an analyst
Decision Aiding Process
Cognitive Artifacts
Consensus
Decision Aiding Methodology
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Pre-History 1

From Aristotle to Euler

Preferences are Problems seen
rational desires as graphs
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Pre-History 2

From Borda and Concorcet to Pareto

Social Choice Democratic Paradoxes Economic Efficiency
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History 1

From radars and enigmas to production systems and networks

Where to deploy
the radars
defending UK in
the second world
war?
P.M.S. Blackett,
Nobel Prize 1948
Operational
Research Office in
the British Army
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History 2

From radars and enigmas to production systems and networks

 

Georg Dantzig and Ralph Gomory “Founding Fathers” or Linear
(1948) and Integer Programming (1960)
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History 3

So many Nobel Prizes ...

Maurice Allais, Kenneth Arrow, Robert Aumann, Leonid
Kantorovich, Daniel Khanemman, Tjalling Koopmans, Harry
Markowitz, John Nash, Amartya Sen, Herbert Simon, George
Stigler, ....
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Decision Analysis and Artificial Intelligence 1

Common Background:
Problem Solving

Two different perspectives:
- model of rationality: Decision Analysis
- algorithmic efficiency: Computer Science and Artificial
Intelligence
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Decision Analysis and Artificial Intelligence 2

Since the 60s common research concerns:
- bounded rationality;
- heuristics;
- uncertainty modelling.

And then:
- preferential entailment;
- computational social choice;
- planning and scheduling;
- contraint programming;
- preference handling;
- learning and knowledge extraction
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Decision Analysis and Artificial Intelligence 3

Still some differences:
- aiding human decision making: decision analysis;
- enhance decision autonomy of automatic devices: artificial
intelligence.

Nevertheless, it is clear today that the two disciplines are
working on very similar fields and there is a clear benefit in
cross-fertilising them.
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What is a decision problem?

Consider a set A established as any among the following:

an enumeration of objects;
a set of combinations of binary variables (possibly the
whole space of combinations);
a set of profiles within a multi-attribute space (possibly the
whole space);
a vector space in Rn.

Technically:
A Decision Problem is an application on A partitioning it under
some desired properties.
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Examples

Patients triage in emergency room;
Identification of classes of similar DNA sequences;
Star rankings of hotels;
Waste collection vehicle routing;
Vendor rating and bids assessment;
Optimal mix of sausages;
Chip-set lay out;
Airplanes priority landing;
Tennis tournament scheduling ...
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Partitioning? How?

Practically we partition A in n classes. These can be:

Pre-defined wrt Defined only through
some external standard pairwise comparison

Ordered Sorting Ranking
Not Ordered Classifying Clustering

Two special cases:
- there are only two classes (thus complementary);
- the size (cardinality) of the classes is also predefined.
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Partitioning? How?

multiple scenarios
and

epistemic states

multiple criteria

multiple stakeholders
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Partitioning? How?
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Examples

Assigning patients to illness under multiple symptoms is a
compromise classification to predefined not pre-ordered
categories.
Hiring 10 employees by a commission using elimination by
aspects is a repeated agreed compromise sorting of the
candidates in two ordered and predefined categories until
the last’s one size is 10.
Airplanes priority landing is robust compromise ranking of
aircrafts to ordered non predefined categories of size 1.
Identifying similar DNA sequences is an optimal clustering
to non predefined non pre-ordered categories.
Establish a long term community water management plan
is a MESS!!
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What are the problems?

How to learn preferences?
How to model preferences?
How to aggregate preferences?
How to use preferences for recommending?

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Preferences
Measurement

Binary relations

�: binary relation on a set (A).
�⊆ A× A or A× P ∪ P × A.
� is reflexive.

What is that?
If x � y stands for x is at least as good as y , then the
asymmetric part of � (�: x � y ∧ ¬(y � x) stands for strict
preference. The symmetric part stands for indifference
(∼1: x � y ∧ y � x) or incomparability
(∼2: ¬(x � y) ∧ ¬(y � x)).

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Preferences
Measurement

More on binary relations

We can further separate the asymmetric (symmetric) part
in more relations representing hesitation or intensity of
preference.

�=�1 ∪ �2 · · · �n

We can get rid of the symmetric part since any symmetric
relation can be viewed as the union of two asymmetric
relations and the identity.
We can also have valued relations such that:
v(x � y) ∈ [0, 1] or other logical valuations ...
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Binary relations properties

Binary relations have specific properties such as:

Irreflexive: ∀x ¬(x � x);
Asymmetric: ∀x , y x � y → ¬(y � x);
Transitive: ∀x , y , z x � y ∧ y � z → x � z;
Ferrers; ∀x , y , z, w x � y ∧ z � w → x � w ∨ z � y ;

Alexis Tsoukiàs Algorithmic Decision Theory
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Numbers

One dimension

x � y ⇔ Φ(u(x), u(y)) ≥ 0

where:
Φ : A× A 7→ R. Simple case Φ(x , y) = f (x)− f (y); f : A 7→ R

Many dimensions

x = 〈x1 · · · xn〉 y = 〈y1 · · · yn〉

x � y ⇔ Φ([u1(x1) · · ·un(n)], [u1(y1) · · ·un(yn)] ≥ 0

More about Φ in Measurement Theory
Alexis Tsoukiàs Algorithmic Decision Theory
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Preference Structures

A preference structure
is a collection of binary relations ∼1, · · · ∼m,�1, · · · �n such
that:

they are pair-disjoint;
∼1 ∪ · · · ∼m ∪ �1 ∪ · · · �n= A× A;
∼i are symmetric and �j are asymmetric;
possibly they are identified by their properties.

Alexis Tsoukiàs Algorithmic Decision Theory
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∼1,∼2,� Preference Structures

Independently from the nature of the set A (enumerated,
combinatorial etc.), consider x , y ∈ A as whole elements. Then:

If � is a weak order then:
� is a strict partial order, ∼1 is an equivalence relation and ∼2
is empty.

If � is an interval order then:
� is a partial order of dimension two, ∼1 is not transitive and ∼2
is empty.

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Preferences
Measurement

∼1,∼2,� Preference Structures

Independently from the nature of the set A (enumerated,
combinatorial etc.), consider x , y ∈ A as whole elements. Then:

If � is a weak order then:
� is a strict partial order, ∼1 is an equivalence relation and ∼2
is empty.

If � is an interval order then:
� is a partial order of dimension two, ∼1 is not transitive and ∼2
is empty.

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Preferences
Measurement

∼1,∼2,�1�2 Preference Structures

If � is a PQI interval order then:
�1 is transitive, �2 is quasi transitive, ∼1 is asymmetrically
transitive and ∼2 is empty.

If � is a pseudo order then:
�1 is transitive, �2 is quasi transitive, ∼1 is non transitive and
∼2 is empty.

Alexis Tsoukiàs Algorithmic Decision Theory
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∼1,∼2,�1�2 Preference Structures

If � is a PQI interval order then:
�1 is transitive, �2 is quasi transitive, ∼1 is asymmetrically
transitive and ∼2 is empty.
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What characterises such structures?

Characteristic Properties
Weak Orders are complete and transitive relations.
Interval Orders are complete and Ferrers relations.

Numerical Representations

w.o. ⇔ ∃f : A 7→ R : x � y ↔ f (x) ≥ f (y)
i.o. ⇔ ∃f , g : A 7→ R : f (x) > g(x); x � y ↔ f (x) ≥ g(y)
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More about structures

Characteristic Properties
PQI Interval Orders are complete and generalised Ferrers
relations.
Pseudo Orders are coherent bi-orders.

Numerical Representations

PQI i.o. ⇔ ∃f , g : A 7→ R : f (x) > g(x); x �1 y ↔ g(x) >
f (y); x �2 y ↔ f (x) > f (y) > g(x)
p.o. ⇔ ∃f , t , g : A 7→ R : f (x) > t(x) > g(x); x �1
y ↔ g(x) > f (y); x �2 y ↔ g(x) > t(y)

Alexis Tsoukiàs Algorithmic Decision Theory
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The Problem

Meaningful numerical representations.
Putting together numbers (measures).
Putting together binary relations.
Overall coherence ...
Relevance for likelihoods ...

Alexis Tsoukiàs Algorithmic Decision Theory
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The Problem

Suppose we have n preference relations �1 · · · �n on the set
A. We are looking for an overall preference relation � on A
“representing” the different preferences.

� (x , y)

�i (x , y) fi(x), fi(y)

F (x , y)-�
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What is measuring?

Constructing a function from a set of “objects” to a set of
“measures”.

Objects come from the real world.

Measures come from empirical observations on some attributes
of the objects.

The problem is: how to construct the function out from such
observations?

Alexis Tsoukiàs Algorithmic Decision Theory
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Measurement

1 Real objects (x , y , · · · ).
2 Empirical evidence comparing objects (x � y , · · · ).
3 First numerical representation (Φ(x , y) ≥ 0).
4 Repeat observations in a standard sequence

(x ◦ y � z ◦ w).
5 Enhanced numerical representation

(Φ(x , y) = Φ(x)− Φ(y)).

Alexis Tsoukiàs Algorithmic Decision Theory
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Example

α1 α2 α3

α1 � α2 � α3

α1 α2 α3
10 8 6
97 32 12
3 2 1

Any of the above could be
a numerical representation of
this empirical evidence.
Ordinal Scale: any increasing
transformation of the numerical
representation is compatible with the EE.

Alexis Tsoukiàs Algorithmic Decision Theory
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Further Example

Consider putting together objects and observing:

α1 ◦ α5 > α3 ◦ α4 > α1 ◦ α2 > α5 > α4 > α3 > α2 > α1

Consider now the following numerical representations:

L1 L2 L3
α1 14 10 14
α2 15 91 16
α3 20 92 17
α4 21 93 18
α5 28 99 29

L1, L2 and L3 capture the simple order among α1−5, but L2 fails
to capture the order among the combinations of objects.

Alexis Tsoukiàs Algorithmic Decision Theory
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Further Example

NB
For L1 we get that α2 ◦ α3 ∼ α1 ◦ α4
while for L3 we get that α2 ◦ α3 > α1 ◦ α4.
We need to fix a “standard sequence”.

Length

If we fix a “standard” length, a unit of measure, then all objects
will be expressed as multiples of that unit.

Alexis Tsoukiàs Algorithmic Decision Theory
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Scales

Ratio Scales
All proportional transformations (of the type αx) will deliver the
same information. We only fix the unit of measure.

Interval Scales
All affine transformations (of the type αx + β) will deliver the
same information. Besides the unit of measure we fix an origin.

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Preferences
Measurement

Scales

Ratio Scales
All proportional transformations (of the type αx) will deliver the
same information. We only fix the unit of measure.

Interval Scales
All affine transformations (of the type αx + β) will deliver the
same information. Besides the unit of measure we fix an origin.

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Preferences
Measurement

More complicated

Consider a Multi-attribute space:

X = X1 × ·Xn

to each attribute we associate an ordered set of values:

Xj = 〈x1
j · · · xm

j 〉

An object x will thus be a vector:

x = 〈x l
1 · · · xk

n 〉

Alexis Tsoukiàs Algorithmic Decision Theory
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Generally speaking ...

x � y

⇐⇒

〈x l
1 · · · xk

n 〉 � 〈y i
1 · · · y

j
n〉

⇐⇒

Φ(f (x l
1 · · · xk

n ), f (y i
1 · · · y

j
n)) ≥ 0
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What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500

a1 25 70+δ1 C 500 1500
a2 25 70+δ1 C 700 1500+δ2

For what value of δ1 a and a1 are indifferent?
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What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500
a1 25 80 C 500 1500

a2 25 80 C 700 1500+δ2

For what value of δ2 a1 and a2 are indifferent?
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What that means?
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a 20 70 C 500 1500
a1 25 80 C 500 1500
a2 25 80 C 700 1500+δ2

For what value of δ2 a1 and a2 are indifferent?
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What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500
a1 25 80 C 500 1500
a2 25 80 C 700 1500+δ2

For what value of δ2 a1 and a2 are indifferent?
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Time Exposure

a 20 70 C 500 1500
a1 25 80 C 500 1500
a2 25 80 C 700 1700

The trade-offs introduced with δ1 and δ2 allow to get
a ∼ a1 ∼ a2
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What do we get?

Standard Sequences

Length: objects having the same length allow to define a unit of
length;

Value: objects being indifferent can be considered as having the
same value and thus allow to define a “unit of value”.

Remark 1: indifference is obtained through trade-offs.
Remark 2: separability among attributes is the minimum
requirement.
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The easy case

IF

1 restricted solvability holds;
2 at least three attributes are essential;
3 � is a weak order satisfying the Archimedean condition
∀x , y ∈ R,∃n ∈ N : ny > x .

THEN

x � y ⇔
∑

j

uj(x) ≥
∑

j

uj(y)
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General Usage

The above ideas apply also in

Economics (comparison of bundle of goods);
Decision under uncertainty (comparing consequences
under multiple states of the nature);
Inter-temporal decision (comparing consequences on
several time instances);
Social Fairness (comparing welfare distributions among
individuals).
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Is optimisation rational?

General Setting

min F (x)
x ∈ S ⊆ K n

where:
- x is a vector of variables
- S is the feasible space
- K n is a vector space, (Zn, Rn, {0, 1}n).
- F : S 7→ Rm
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Well known specific cases: m=1

F (x) is linear, S is a n-dimensional polytope: linear
programming
min cx , Ax ≤ b, x ≥ 0.
S is a n-dimensional polytope, but F : Rn+m 7→ R:
constraint satisfaction
min y , Ax + y ≤ b, x , y ≥ 0.
F (x) is linear, S ⊆ {0, 1}n: combinatorial optimisation.
F (x) is convex and S is a convex subset of Rn: convex
programming
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More challenging cases

Instead of minx∈S F (x) we get supx∈S x . Practically we
only have a preference relation on S (and thus we cannot
define any “quantitative” function of x).

NB
The problem becomes tricky when the preference relation
cannot be represented explicitly (for instance when S ⊆ {0, 1}n)

m > 1. We get

F (x) = 〈f1(x) · · · fn(x)〉

Practically a problem mathematically undefinable ...
Combinations of the two cases above as well as of the
previous ones ...
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Example

αt
βt

γt

δt

εt
ζt�

�
�

��

H
HHH

HHH
Hj

-
HHH

HHH
HHH

HHH
HHH

Hj-�
�

�
��

HHH
HHH

HHj

R

Y

G Y

G

R

G

- R: dangerous
- Y: fairly dangerous
- G: not dangerous

Which is the safest path in the network?
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Example 2
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First Idea

Find all “non dominated solutions” and then explore it
appropriately (straightforward or interactively) until a
compromise is established. BUT:

The set of all such solutions can be extremely large, an
explicit enumeration becoming often intractable.
Depending on the shape and size of the size of the “non
dominated solutions”, exploring the set can be intractable.
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Further Ideas

Instead trying to construct the whole set of “non dominated
solutions”, concentrate the search of the compromise in an
“interesting” subset. Problem: how to define and describe
the “interesting” subset?
Aggregate the different objective functions (the criteria) to
a single one and then apply mathematical programming:
- scalarising functions;
- distances.
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Scalarising Functions

We transform

min
x∈S

[f1(x) · · · fn(x)]

to the problem

min
x∈S

λT F (x)

λ being a vector of trade-offs. Problem: how we get them?

This turns to be a parametric optimisation problem
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Add Constraints

We transform

min
x∈S

[f1(x) · · · fn(x)]

to the problem

minx∈S fk (x)
∀j 6= kfj ≤ εj

εj being a vector of constants. Problem: how we get them?

This turns to be a parametric optimisation problem
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[f1(x) · · · fn(x)]
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Tchebychev Distances

We transform

min
x∈S

[f1(x) · · · fn(x)]

to the problem

min
x∈S

[ max
j=1···m

wj(fj(x)− yj)]

wj being a vector of trade-offs. Problem: how we get them?
yj being a special point (for instance the ideal point) in the
objective space
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Combinatorial Optimisation

What happens if we have to choose among collections of
objects, while we only know the values of the objects?

1 Knapsack Problems
2 Network Problems
3 Assignment Problems

What if there are interactions (positive or negative
synergies) among the chosen objects?
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The Choquet Integral

Given a set N, a function v : 2N 7→ [0, 1] such that:
- v(∅) = 0, V (N) = 1
- ∀A, B ∈ 2N : A ⊆ B v(A) ≤ v(B)
is a capacity

We use the Choquet Integral

Cv (f ) =
n∑

i=1

[f (σ(i))− f (σ(i − 1))]v(Ai)

which is a measure of a capacity where:
- f represent the value function for x ;
- σ(i) represents a permutation on Ai such that:
f (σ(0)) = 0 and f (σ(1)) ≤ · · · f (σ(n))
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Several Models Together

The Choquet Integral contains as special cases several models:

The weighted sum.
The k-additive model
The expected utility model.
The Ordered Weighted Average model
The Rank Depending Utility model
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Lessons Learned

Optimising is not necessary “rational”.
Optimising multiple objectives simultaneously is ill defined
and “difficult”.
We can improve using preference based models.
We need to (and we can) take into account the possible
interactions among objects or among objectives.
We need “good” approximation algorithms.
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Borda vs. Condorcet

Four candidates and seven examiners with the following
preferences.

a b c d e f g
A 1 2 4 1 2 4 1
B 2 3 1 2 3 1 2
C 3 1 3 3 1 2 3
D 4 4 2 4 4 3 4

B(x)
15
14
16
25

The Borda count gives B>A>C>D
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Borda vs. Condorcet

Four candidates and seven examiners with the following
preferences.

a b c d e f g
A 1 2 3 1 2 3 1
B 2 3 1 2 3 1 2
C 3 1 2 3 1 2 3

B(x)
13
14
15

If D is not there then A>B>C, instead of B>A>C
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Arrow’s Theorem

Given N rational voters over a set of more than 3 candidates
can we found a social choice procedure resulting in a social
complete order of the candidates such that it respects the
following axioms?

Universality: the method should be able to deal with any
configuration of ordered lists;
Unanimity: the method should respect a unanimous
preference of the voters;
Independence: the comparison of two candidates should
be based only on their respective standings in the ordered
lists of the voters.
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YES!

There is only one solution: the dictator!!

If we add no-dictatorship among the axioms then there is no
solution.
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Gibbard-Satterthwaite’s Theorem

When the number of candidates is larger than two, there exists
no aggregation method satisfying simultaneously the properties
of universal domain, non-manipulability and non-dictatorship.
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Why MCDA is not Social Choice?

Social Choice MCDA
Total Orders Any type of order
Equal importance Variable importance
of voters of criteria
As many voters Few coherent
as necessary criteria
No prior Existing prior
information information
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General idea: coalitions

Given a set A and a set of �i binary relations on A (the criteria)
we define:

x � y ⇔ C+(x , y) D C+(y , x) and C−(x , y) E C−(y , x)

where:
- C+(x , y): “importance” of the coalition of criteria supporting
x wrt to y .
- C−(x , y): “importance” of the coalition of criteria against
x wrt to y .
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Specific case 1

Additive Positive Importance

C+(x , y) =
∑
j∈J±

w+
j

where:
w+

j : “positive importance” of criterion i
J± = {hj : x �j y}

Then we can fix a majority threshold δ and have

x �+ y ⇔ C+(x , y) ≥ δ

Where “positive importance” comes from?
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Specific case 2

Max Negative Importance

C−(x , y) = max
j∈J−

w−
j

where:
w−

j : “negative importance” of criterion i
J− = {hj : vj(x , y)}

Then we can fix a veto threshold γ and have

x �− y ⇔ C−(x , y) ≥ γ

Where “negative importance” comes from?
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Example

The United Nations Security Council

Positive Importance
15 members each having the same positive importance
w+

j = 1
15 , δ = 9

15 .

Negative Importance

10 members with 0 negative importance and 5 (the permanent
members) with w−

i = 1, γ = 1.
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Outranking Principle

x � y ⇔ x �+ y and ¬(x �− y)

Thus:

x � y ⇔ C+(x , y) ≥ δ ∧ C−(x , y) < γ

NB
The relation � is not an ordering relation. Specific algorithms
are used in order to move from � to an ordering relation <

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Optimisation, Constraint Satisfaction, MOMP
Social Choice Theory
Uncertainty

Outranking Principle

x � y ⇔ x �+ y and ¬(x �− y)

Thus:

x � y ⇔ C+(x , y) ≥ δ ∧ C−(x , y) < γ

NB
The relation � is not an ordering relation. Specific algorithms
are used in order to move from � to an ordering relation <

Alexis Tsoukiàs Algorithmic Decision Theory



General
Basics

Methods
Reality and Future

Optimisation, Constraint Satisfaction, MOMP
Social Choice Theory
Uncertainty

What is importance?

Where w+
j , w−

j and δ come from?

Further preferential information is necessary, usually under
form of multi-attribute comparisons. That will provide
information about the decisive coalitions.

Example

Given a set of criteria and a set of decisive coalitions (J±) we
can solve:

max δ
subject to∑

j∈J± wj ≥ δ∑
j wj = 1
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Lessons Learned

We can use social choice inspired procedures for more
general decision making processes.
Care should be taken to model the majority (possibly the
minority) principle to be used. The key issue here is the
concept of “decisive coalition”.
We need to “learn” about decisive coalitions, since it is
unlike that this information is available. Problem of learning
procedures.
The above information is not always intuitive. However, the
intuitive idea of importance contains several cognitive
biases.
A social choice inspired procedure will not deliver
automatically an ordering. We need further algorithms
(graph theory).
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What is Probability?

A measure of uncertainty, of likelihood ...
of subjective belief ...

Consider a set N and a function p : 2N 7→ [0, 1] such that:
- p(∅) = 0;
- A ⊆ A ⊆ N, then p(A) ≤ p(B);
- A ⊆ A ⊆ N, A ∩ B = ∅, then p(A ∪ b) = p(A) + p(B);
Then the function p is a “probability”.

A probability is an additive measure of capacity
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Decision under risk

θ1 θ2 states of the nature θn
a1 x11 x12 · · · x1n
a2 x21 x22 · · · x2n
actions · · · · · · outcomes · · ·
am xm1 xm2 · · · xmn

p1 p2 probabilities pn

〈p1, xi1; p2, xi2; · · ·pn, xin〉

is a lottery associated to action ai .
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Expected Utility

Von Neuman and Morgenstern Axioms

A1 There is a weak order � on the set of outcomes X .
A2 If x � y implies that 〈x , P; y , 1− P〉 � 〈x , Q; y , 1−Q〉, then

P > Q.
A3 〈x , P; 〈y , Q; z, 1−Q〉, 1− P〉 ∼

〈x , P; y , Q(1− P); z, (1−Q)(1− P)〉
A4 If x � y � z then ∃P such that 〈y , 1〉 ∼ 〈x , P; z, 1− P〉
If the above axioms are true then

∃v : X 7→ R : al � ak ⇔
n∑

j=1

pjxlj ≥
n∑

j=1

pjxkj
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Problems

Expected Utility Theory is falsifiable under several points
of view

Gains and losses induce a different behaviour of the
decision maker when facing a decision under risk.
Independence is easily falsifiable.
Rank depending utilities.
What happens if probabilities are “unknown”?
Where probabilities come from?
What is subjective probability?
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Probability does not exist!!!

Ramsey and De Finetti

If the option of α for certain is indifferent with that of β if p is
true and γ if p is false, we can define the subject’s degree of
belief in p as the ratio of the difference between α and γ to that
between β and γ (Ramsey, 1930, see also De Finetti, 1936).

Savage will give a normative characterisation of von Neuman’s
expected utility, but the axioms remain empirically falsifiable
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Idea: Qualitative Decision Theory

Consider a capacity (a measure of uncertainty) for which
v(A ∪ b) = max(v(A), v(B)). We call that a possibility
distribution π.

Under conditions relaxing Savages’s axioms we get (Dubois,
Prade, 1995)

v∗(ai) min
θj

max(u(π(θj)), v(xij)))

The above formula extends the min-max decision rule. It also
“replaces” Bayesian conditioning with a form of non-monotonic
inference.
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However

The possibility equivalent of the min-max rule requires that
possibilities and utilities are commensurable (which can be
arguable although reasonable).
Working generally will just ordinal preferences and
likelihoods results either in overconfident rules or in
indecisive ones.

The reason is that as soon as we lose the “density” of the
structure imposed by Savage we fell in the case of “social
choice” aggregations and thus Arrow’s theorem holds.
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Another option

Cumulative Prospect Theory (Kahneman and Tversky).
Rank Dependant Utility (Quiggin).
Choquet Expected Utility (Schmeidler).

Once again we are within a framework we already saw in
measurement theory:

ak � al ⇔ Φ(uj(xkj), uj(xlj)) ≥ 0

Replacing “attributes” with “states of the nature” we come back
to conjoint measurement theory.
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Different option: Intervals

Consider a set A = {x , y , z · · · } and an attribute h.

Assume that h(x) ⊆ R and denote min(h(x)) = l(x) and
max(h(x)) = r(x).

To each element of A we associate an interval [l(x), r(x)] which
contains the “real” value of x , but who is presently unknown.
Possibly we may consider intermediate points of the interval:
k(x).
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An example: 2 points

l(w) r(w)
W

l(z) r(z)
Z

l(y) r(y)
Y

l(x) r(x)
X
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An example: 3 points

l(w) r(w)
k(w)

W

l(z) r(z)
k(z)

Z

l(y) r(y)
k(y)

Y

l(x) r(x)
k(x)

X
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〈P, I〉 Models

P1(x , y) ⇔ l(x) > r(y)
P2(x , y) ⇔ l(x) > k(y)
P3(x , y) ⇔ l(x) > l(y ∧ r(x) > r(y))
I(x , y) ⇔ the rest
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〈P, Q, I〉 Models

P1(x , y) ⇔ l(x) > r(y)
Q1(x , y) ⇔ r(x) > r(y) > l(x) > l(y)
P2(x , y) ⇔ l(x) > r(y)
Q2(x , y) ⇔ r(y) > l(x) > k(y)
I(x , y) ⇔ the rest
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Representation Theorems

Interval Orders: P1P1I ⊆ P1

〈P, Q, I〉 Interval Orders: I = Il ∪ I−1
l ∪ Io

(P1 ∪Q1 ∪ Il)P1 ⊆ P1

P1(P1 ∪Q1 ∪ I−1
l ) ⊆ P1

(P1 ∪Q1 ∪ Il)Q1 ⊆ P1 ∪Q1 ∪ Il
Q1(P1 ∪Q1 ∪ I−1

l ) ⊆ P1 ∪Q1 ∪ I−1
l

Double Threshold Orders Q2IQ2 ⊆ P2 ∪Q2
Q2IP2 ⊆ P2
P2IP2 ⊆ P2

P2Q−1
2 P2 ⊆ P2
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Issues Raising

Create a general framework for intervals comparison.
Introduce the general idea using positive and negative
reasons when comparing intervals.
Generalise the concept of interval considering the “length”
and the “mass” associated to an interval.
How to aggregate such ordering relations?
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Lessons Learned

Uncertainty can be represented in several different ways.
A purely ordinal representation of preferences and
likelihoods is possible, but not that operational.
There are strong similarities (in the good and the bad
sense) between multiple attributes and multiple states of
the nature.
Conjoint measurement theory can be used also in this
case as a general theoretical framework.
Intervals can be a way to represent uncertainty, but the
field requires more exploration.
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What happens in reality?

Real Case Studies in MCDA, forthcoming with Springer

Siting a university kindergarten in Madrid
A multi-criteria decision support system for hazardous material transport in Milan
An MCDA approach for evaluating H2 storage systems for future vehicles
A multi-criteria application concerning sewers rehabilitation
Multicriteria Evaluation-Based Framework for Composite Web Service Selection
A multicriteria model for evaluating confort in TGV
Coupling GIS and Multi-criteria Modeling to support post-accident nuclear risk
evaluation
Choosing a cooling system in a power plant: an ex post analysis
Decision support for the choice of road pavement and surfacing
An MCDA approach for personal financial planning
Criteria evaluations by means of fuzzy logic, Case study: The cost of a
nuclear-fuel repository
Road Maintenance Decisions in Madagascar
A Multicriteria Approach to Bank Rating
Participative and multicriteria localisation of a wind farm in Corsica
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Hazardous Material Transportation

Courtesy of A. Colorni and A. Lué

There are two problems:
1 Define a route for a shipment at a given time slot;
2 Manage the shipments (lot sizing and scheduling).

In this presentation we are going to talk about the first problem.
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Representation

Topology

Given an area Y of the city interested by the shipment of a
hazardous material m, we represent this area as a directed
graph GY = 〈N, A〉 where N represent the road intersections
and A the road segments between the intersections.

Information
For each arc of the graph GY we can retrieve the following
information: population, infrastructures (power distribution,
telecom network, railways, pipelines etc.), natural elements
(water resources, green areas, cultural heritage) and critical
elements (potential targets of a terrorist attack).
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Problem Formulation

Given a shipment of a hazardous material m at a time slot
f , define a route within GY minimising the risk

Four risks are considered:
RPOP(h, f , m): risk for the population.

RINF (f , m): risk for the infrastructures.
RNAT (f , m): risk for the nature.

RCRI(h, f , m): risk for critical installations.
where h represents the population in area Y .
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Risk for the Population

σPOP
x ,y = px × POPy ,f × e−φ[L(x ,y)]η

where:
- px : probability that an accident occurs at point x
- L(x , y): distance between x and y
- POPy ,f : population at point y at time slot f
- φ, η: parameters depending on the type of shipment m

RPOP(h, f , m) =
∑

x

∑
y

σPOP
x ,y
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Resolution

A multi-objective shortest path problem. In this precise case
the method adopted consists in scalarising the different risks.

C(h, f , m) = αT̄ (h, f ) + βR̄POP(h, f , m)+

γR̄INF (f , m) + δR̄NAT (f , m) + εR̄CRI(h, f , m)

where
R̄J is the normalised risk for J
T̄ is the normalised cost
α, β, γ, δ, ε are the trade-offs among risks and costs.
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The Niguarda Hospital
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Road Maintenance in Madagascar

AGETIPA is “Maitre d’Ouvrage” for the public works on behalf of
the Minister of Infrastructure in Madagascar. In that capacity
they have to establish a medium term plan for the maintenance
of the rural road network of the country. For this purpose they
manage a grant (from the BEI) to be used for the covering
(possibly partially) the cost of the maintenance programme.

This has also been seen an an opportunity to enhance
AGETIPA’s capacity in OR and project management.
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Road Maintenance in Madagascar: Who?

The Actors

The State
The Management Agency (the client)
The local Mayors
Other local actors
The Funding Agencies
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Road Maintenance in Madagascar: Why?

The Concerns

Improve Road Maintenance
Network Connections
Accessibility
Local Economy
Robustness against climate

Improve Local Involvement
Justify wrt to Funding Agencies
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Road Maintenance in Madagascar: What?

The Problem Formulation

Γ: Given a set of possible road maintenance projects choose the
ones to fund within the current budget so that strategic planning
priorities are met and local involvement is pursued.

The Evaluation Model

M: Assess the projects submitted to the Agency in order to classify
them in “accepted”, “negotiable” and “rejected”. Use the criteria
and the “negotiable” class in order to pursue the local
involvement strategy.
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Attributes and Criteria Structure
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Example

You have a number of rural road maintenance projects and you
want to assess the “service level” of each road concerned by
the projects.

Such an assessment takes into account:

how many months the road is accessible;
what is the maximum speed you can use safely;
how confortable is the road at that speed.

The “service level” can be 0, 1, 2, 3, 0 being the worst and 3
being the best.
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How do you do that?

-

Comfort

Terrible Acceptable Comfortable

-

Speed

10 20 30 40 km/h

-

Circulation

months6 9 12

-

Service

Bad Fare Good Very Good
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Results

The method has been tested in a pilot study in an area near
Antananarivo. 4 real projects already submitted for funding
were considered as alternatives. Information has been
retrieved from AGETIPA’s databases on all relevant dimensions
of the model.

The projects have been compared to the profiles of the
categories of “acceptable”, “negotiable”, “to reject” and then
classified to one among these classes.

Details
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Feedback

2 years of experience
Two years later in a feedback meeting the model has been
adapted to a number of remarks from the field experience
without changing the approach. The method is routinely used in
order to fund rural road maintenance projects.

Further applications
AGETIPA is further investing today in increasing its capacity in
decision support.
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Where do we go know?

Context

Large information sets.
Conflicting opinions, criteria and scenario.
Strong interdependencies.
Strong uncertainties and ambiguous information.
Rigour and usefulness.
Models of Rationality
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Where do we go know?

What is the problem?
Formal methods for aiding formulating a problem.
Explanations and Justifications.
Argumentation

How do we learn what we model?
Learning Algorithms.
Constructive Learning.
Update and Revision.
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Where do we go know?

Extended Preference Models
Positive and Negative Reasons.
From Preference Statements to Models.
Conjoint Measurement Theory.

Extended Optimisation
Search Algorithms using “preferences”.
Compromise Programming.
Robustness
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Where do we go know?

Computational Social Choice
Aggregating preferences, votes, judgements, beliefs ...
Fairness, Efficiency and Reliability.
Information Fusion.

New Models of Uncertainty
Extreme Risks.
Beyond Probability.
Soft Computing.
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Where do we go know?

Better Decision Aiding Processes

Better Decision Processes

Better Decisions
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DO NOT MISS
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Resources

http://www.algodec.org
http://www.inescc.pt/∼ewgmcda
http://decision-analysis.society.informs.org/
http://www.mcdmsociety.org/
http://www.euro-online.org
http://www.informs.org
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Books

Bouyssou D., Marchant Th., Pirlot M., Tsoukiàs A., Vincke Ph.,
Evaluation and Decision Models: stepping stones for the analyst,
Springer Verlag, Berlin, 2006.

Bouyssou D., Marchant Th., Perny P., Pirlot M., Tsoukiàs A., Vincke Ph.,
Evaluation and Decision Models: a critical perspective, Kluwer
Academic, Dordrecht, 2000.

Deb K., Multi-Objective Optimization using Evolutionary Algorithms, J.
Wiley, New York, 2001.

Ehrgott M., Gandibleux X., Multiple Criteria Optimization. State of the
art annotated bibliographic surveys, Kluwer Academic, Dordrecht, 2002.

Figueira J., Greco S., EhrgottM., Multiple Criteria Decision Analysis:
State of the Art Surveys, Springer Verlag, Berlin, 2005.
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Books

Fishburn P.C., Utility Theory for Decision Making, J. Wiley, New York,
1970.

Fishburn P.C., Interval Orders and Interval Graphs, J. Wiley, New York,
1985.

French S., Decision theory - An introduction to the mathematics of
rationality, Ellis Horwood, Chichester, 1988.

Keeney R.L., Raiffa H., Decisions with multiple objectives: Preferences
and value tradeoffs, J. Wiley, New York, 1976.

Keeney R.L., Hammond J.S. Raiffa H., Smart choices: A guide to
making better decisions, Harvard University Press, Boston, 1999.

Kahneman D., Slovic P., Tversky A., Judgement under uncertainty -
Heuristics and biases, Cambridge University Press, Cambridge, 1981.

Krantz D.H., Luce R.D., Suppes P., Tversky A., Foundations of
measurement, vol. 1: additive and polynomial representations,
Academic Press, New York, 1971.
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Kouvelis P., Yu G., Robust discrete optimization and its applications,
Kluwer Academic, Dodrecht, 1997.

Luce R.D., Krantz D.H., Suppes P., Tversky A., Foundations of
measurement, vol. 3: representation, axiomatisation and invariance,
Academic Press, New York, 1990.

Roubens M., Vincke Ph., Preference Modeling, Springer Verlag, Berlin,
1985.

Suppes P., Krantz D.H., Luce R.D., Tversky A., Foundations of
measurement, vol. 2: geometrical, threshold and probabilistic
representations, Academic Press, New York, 1989.

Wakker P.P., Additive Representations of Preferences: A new
Foundation of Decision Analysis, Kluwer Academic, Dordrecht, 1989.

von Winterfeld D., Edwards W., Decision Analysis and Behavorial
Research, Csmbridge University Press, Cambridge, 1986.

Alexis Tsoukiàs Algorithmic Decision Theory



6. Schématisation des échelles de valeur

PARTICIPATION DU PUBLIC %500 100

0 50 100 PARTICIPATION DU PRIVE %

AcceptableMauvais Limite Bon
ACCCESSIBILITE INTERNE

2 31 ACCESIBILITE EXTERNE

DENSITE POPULATION /KM25000 100002000

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant105 20

COUT  GLOBAL /HAB
Milliers d’Ariary/habitant

520 2



0
50

A

1 2

0

7. 
Définition  
des  
profils

2000

20

50 100

100

M L
B

3

5000 10000

5

5 10 20

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant2



0
50

M L A

1 2

2000

0

5 1

20

Catégorie
 à

fin
ance

r

Catégorie à négocier

C
atégorie à rejeter

C
atégorie à

égocier

8. 
Définition  
des  
classes de 
décision : 
seuil 
d’acceptat
ion et de 
rejet

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

50 100

100

B

3

5000 10000

0 20

 n

5
2



0

0
A1

50

A
B

3

5000

50 100

100

M L

1 2

2000 10000

5

5 10 20

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

9. 
Évaluation 
du profil 
de chaque 
axe:

Cas Axe 1

20
2



0
50

A
B

1 2 3

2000
5000

0

5

0

A1 A2
50 100

100

M L

10000

5 1 20

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

10. 
Évaluation 
du profil 
de chaque 
axe:

Cas Axe 1
Axe 2 

20
2



0
50

A B

1 2 3

2000 5000 10000

0

5

0 20

11. 
Évaluation 
du profil 
de chaque 
axe:

Cas Axe 1
Axe 2
Axe 3

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

A1 A2 A3
50 100

100

M L

5 1

20
2



0
50

M L A
B

1 2 3

2000 5000 10000

0

5

5 10 20

20

12. 
Évaluation 
du profil 
de chaque 
axe:

Cas Axe 1
Axe 2
Axe 3
Axe 4 

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

A1 A2 A3 A4
50 100

100

2



0
50

M L A
B

1 2 3

2000 5000 10000

0

5

5 10 20

20

A1 A2 A3 A4

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

50 100

100

13. 
Comparaison 
des axes avec 
le profil seuil

2



50 100

0
50 100

M L A
B

1 2 3

2000 5000 10000

0

5

5 10 20

20

A1 A2 A3 A4

14. 
Comparaison 
des axes avec 
les deux 
profils seuils

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant2



0
50

M L A
B

1 2 3

2000 5000 10000

0

5 1

20

Cat gorie à financer

é

50 100

100

5

0 20

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

15. 
Comparaison 
de l’axe 1 avec 
les deux 
profils seuils

2



0
50

M L A

1 2 3

2000 5000

0

5

5 10

20

Catégorie à financer

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

50 100

100

15. 
Comparaison 
de l’axe 2 avec 
les deux 
profils seuils

B

10000

20

2



100

0
50

M L A

1 2

2000 5000 10000

0

5

5 10 20

20

Cat gorie à financer

é

50

100

B

3

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

15. 
Comparaison 
de l’axe 3 avec 
les deux 
profils seuils

2



0
50

M L A

1 2

2000

0

5

5 1

20

Catégorie à négocier

50 100

100

B

3

5000 10000

0 20

DENSITE POPULATION /KM2

PARTICIPATION DU PUBLIC %

PARTICIPATION DU PRIVE %

ACCCESSIBILITE INTERNE

ACCESIBILITE EXTERNE

DENSITE ECONOMIQUE /HABITANT
Milliers d’Ariary /habitant

COUT  GLOBAL/ HABITANT
Milliers d’Ariary /habitant

15. 
Comparaison 
de l’axe 4 avec 
les deux 
profils seuils

2


	General
	Deciding and Aiding to Decide
	Some History
	Problem Statements

	Basics
	Preferences
	Measurement

	Methods
	Optimisation, Constraint Satisfaction, MOMP
	Social Choice Theory
	Uncertainty

	Reality and Future
	Real Life
	Research Agenda


