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This is 1st lecture
in 1St ADT conference
(International Conference on Algorithmic Decision Theory),
Venice, Italy
Welcome all of us to a new (}ommu'nity, joining many European
orces!




| asked participants about central topic here:
Multicriteria optimization.
“Criteria” can be:
. Beliefs or well-being of different people
(aggregating over people);
. Resolutions of uncertainty (decision making
under uncertainty);
. Payoff at different time points (dynamic/
sequential decision making).
. And so on!

Most people here work algorithmically: find optimal
solution.

| work in behavioral decision theory: what do
people really do, empirically? Where deviate from
optimum? So, where to improve actual decisions?




What better to start ADT with here in Italy
than:

The nicest multi-criteria optimization problem
ever invented?

You will see ...

Was invented by Bruno de Finetti!




Topic this lecture: Uncertainty in optimization.
How extract knowledge using decision making
theory?

How measure subjective belief of others (such
as of experts, say weather forecasters)?

Say about the uncertain event:
D = Next president of US will be Democrat;
or: Will client repay loan?

Major part of lecture: measure belief of, say, you
in D.

We first consider another application:
grading students.
"We measure their belief in D.




Say, you grade a multiple choice exam in
%eography to test students' knowledge about
tatement D: Capital of North Holland =
Amsterdam.

Reward: if D true if not D true
1 0

0 1

Problem: Correct answer does not completely
identify student's knowledge.

Some correct answers, and high grades, are
due to luck. There is noise in the data.




Attempted solution:
Find r such that student indifferent between:

Reward: if D true if not D true
D 1 0

partly know D, r r
to degree r

Then r = P(D). (Assuming expected value
maximization ...)

How measure r? |
1. Observe many binary choices between such

options. Popular in decision theory. Problem:
too crude and time consuming.

2. Just ask student what ris. Problem: why
would they tell the truth??




| now promise a perfect way out:

de Finetti's dream-optimization problem;

a very clever two-criteria continuous
optimization problem.

Will exactly identify state of knowledge of each
student, no matter what it is.

Takes little time; no more than multiple choice.
Rewards students fairly, with little noise.

Best of all worlds. Here it is:

For all conceivable degrees of knowledge.

Student can choose eported probability r for D
from the [0,1] continuum, as follows:
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Criterium 1 Criterium 2
Reward: if D true if not D true
—r=1: (D = sure!?) 1 0

1L .. degree of  (1_r)2 2
" pelief in D (?) 1=(1-) Ll

+r=0.5: (have no clue!?) 0.75 0.75

~r=0: (not-D is sure!?) 0 1

Claim: Under "subjective expected value,”
optimal reported probabillity r

true subjective probability p.




Proof of claim.

To help memory:
Reward: if D true if not D true
y degree of — (1—r\2 _ 7
' belief in D 1= (1) Ll

p true probabillity; r reported probabillity.
Optimize EV = p(1 - (1-r)2) + (1-p)(1-r2).
15t order optimality:
2p(1-r) — 2r(1—p) = O.
r=p!




Easy in algebraic sense.
Conceptually: 'l Wow !l

Can read minds of people!
Incentive compatible ... Many implications ...
de Finetti (1962) and Brier were the

first neuro-scientists.

They invented the nicest multi-criteria
optimization problem ever!

Useful in many domains.
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"Bayesian truth serum" (Prelec, Science, 2005).
Superior to elicitations through preferences {¥].
Superior to elicitations through indifferences ~.

Widely used: Hanson (Nature, 2002), Prelec (Science 2005). |
accounting (Wright 1988), Bayesian statistics (Savage 1971),
business (Stael von Holstein 1972), education (Echternacht 1972),

finance (Shiller, Kon-Ya, & Tsutsui 1996), medicine (Spiegelhalter
1986), psychology (Liberman & Tversky 1993; McClelland & Bolger
1994), experimental economics (Nyarko & Schotter 2002).

Remember: based on expected value; in 2009 ...!7

We bring
- realism
(of prospect theory) to proper scoring rules;

- the beauty of proper scoring rules to prospect theory
and studies of ambiguity.




Survey

Part |. Deriving reported prob. r from theories
(different goal functions):
* expected value;
* expected utility;
* nonexpected utility for probabilities;
* imprecize/unknown probabilities.

Part |[I. Deriving theories from observed .
In particular: Derive beliefs/ambiguity
attitudes. Will be surprisingly easy.

Part lll. Implementation in an experiment.




Part I. Deriving r from Theories (EV, and
then 3 deviating goal functions).

Event D: Next president US is Democrat.
not-D: Next president is not democrat.

We quantitatively measure your subjective
belief in this event

(subjective probability?; imprecize probability?),
l.e. how much you believe in D.




Say your subjective probability of D = 0.75.

EV:
Then your optimal rp = 0.75.
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Reported probability R(p) = rp
as function of true probability
P, under:

(a) expected value (EV);

», nonEU  (b) expected utility with U(x) =
' -~ Vx (EV);

?......_‘rnonEUAg )
. (c) nonexpected utility for

~ known probabilities, with U(x)
~ =x%5 and with w(p) as

~ common;

~ rmonEUA: nonexpected utility for
~unknown probabilities

1 ("Ambiguity").

——p




So far we assumed EV
(as in every application of proper scoring rules;
as in no modern risk-ambiguity theory ...)

Deviation 1 from EV: EU with U nonlinear

Now optimize
pU(1 = (1=rp) + (1 = p)U(1 —r?)

r = p need no more be optimal.
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Theorem. Under expected utility with true
probabillity p,

P
U’'(1-r?)
P+ Py

r —

Reversed (and explicit) expression:
r

U’ (1=r2)
U (1=(1=r)2)

p:

r + (1-r)




How bet on D? [Expected Ultility].

EV: rEV =0.75.

Expected utility, U(x) = vx:

reV = 0.69.

You now bet less on D. Closer to safety (50-50)
(Winkler & Murphy 1970).
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Deviation 2 from EV: nonexpected utility for

probabilities (Allais 1953, Machina 1982, Kahneman &
Tversky 1979, Quiggin 1982, Gul 1991, Luce & Fishburn 1991,
Tversky & Kahneman 1992; Birnbaum 2005; survey: Starmer

2000)

For two-gain prospects, virtually all those
theories are as follows:

Forr= 0.5, nonEU(r) =
p)U(1 — (1-r)2) + (1-w(p))U(1-r2).

r < 0.5, symmetry, etc.




0 23 — !

p

Figure. The common weighting function w.
w(p) = exp(—(—/n(p))*) for a. = 0.65.

W§1/3g ~ 1/3;

w(2/3) = .51




Theorem. Under nonexpected utility with
true probabillity p,

w(p)

r —

U (1-r?
W(p) T (1_W(p)) U'(1 (_(1r_2)2)

Reversed (explicit) expression:

I
p = W—1( U,(1_r2) )
UG-




How bet on D now? [nonEU with probabilities].
EV: rEV = 0.75.

EU: rEY = 0.69.

Nonexpected utility, U(x) = v,

w(p) = exp(—(—In(p))°-°°).

ronel = (0.61.
You bet even less on D. Again closer to

50-50 safety.




Deviation 3 from EV: Ambiguity
(unknown probabilities).

How deal with unknown/impricise probabilities?

Even have to give up probabilities (“Bayesian
beliefs™).

Instead of additive beliefs p = P(D), nonadditive
beliefs B(D):

* Imprecise probabillities;

* upper/lower probabilities;

* Dempster&Shafer belief functions;

* Tversky& Koehler support functions;

* Zadeh-Morufushi/Sugeno fuzzy measures.




Virtually all decision models existing today:
Forr= 0.5, nonEU(r) =

U(1 = (1=r)2) + (1=W/(D))U(1=r2).
or
W(B(D)U(1—(1-r)?) + (1-w(B(D)))U(1-r?).

Can always write B(D) = w='(W(D)),
so W(D) = w(B(D)).)

|s '92 prospect theory, = Schmeidler (‘89).

Includes multiple priors (Wald '50; Gilboa & Schmeidler '89);
For binary gambles: Einhorn & Hogarth '85; Pfanzagl '59; Luce
(‘00 Chapter 3); Ghirardato & Marinacci ('01, "biseparable").




Theorem. Under nonexpected utility with
ambiguity,

Reversed (explicit) expression:

I
B(D) = W_1( U’ (1-r?) )
-




How bet on D now? [Ambiguity, nonEUA].
revV = 0.75.
r=V = 0.69.

rnonEl = 0.61.
Similarly,

ronEUA = (0.52 (under plausible assumptions).

I's are close to insensitive fifty-fifty.
"Belief" component B(D) = w—(W) = 0.62.




B(D): ambiguity attitude D/=/= beliefs??
Before entering that debate:

How measure B(D)?
Our contribution: through proper scoring rules

with "risk correction.”

This ends Part |I.




Part Il. Deriving Theoretical Concepts
from Empirical Observations of r

We reconsider reversed (explicit) expressions:

I
o W_/I ,
( 4 (1r) —o (1) )

U (1-(1-r)?)

I
B(D) = W_1( U’(1-r?) )
" U Y- (1)

Corollary. p = B(D) if related to the same r!!




Our proposal takes the best of several worlds! -

Need not measure U,W, and w.

Get "matching probability” without measuring
indifferences (BDM ...; Holt 2006).

Calibration without needing many repeated
observations.

Get ambiguity attitude without measuring U,w.

Do all that with no more than simple proper-
scoring-rule questions.




Example (subject 25)

stock 20, CSM
certificates
dealing in sugar
and bakery-
iIngredients.
Reported
probability:
r=0.75

| [
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

For objective probability p=0.70, subject 25
also reported probability r = 0.75.
Conclusion: B(elief) of ending in bar is 0.70!
We simply measure the R(p) curves, and use
their inverses: Is risk correction.
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Directly implementable empirically. We did so Iin 3
an experiment, and found plausible results.




Part Ill. Experimental Test of
Our Correction Method




Method

Subjects. N =93 students.

Procedure. Computarized in lab.
Groups of 15/16 each.
4 practice questions.




Stimuli 1. First we did proper scoring rule
for unknown probabilities. 72 in total.

Probability : |

send I

N Your score if statement  Your score if statement
Probability is true is not true

2% 4671 9271
28% 4816 9216
29% 4954 9159
0% 5100 9100

N% 5239 9039
32% 5376 8976
33% 5511 8911
34% 5644 8844
5% 5775 8775
36% 5904 8704

send | an Fe ar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

For each stock two small intervals, and, third,
their union. Thus, we test for additivity.




Stimuli 2. Known probabilities:

Two 10-sided dies thrown.
Yield random nr. between 01 and 100.

Event D: nr. < 75 (p = 3/4 = 15/20) (etc.).
Done for all probabilities j/20.

Motivating subjects. Real incentives.
Two treatments.

1. All-pay. Points paid for all questions.
6 points = €1.
Average earning €15.05.
2. One-pay (random-lottery system).
One question, randomly selected afterwards,
played for real. 1 point = €20. Average

earning: €15.30.




Results
(of group average; at individual level
more corrections)
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Figure 9.1. Empirical density of additivity bias for the two treatments
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For each interval [(j-2.5)/100, (j+2.5)/100] of length 0.05 around j/100, we counted the number of additivity biases
in the interval, aggregated over 32 stocks and 89 individuals, for both treatments. With risk-correction, there were
65 additivity biases between 0.375 and 0.425 in the treatment t=ONE, and without risk-correction there were 95
such; etc.

Corrections reduce nonadditivity, but more than half remains: ambiguity generates
more deviation from additivity than risk.
Fewer corrections for Treatment t=ALL. Better use that if no correction possible.




Summary and Conclusion

* Modern risk&ambiguity theories: traditional
proper scoring rules are heavily biased.

* We correct for those biases. Benefits
for proper-scoring rule community and for
risk- and ambiguity theories.

* Experiment: correction improves quality;
reduces deviations from ("rational"?)
Bayesian beliefs.

* Do not remove all deviations from Bayesian
beliefs. Beliefs are genuinely nonadditive/
nonBayesian/sensitive-to-ambiguity.







