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Why? An example �

 Perhaps complexity 
can be an escape 
from Gibbard-
Sattertwhaite’s 
theorem? 
 Some voting rules 

(2nd order Copeland, 
STV, ..) are NP-hard 
to manipulate  

      [Bartholdi, Tovey & Trick 89, 
Bartholdi & Orlin 91 
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Why? An example �
  Is complexity an 

escape from Gibbard-
Sattertwhaite’s 
theorem? 
  But recent results raise 

doubts 
  NP-hardness is only 

worst case 
  Manipulation might be 

easy in practice 
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Why? An example �

 Is complexity an escape from Gibbard-
Sattertwhaite’s theorem? 
 For instance, with STV, either a coalition is too 

small O(√n) to change result or so large Ω(√n) 
they easily can [Xia & Conitzer 08] 
 Only question is when coalition is Θ(√n)? 
 We can run some experiments! 
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Outline �

 Where are the hard problems? 
 Phase transition behaviour 
 Sharp/smooth transitions 

 A close look at the data 
 Early mistakes 
 Discrepancy search & restarts 

 What makes problems hard? 
 Backbones, backdoors, … 
 Structure 
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Where are the really hard problems?�

 Influential IJCAI-91 paper by 
Cheeseman, Kanefsky & Taylor 
 857 citations on Google Scholar 

 “… for many NP problems one or more "order 
parameters" can be defined, and hard instances 
occur around particular critical values of these 
order parameters … the critical value separates 
overconstrained from underconstrained …” 
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Where are the really hard problems?�

 Influential IJCAI-91 paper by 
Cheeseman, Kanefsky & Taylor 
 857 citations on Google Scholar 

 “We expect that in future computer scientists 
will produce "phase diagrams" for particular 
problem domains to aid in hard problem 
identification” 
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Where are the really hard problems?�

 1980s 
 Difficulty finding hard satisfiability 

problems using constant probability 
model 

 1992 (one year after Cheeseman et al) 
 Hard & Easy Distributions of SAT 

Problems, Mitchell, Selman & Levesque 
 804 citations on Google Scholar 
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3-SAT phase transition�
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3-SAT phase transition�
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Phase transitions �

 Polynomial problems 
 2-SAT, arc consistency, … 

 NP-complete problems 
 SAT, COL, k-Clique, HC, TSP, number 

partitioning, .. 
 Higher complexity classes 

 QBF, planning, … 
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So where are the hard 
manipulation problems? �

[Walsh, IJCAI-09] 
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Manipulating the veto rule �
 Simple rule to analyse 

 Each voter gets one veto 
 Candidate with least 

vetoes wins 

 But on border of 
complexity 
 NP-hard to manipulate 

constructively with 3 or 
more candidates 

 Polynomial to manipulate 
destructively  
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Manipulating veto rule �

 Manipulation not 
possible with 2 
candidates 
 If the coalition want 

A to win then veto 
B 
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Manipulating veto rule �

 Manipulation 
possible with 3 
candidates 
 Voting strategically 

can improve the 
result 
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Manipulating veto rule �

 Suppose 
 A has 4 vetoes 
 B has 2 vetoes 
 C has 3 vetoes 

 Coalition of 5 voters 
 Prefer A to B to C 
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Manipulating veto rule �

 Suppose 
 A has 4 vetoes 
 B has 2 vetoes 
 C has 3 vetoes 

 Coalition of 5 voters 
 Prefer A to B to C 
 If they all veto C, 

then B wins 
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Manipulating veto rule �

 Suppose 
 A has 4 vetoes 
 B has 2 vetoes 
 C has 3 vetoes 

 Coalition of 5 voters 
 Prefer A to B to C 
 Strategic vote is for 

3 to veto B and 2 to 
veto C 
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Manipulating veto rule �
 With 3 or more 

candidates 
 Unweighted votes 

 Manipulation is 
polynomial to compute 

 Weighted votes 
 Destructive manipulation 

is polynomial 
 Constructive 

manipulation is NP-hard 
(=number partitioning) 
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Uniform votes�

 n agents 
 3 candidates 
 coalition of size m 
 weights from [0,k] 

aka “Impartial Culture” 
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Phase transition�
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Phase transition�
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Phase transition�

Prob = 1- 2/3e-m/√n 
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Phase transition�
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Phase transition�

 Same result with other distributions of 
votes 
 Different size weights 
 Normally distributed weights 
 .. 



ADT, Venice, Oct 2009 

Phase transition�
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Why is manipulation easy? �

 Coalition needs to be large enough to be able 
to change result 
 Coalition size m = O(√n) 

 But if the coalition is large 
 Variance in number of vetoes is large, O(m) 

 Easy to find a partition of votes or to prove 
none exists 
 Greedy heuristic solves problem 
 Or simple bound proves it is impossible 
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So where are the hard 
manipulation problems?�

 Hung election 
 n voters have 

vetoed one 
candidate 

 coalition of size m 
has twice weight of 
these n voters 
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 n voters have 

vetoed one 
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has twice weight of 
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So where are the hard 
manipulation problems?�

 Hung election 
 n voters have 

vetoed one 
candidate 

 coalition of size m 
has twice weight of 
these n voters 

 But one random 
voter with enough 
weight makes it 
easy 
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What about unweighted votes? �

 STV is one of the few voting rules 
where manipulation by a single agent is 
NP-hard without weights 
 Unbounded number of candidates 

 Conitzer gives an O(n1.62m) procedure 
to compute this 
 How does this perform in practice? 
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STV phase transition�

  Smooth not sharp? 
  Other smooth transitions: 2-COL, 1in2-SAT, …  
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STV phase transition�

 Fits 1.008m with coefficient of determination 
R2=0.95  
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Outline �

 Where are the hard problems? 
 Phase transition behaviour 
 Sharp/smooth transitions 

 A close look at the data 
 Early mistakes 
 Discrepancy search & restarts 

 What makes problems hard? 
 Backbones, backdoors, … 
 Structure 
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A close look at the data … �

(1054 SAT 10 0.01) 

(1055 SAT 11 0.01) 

(1056 SAT 10 0.01) 

(1067 SAT 21 0.01) 

(1067 SAT 17059238 52653) 

(1068 SAT 10 0.01) 

(1069 SAT 10 0.01) 

… 
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Easy problems are sometimes hard �

 Under-constrained 
 Little information 

for branching 
 Little pruning 

 Early branching 
mistakes can be 
very costly 

[Gent & Walsh, AIJ 1994] 
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Easy problems are sometimes hard �

Normal exponential distribution               Heavy-tailed distribution 

[Gomes et al, JAR 2000] 
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[Gomes, Selman, Kautz AAAI-98]  

Two attacks on this problem! �

 Randomization & 
Restarts 
 Give up and start 

again from the root 
 Provably eliminates 

heavy-tails 
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[Ginsberg IJCAI 95, Walsh IJCAI 97] 

Two attacks on this problem! �
  Discrepancy search 

  Discrepancy = branch 
against heuristic 

  Several flavours 
  LDS=search according to 

#discrepancies 
  DDS=search according to 

deepest discrepancy 
  … 

Deepest Discrepancy=0 
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Two attacks on this problem! �
  Discrepancy search 

  Discrepancy = branch 
against heuristic 

  Several flavours 
  LDS=search according to 

#discrepancies 
  DDS=search according to 

deepest discrepancy 
  … 

Deepest Discrepancy=1 
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Two attacks on this problem! �
  Discrepancy search 

  Discrepancy = branch 
against heuristic 

  Several flavours 
  LDS=search according to 

#discrepancies 
  DDS=search according to 

deepest discrepancy 
  … 

Deepest Discrepancy=2 
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Two attacks on this problem! �
  Discrepancy search 

  Discrepancy = branch 
against heuristic 

  Several flavours 
  LDS=search according to 

#discrepancies 
  DDS=search according to 

deepest discrepancy 
  … 

Deepest Discrepancy=3 
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Outline �
  Where are the hard problems? 

  Phase transition behaviour 
  Sharp/smooth transitions 

  A close look at the data 
  Early mistakes 
  Discrepancy search & restarts 

  What makes problems hard? 
  Backbones, backdoors, … 
  Structure 
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What makes problems hard? �

 Large backbones 
 Absence of backdoors 
 Presence of certain structures 

 Balance 
 Small worldiness 
 High degree nodes 
 … 
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Backbone �

 Fixed decisions in 
all solutions 
 Large backbone = 

high chance 
heuristic will get 
one wrong 

 Problem hardness 
correlated with 
backbone size 
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Backdoor �
  Decisions that give 

polynomial subproblem 
  Weak = particular 

decisions 
  Strong = all possible 

decisions for a set of 
vars 

  Problem hardness 
exponential in size of 
backdoor 
  c.f. fixed parameter 

tractability 
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Balance �
  SAT 

  All literals occur with 
same frequency 

  COL 
  All nodes have same 

degree 

  Quasigroup completion 
problems 
  Same number of holes 

on each row/column 
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Balance �
  SAT 

  All literals occur with 
same frequency 

  COL 
  All nodes have same 

degree 

  Quasigroup completion 
problems 
  Same number of holes 

on each row/column 



ADT, Venice, Oct 2009 

Balance �
  Balance can make 

problems harder 
  No information for 

branching heuristics 
  Often necessary to 

make problems with 
“hidden” solutions hard 
 Hiding solutions 

often makes 
problems very easy 
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Small worlds �
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Small worlds �

 Random graphs 
 Short paths 
 Not clustered 

 Ring lattice 
 Long paths 
 Clustered 

 Small world graph 
 Morph between 

ring lattice & 
random graph 
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Small worlds �

 Impact on search 
 For example, consider colouring small 

world graphs 
 Heavy tailed distribution in search cost 
 Randomization and restarts appears 

empirically to eliminate heavy tail! 

[Walsh IJCAI-99] 
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Morphing �

 Often have only a few real data sets 
 E.g. few voting records available 
 One such data set is voting record of 10 

scientific teams for 32 Mariner trajectories 
 How do we run large experiments from such 

data? 
 Sample this voting record 

 More/fewer voters, more/fewer candidates 
 Morph it with some randomness 

 Apply random permutations to these votes 
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Structure in social choice �

 Single peakedness 
 Makes manipulation harder 

 Escapes GS theorem 
 Fewer manipulations 

 Balance 
 Hung elections 

… 
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Outline �

 Where are the hard problems? 
 Phase transition behaviour 
 Sharp/smooth transitions 

 A close look at the data 
 Early mistakes 
 Discrepancy search & restarts 

 What makes problems hard? 
 Backbones, backdoors, … 
 Structure 
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Conclusions �

 Empirical studies can complement 
theoretical results 
 Hidden constants 
 Finite size effects 
 Theoretical conjectures 

 Empirical studies can be fun! 
 Knife edge graph 
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Constrainedness knife-edge �

[Walsh AAAI 98] 


