An improved general procedure for lexicographic bottleneck problems

Federico Della Croce Vangelis Th. Paschos' Alexis Tsoukias
DAL LAMSADE
Politecnico di Torino* Université Paris Dauphine?
dellacroce@polito.it {paschos,tsoukias}@lamsade.dauphine.fr
Abstract

In combinatorial optimization, the bottleneck (or minmax) problems are those problems
where the objective is to find a feasible solution such that its largest cost coefficient elements
have minimum cost. Here we consider a generalization of these problems, where under a
lexicographic rule we want to minimize the cost also of the second largest cost coefficient
elements, then of the third largest cost coefficients and so on. We propose a general rule
which leads, given the considered problem, to a vectorial version of the solution procedure
for the underlying sum optimization (minsum) problem. This vectorial procedure increases
by a factor of k (where k is the number of different cost coefficients) the complexity of the
corresponding sum optimization problem solution procedure.

Keywords: lexicographic problem, bottleneck problem, combinatorial optimization.

1 Introduction

In most of the classical combinatorial optimization problems, the objective function is an additive
function of the single variables. These problems are often denoted as minsum or sum optimization
problems (SOP). Minmax or bottleneck optimization problems (BOP) are the easiest way to
deal with scenarios where the variables can be related to each other under an ordinal scale rather
than a cardinal one. In a BOP, the objective is to find a feasible solution where the largest
cost coefficient elements have minimum cost. In many combinatorial optimization problems
(e.g., the bottleneck assignment problem [10]), the minmax version is easier than the minsum
version as it can be solved by tackling log k searches of feasible solutions of minsum problems
where k is the number of distinct cost-coefficients, as the search for feasibility is often much
easier than the search for optimality. Consider now a generalization of a minmax problem by
requiring also the second largest cost coefficients elements in the solution to be minimum, then
the third largest cost coefficient and so on. This kind of problems arrive, for instance (see, for
example [11]) in the evaluation of fragmented alternatives in multicriteria decision aid. We will
denote these problems in the remainder of the paper as lexicographic bottleneck optimization
problems (LBOP). In this case, a straightforward solution procedure does not exist except for
those problems (e.g., the shortest spanning tree) whose SOP, BOP and LBOP versions are all
optimally solved at the same time by the greedy algorithm as they are optimization problems
over the set of bases of a matroid [12]. The relevant literature on this topic is quite limited to our
knowledge. Burkard et al. [2] considered a broad class of algebraic assignment problems including
the lexicographic bottleneck one and derived a general solution procedure. A general framework
for lexicographic bottleneck problems was presented by Burkard and Rendl [1] who proposed

“Corso Duca degli Abruzzi 24, 10129 Torino, Italy
fAuthor for correspondence
*Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France

two different solution procedures, the first based on coefficients scaling and the second based
on an iterative approach. The two procedures have comparable computational complexities,
and the authors report that it is preferable to apply the first procedure for small £ and the
second procedure for large k. Both procedures create numbers growing very fast with &k in such
a way that they cannot practically handle medium-size problem-instances. Recently Calvete
and Mateo [4] proposed a primal-dual algorithm for a generalized lexicographic multiobjective
network flow problem. The interested reader may consider also the survey paper by Burkard
and Zimmermann [3]| on the algebraic versions of various optimization problems. Purpose of this
work is to present a solution procedure which is a rearrangement of the first solution procedure
of [1] based on a vectorial representation of the cost coefficients. We show that this procedure
outperforms both their procedures in terms of computational complexity for all realistic problems
where k < n?logk, where n is the number of non-zero variables involved in the optimal solution,
and, moreover, that the vectorial representation forbids the numbers explosion phenomenon for
large k. The paper proceeds as follows. In section 2 we introduce the relevant definitions and
notation. In section 3 we present the procedure and prove its optimality. In section 4 we illustrate
the procedure on the LBOP versions of two well known combinatorial optimization problems,
the shortest path problem and the assignment problem. Section 5 concludes the paper with final
remarks.

2 Notation and definitions

Let consider a combinatorial optimization problem involving m variables x1,..., %, with cost
coefficients or weights wy, ..., w,,. Let denote with X the set of feasible solutions to the problem.
Let Wy = max;.;;>o{w;} be the largest active weight of a feasible solution T = {z1,...,2m,} (we
denote with active the weights corresponding to non-zero variables; hence, there exist n active
weights) and correspondingly Wy the second largest active weight and so on.

We say that

1. the solution o* = {z%,..., 2%} is optimal for a SOP if, VT = {z1,...,7n} € X,
m m
> wim > wiw; (1)
i=1 i=1
2. the solution z* = {z%,..., 2} } is optimal for a BOP if, VT = {z1,...,7n} € X,
Wy > Wi (2)

3. the solution z* = {x%,..., 2} } is optimal for a LBOP if VZ = {z1,...,2,} € X there does
not exist any active weight W; such that:

Wi <Wi) v (VVzZWl* NooX wp< X w}‘)]

Jw; =W Jw;=Wr

(Wi = Wi* A > Tj = > 1‘;) Vi <[

Jw;=W; j:w]-:Wi*

Finally, as in [1], we denote by T, , (SOP) the worst-case running time to solve a m-variable SOP
with n non-zero variables in the optimal solution where each elementary operation (e.g., addition)
requires constant time.

3 The solution procedure: a vectorial approach

Given a LBOP, substitute each weight w; with a vector of cost coefficients {ci,c,...,c }. The
entries refer to the k different weights of the problem and are indexed in decreasing order of
the weights values. All entries are set to 0 except the one that refers to the original weight w;
which is set to 1; for instance, the vector corresponding to the largest weight is {1,0,0,...,0,0}.
Consider now this problem as a SOP, where, as each weight is a vector of k components, each
algebraic sum involving the weights becomes a vectorial sum of the corresponding k entries
and each solution value is a vector of these k entries. We denote this problem with vectorial
representation as VSOP (vectorial sum-optimization problem).

In order to apply a SOP solution procedure to a VSOP, let define how to compare two
different solutions; recall that any solution value f(X) = /", w;z; is now written as f(X) =
{Ej:wj:cl Lj Zj:wj:cz Ljyee- ’Ej:’wjick xj}‘

We say that, given two solutions X@ and ﬁ,

FIX®) < f(XP) =13, (Yoaf< > @)/\(Vi<l, > oxt=) xf) (4)

Jiwj;=c; Jiwj=c; Jiwj=c; Jiwj=c;

Theorem 1. The optimal solution X* of the VSOP computed by applying the vectorial version
of the related sum optimization procedure is optimal also for the corresponding LBOP.

Proof: Suppose by contradiction X* to be non optimal for the LBOP. Then there exists a
solution X’ which dominates X* according to (3). But then f(X’) < f(X*) according to (4). 11

Remark 1. The proposed approach follows the same lines of action of the first procedure of [1].
The weights vectorization plays here exactly the same role of the weights power raising in [1]
avoiding however the numbers explosion. Il

Corollary 1. LBOP can be solved in Ty, n(SOP)O(k) time.

In fact, an elementary operation which requires in a SOP solution procedure constant time
requires in the corresponding VSOP solution procedure O(k) time as it involves k constant time
SOP elementary operations.

Remark 2. The two procedures given by Burkard and Rendl [1] require respective running-
times Ty, (SOP)O(k logn) and Ty, , (SOP)O(max{log n,log k} min{n?, k?}), and are therefore
dominated by the proposed procedure, for all realistic cases, i.e., the ones where k& < n?logk.
Notice that any lexicographic problem is a VSOP which results in a complete and transitive
binary relation on the vector space [7] and, as such, always admits an order-preserving numerical
representation as a SOP [8] through a non always trivial process like in [1]. Indeed, our gain in
efficiency is obtained by directly solving the VSOP instead of its numerical representation. il

4 Two illustrative applications
4.1 Lexicographic bottleneck shortest path problem

Consider the well known Dijkstra’s algorithm [6] for the sum-optimization shortest path problem.
Given a graph G(N, A), let [;; be the cost of the directed arc a;; connecting node i to node j.
Denote by S C N (resp., S C N) the set of labeled (resp., unlabeled) nodes. Let I'; br the set
of successors of node i (i.e., I'; = {j : l;; # 0}). Let m(i) be the current shortest path value
from the source node to node i € N and let P(i) be the current predecessor of 7 in that path. A
pseudocode of Dijkstra’s algorithm, assuming node 1 to be the source node, is the following:

>

3
Figure 1: An instance of the lexicographic bottleneck shortest path problem.

Step 1:
S:{l}, §:{2,...,N}; W(j):OO, VJ er; W(j)zllj, P(J):l, Vjel"l;

Step 2:
find j €S such that 7(j) =min, g{7(i)}; set S=SN{j}, S=5—-{j};
IF [S| =0 RETURN n(i);

Step 3:
Vier;NS: 7(i) =min{n(i),n(j) +1ji}; P(1) =j IF 7w(i) = 7(j) + 1ji;
GO TO Step 2;

Consider an instance of the lexicographic bottleneck shortest path problem shown in figure 1,
where we want to find the shortest path from node A to node G. For this, we will apply Dijkstra’s
algorithm.

As one can see in figure 1, there are four different cost coefficients (we consider that absence
of arc can be considered as arc of cost coefficient oo), hence the vectorial representation of the
costs matrix is as follows (by 30 we denote the string (0o, 0o, 00, 00)):

A B C D E F G
A|3]0,0,1,0 01,00 = = =
B| || > |0001]| = = | 1,0,0,0| =
Clx=| == = |0,0,0,1]0,1,0,0| o =
D[0,001 = = | 1,0,0,0| =
E|x| = |0,0,0,1| =0 |0,0,1,010,0,0
F | 30 59 59 36 59 ,1,0,0
G| o0 9 o0 o0 o0 o0

The solution procedure works as follows:

s={A}; S={B,C,D,E,F,G}; n(D) =n(E) = n(
7(B) = [0,0,1,0]; (C) =[0,1,0,0]; P(B) = P(C

Step 2:
min, g{m(i)} = B; S = {A,B}; S={C,D,E,F,G};

Step 3:
I'pNS={C, F}:
7(C) = min{7(C),w(B) + [0,0,0,1]} =[0,0,1,1];
7(F) = min{n(F),n(B) + [1,0,0,0]} =[1,0,1,0]; P(C) =P(F) =B;

Step 2:

min, g{m(i)} = C; S = {A,B,C}; S= {D,E,F,G};
Step 3:

reNS = {D,E}:

(D) = min{7 (D), 7(C) + [0,0,0,1]} =[0,0,1,2];
7(E) = min{x(E), 7(C) + [0,1,0,0]} =[0,1,1,1]; P(D) =P(E) =C;

Step 2:
min, s{m(i)} =D; S = {A,B,C,D}; S = {E,F,G};
Step 3:
I'pyNS={F}: (F)=min{x(F),n(D)+ [1,0,0,0]} =[1,0,1,0];
Step 2:
min, g{7(i)} =E; S = {A,B,C,D,E}; S = {F,G};
Step 3:
FE mg = {F,G}I
7(F) = min{n(F),n(E) +[0,0,1,0]} = [0,1,2,1];
7(G) = min{7(G),w(E) +[1,0,0,0]} = [1,1,1,1]; P(F) =P(G) =E;

Step 2:
min, g{m(i)} =F; $= {A,B,C,D,E,F}; S = {G};

Step 3:

rrNS={G}: m(G) =min{x(G),n(F)+[0,1,0,0]} =[0,2,2,1]; P(G)

Step 2:

min, g{7(i)} =G; S = {A,B,C,D,E,F,G}; S={}; RETURN A-B-C-E-F-G;

The lexicographic bottleneck shortest path from A to Gis A—B—C—FE—F — (G and its solution

value is [0, 2,2, 1].

4.2 Lexicographic bottleneck assignment problem

Consider the following lexicographic bottleneck assignment problem. The costs matrix is as

follows:
1 (2] 3 |4
Al 9 |5(12|9
B|12|6]| 7 |6
C|5|7| 6|8
D|8 |5 819

There are six distinct cost coefficients, hence the vectorial representation of the costs matrix is

as follows:

A 1
B 2
C ® 3
D 4

Figure 2: First application of the matching procedure.

1

2

3

4

0,1,0,0,0,0

0,0,0,0,0,1

1,0,0,0,0,0

0,1,0,0,0,0

1,0,0,0,0,0

0,0,0,0,1,0

0,0,0,1,0,0

0,0,0,0,1,0

0,0,0,0,0,1

0,0,0,1,0,0

0,0,0,0,1,0

0,0,1,0,0,0

wil@]lvelies

0,0,1,0,0,0

0,0,0,0,0,1

0,0,1,0,0,0

0,1,0,0,0,0

Consider the application of the Hungarian method [9] to solve the problem (we will use the
matrix form version of the algorithm as it is described in [5] pp. 374-375 and its notation). The
initial step is the construction of the reduced cost matrix C' by first subtracting to each row the
minimum cost element and then doing the same to each column. The rows reduction leads to

the following cost matrix:

Then, the columns

1 2 3 4

A [0,1,0,00-1] 0,0,0,0,0,0 | 1,0,0,0,0,-1 | 0,1,0,0,0,-1
B | 1,0,0,0-1,0 | 0,0,0,0,0,0 | 0,0,0,1,-1,0 | 0,0,0,0,0,0
C | 0,0,0,0,0,0 | 0,0,0,1,0,-1 | 0,0,0,0,1-1 | 0,0,1,0,0,-1
D | 0,0,1,0,0,1 | 0,0,0,0,0,0 | 0,0,1,0,0,.1 | 0,1,0,0,0,-1

reduction leads to the reduced

cost matrix C’ which is as follows:

1 2 3 4

A [0,1,0,00-1] 0,0,0,0,0,0 | 1,0,0,0-1,0 | 0,1,0,0,0,-1
B | 1,0,0,0-1,0 | 0,0,0,0,0,0 | 0,0,0,1,-2,1 | 0,0,0,0,0,0
C [0,0,0,0,0,0 | 0,0,0,1,0,-1 | 0,0,0,0,0,0 | 0,0,1,0,0,-1
D | 0,0,1,0,0,1 | 0,0,0,0,0,0 | 0,0,1,0,1,0 | 0,1,0,0,0,-1

A maximum matching is now solved (by means of a labelling procedure which iteratively searches
for for augmenting paths) on the bipartite graph G’ where an arc (i,7) is present if the corre-
sponding c;-’j entry of the reduced cost matrix C’ is zero (in the vectorial representation this
corresponds to ¢;; = [0,0,0,0,0,0]). The bipartite graph G’ and its maximum matching are
shown in figure 2 (the arcs belonging to the matching are depicted in bold).

A perfect matching (no exposed vertices) would correspond to the optimal assignment. As
the matching is not perfect, the solution is not optimal and, hence, a hungarian tree has been

B 2
C 3
D 4

Figure 3: Second application of the matching procedure.

detected: the sets of labelled (unlabelled) rows I (I7) and columns KT (K ™) are the following:
I ={A,D}, I = {B,C}, K" = {2}, K~ = {1,3,4}. Hence, A = minjcr+ pex-{ci;} =
cps3=10,0,1,0,—1,0]. The reduced cost matrix is then updated by setting ¢, , = ¢, , — A, for
icItand ke K-, =0, +A fori el and k € KT, ¢}, remains unchanged otherwise.
The updated reduced cost matrix is as follows: 7

1 2 3 4
A[0,1-1,01-1] 000,000 | 1,0,1,0,0,0 | 0,1,-1,0,1-1
B | 1,0,0,0,-1,0 | 0,0,1,0,-1,0 | 0,0,0,1,-2,1 | 0,0,0,0,0,0
C | 00,0000 [001,1-1-1] 00,0,0,0,0 | 0,0,1,0,0,-1
D | 0,0,0,0,1,-1 | 000,000 | 0,0,0,00,0 | 0,1-1,0,1,-1

The updated G’ and its maximum matching are depicted in figure 3.
As the matching is perfect, the assignment A —2, B—4, C' — 1 and D — 3 is optimal.

5 Final remarks

The proposed produre was sought to handle LBOP. However, it can be applied to any problem
for which the following conditions hold: ordinality of the scale associated to the cost-vector and
existence of at least a weak order on any subset of feasible solutions (which is always the case in
a lexicographic order). The following steps may be considered in a future research:

o verify if it is possible to weaken the above necessary conditions without increasing the
time-complexity of the proposed procedure;

e devise exact or approximation algorithms for problems where there exists either a partial
order or a simple reflexive binary relation on the solution set.
Acknowledgement. Many thanks to an anonymous referee for very pertinent and helpful
comments and suggestions.

References

1]

2]

3]

19]

R.E. Burkard, F. Rendl - “Lexicographic bottleneck problems” - Operations Research Let-
ters 10 (1991), 303-308.

R.E. Burkard, W. Hahn, U. Zimmermann - “An algebraic approach to assignment problems”
- Mathematical Programming 12 (1977), 318-327.

R.E. Burkard, U. Zimmermann - “Combinatorial Optimization in Linearly Ordered Semimod-
ules: a survey” in Modern Applied Mathematics: Optimization and Operations Research, B.
Korte (ed.), North Holland, 1982.

H.I. Calvete, P.M. Mateo - “Lexicographic optimization in generalized network flow problems”
- Journal of the Operational Research Society, 49(5) (1998), 519-529.

N. Christophides - “Graph Theory an algorithmic approach” - Academic Press, 1975.

E.W. Dijkstra - “A note on two problems in connection with graphs” - Numerische Mathe-
matik 1 (1959), 269-271.

P.C. Fishburn - “Lexicographic orders, utilities and decision rules: a survey” - Management
Science 20 (1974), 1442-1471.

D. Scott, P. Suppes - “Foundational Aspects of Theories of Measurement” - Journal of Sym-
bolic Logic, 23 (1958), 113-128.

H.W. Kuhn - “The Hungarian method for the assignment problem” - Naval Research Logistics
Quarterly 2 (1955), 83-97.

[10] A.P. Punnen, K.P.K. Nair - “Improved complexity bound for the maximum cardinality

bottleneck bipartite matching problem” - Discrete Applied Mathematics 55 (1994), 91-93.

[11] Ph. Vincke - Multicriteria decision aid - J. Wiley, 1992.

[12] U. Zimmermann - “Some partial orders related to Boolean optimization and the greedy

algorithm” - Annals of Discrete Mathematics 1 (1977), 539-550.

