
 
 

ESSE: An Expert System for Software Evaluation 
 

 

I.Vlahavas+, I. Stamelos+, I. Refanidis+ and A. Tsoukiàs++ 

 

+ Dept of Informatics, Aristotle University of Thessaloniki, 54006, Thessaloniki, GREECE 

vlahavas/stamelos/yrefanid@csd.auth.gr 

 
++ LAMSADE-CNRS, Universite Paris-IX, Dauphine, 75775, Paris Cedex 16, FRANCE 

tsoukias@lamsade.dauphine.fr 
 

 

Abstract 

Solving software evaluation problems is a particularly difficult software engineering process and 

many different - often contradictory - criteria must be considered in order to reach a decision. This 

paper presents ESSE, a prototype expert system for software evaluation that embodies various aspects 

of the Multiple-Criteria Decision Aid (MCDA) methodology. Its main features are the flexibility in 

problem modeling and the built-in knowledge about software problem solving and software attribute 

assessment. Evaluation problems are modeled around top-level software attributes, such as quality and 

cost. Expert assistants guide the evaluator in feeding values to the decision model. ESSE covers all 

important dimensions of software evaluation through the integration of different technologies. 

 

Keywords: expert system, multiple criteria decision aid, automated software evaluation  

 

 

 

This work has been partially supported by Greek Ministry of Development, General Secretariat of Research and 
Technology, within the program "PENED-95". 



 

1. Introduction 
 

The demand for qualitative and reliable software, conforming to international standards and easy 

to integrate into existing system structures is continuously growing. Besides, the cost of software 

production and software maintenance is rising dramatically, as a consequence of the increasing 

complexity and the need for better designed and user friendly software products. Consequently, the 

evaluation of such software aspects is of great importance. We will use the term software evaluation 

throughout this paper to denote evaluation of various aspects of software. 

Probably the most typical problem in software evaluation is the selection of one among many 

software products for the accomplishment of a specific task. However, many other problems may 

arise, such as the decision whether to develop a new product or acquire an existing commercial 

product with similar requirements. On the other hand, software evaluation may have different points of 

view and may concern various parts of the software itself, its production process and its maintenance. 

Thus, software evaluation is not a simple technical activity, aiming to define an "objectively good 

software product", but a decision process where subjectivity and uncertainty are present without any 

possibility of arbitrary reduction.  

In recent years, research has focused on specific software characteristics, such as models and 

methods for the evaluation of the quality of software products and software production process [2, 10, 

14, 18, 24, 25, 30, 36]. The need for systematic software evaluation throughout the software life cycle 

has been recognized and well defined procedures have been proposed [37], while there are on-going 

standardization activities in this field [14]. In [37], the authors expect that, as the evaluation activity 

grows and matures, new evaluation techniques and tools will appear and that hopefully they will be 

integrated in the evaluation process they have proposed. 

A useful technique for performing evaluations of any kind is the Multiple-Criteria Decision Aid 

(MCDA) methodology [29, 35]. This methodology is applied to those evaluation problems where the 

final decision depends on many criteria. In order to perform an evaluation we must select a number of 

attributes, which can be directly or indirectly associated to measures. This selection is crucial and 

reflects the point of view under which the evaluation is made. The problem is that these attributes 

cannot be exactly defined, their relative importance is unclear and their measurement in many cases is 

not feasible. Another point in the application of MCDA to an evaluation problem is the selection of the 

appropriate MCDA method. In the literature, a large number of MCDA methods can be found. The 

task of selecting the most suitable method for an evaluation problem is still based on human 

experience.  

Although supported by dedicated tools, the use of MCDA for software evaluation is rather limited 

[20], since most decision-makers avoid sophisticated decision processes in the software industry. Even 

when MCDA methods are used, it is quite probable that their application is incorrect. In 1997, one of 

the authors was involved, as director of a systems integration department, in a decision process related 

to the evolution of an information system. A senior consulting firm was asked for assistance and one 

- 1 - 



 

of the first steps taken was the preparation of the evaluation framework. The framework that was 

proposed by the consultants suffered from some of the most common problems in the application of 

decision support theory: redundant evaluation criteria, insufficient understanding of the measurement 

methods and the decision process itself, etc. 

This paper describes ESSE, a prototype Expert System for Software Evaluation that embodies 

various aspects of the MCDA methodology and has the following features: 

• automation of the software evaluation process 

• suggestion of a software evaluation model, according to the type of the problem 

• consistency check of the evaluation model and detection of possible critical points 

• support of the selection of the appropriate MCDA method, depending on the available information 

• assistance provided by expert modules, called throughout this paper Expert Assistants, which help 

the evaluator in assigning values to the attributes of the software evaluation model 

• management of past evaluation results, in order to be reused in new evaluation problems 

We do not state that tools like ESSE come up with the right responses always, since in general 

there do not exist objectively right responses. Decisions may be right for a specific client, in a specific 

context, during a specific decision process. Automated software evaluation improves the evaluation 

process in terms of better understanding, improved confidence and increased meaningfulness of the 

result. This belief comes up both from the empirical evidence using ESSE and more generic evaluation 

tools. Additionally, these tools provide a variety of methods and procedures that the evaluator may use 

for evaluation purposes. In general, automatic software evaluation is expected to help in avoiding 

problems similar to those observed in the case of the evaluation framework prepared by the consulting 

firm mentioned above. 

The rest of the paper is organized as follows: Section 2 presents related work. Section 3 presents 

the principles of software evaluation using MCDA methodology. Section 4 describes the structure of 

ESSE. Section 5 deals with implementation issues. Section 6 gives an example of an evaluation 

problem and how it has been handled with ESSE. Finally, section 7 concludes the paper and poses 

future directions. 

 

2. Related Work 
 

A significant amount of literature and research has been dedicated to decision making support for 

various problems related to software [2, 3, 4, 6, 19, 23, 25, 27, 37]. In general, the goal is to reach a 

decision by assigning an absolute value to some software entity (e.g. a software product) or by 

selecting one out of N alternatives. Normally, the decision making task is performed through some 

mathematical mechanism (utility function in [3], MCDA methods in [25]). Knowledge based 

techniques have also been employed [4, 23] to resolve specific software engineering problems.  

In one of the fundamental books on software engineering [3], various mechanisms for decision 

- 2 - 



 

support (figures of merit, utility functions) are reviewed, proposed and compared (e.g. Weighted Sum 

vs. Delivered System Capability Figure of Merit) and examples of their application are given. Specific 

software engineering problems are described either within examples (software package selection) or 

explicitly (optimal hardware-software configuration, optimal computer networks, optimal computing 

algorithms). 

There are various aspects under which an approach related to decision support for software 

evaluation may be examined and assessed. In our opinion, the most important are the following: 

• Evaluation Scope: how many different evaluation problems may be solved with the specific 

approach. Is it possible to resolve new problems with the same basic approach? 

• Software Characteristics: the software attributes used to reach the decision. Provided that the 

problem remains the same, is it possible/easy to accommodate new and/or different software attributes 

to resolve the problem? 

• Decision Support Method (mathematical or knowledge based): This is more a technical issue, 

since each approach has its own advantages and disadvantages and may be more suitable to certain 

types of problems, while less appropriate to others. 

 

The above three main aspects constitute a framework according to which various works related to 

software evaluation support might be viewed and compared in a systematic way. On this basis we will 

attempt an analysis of related published material, in order to illustrate where the concepts underlying 

ESSE are placed in the picture of decision support for software evaluation. Given the high number of 

related publications, only representative works will be referenced. It must be pointed out that direct 

comparison is not feasible because of the different target set by each of these works.  We will discuss 

first the main points of the referenced works in order to construct the final picture. 

Recently, various papers have suggested techniques and tools that are very helpful to a software 

manager or engineer but have a limited scope in respect with the list of the possible software 

evaluation problems, i.e. they deal with a specific evaluation problem (testing tools in [27], component 

off-the-shelf selection in [19]), with a specific project phase (requirements negotiation in [4]) or with a 

specific product attribute ([23] deals with the evaluation of a single criterion, quality). The work of 

Kontio [19] is particularly interesting because special attention is given to the definition of custom 

evaluation criteria. 

In [4], Boehm and Hoh state that "...given the overall scarcity of software expertise, it is worth 

trying to capture it and make it more broadly available via automated aids...". They have 

implemented a system aiming to assist the user in dealing with conflicting quality attributes during the 

user requirements definition phase, on the basis of a knowledge base. On the other hand, the method 

proposed by Meskens in [23] concerns software written in traditional languages such as COBOL or 

Pascal. The target of this work is program quality analysis, in order to highlight the characteristics of a 

computer program that is difficult to maintain. The ultimate goal is to suggest reengineering actions 

- 3 - 



 

through the improvement of various quality factors. The tool used is a set of checklists together with 

expert rules. 

Morisio and Tsoukias propose IUSWARE [25], a framework based on MCDA for the evaluation 

and selection of software products and can be considered as the methodological reference of ESSE. 

IUSWARE aims at the evaluation of software products in a formal and rigorous way and provides the 

basis for the design and application of an evaluation model. IUSWARE assumes that judgment is 

present in any evaluation and, consequently, measurement and judgment should be used jointly. The 

main software aspect considered is quality. 

In [2] Basili discusses the Goal-Question-Metric (GQM) paradigm for software evaluation 

through metrics. This approach focuses on the establishment of a direct link between the managerial 

and technical goals of a specific project and the software measurements needed to provide the 

necessary information for the project. These links are modeled by a directed graph, where the entry 

points are goals, the intermediate nodes are questions and the exit points are metrics. The GQM 

approach is well suited for the generation of non-formal problem descriptions (in the form of 

templates) and the respective constructive evaluation models. However, there is no specific support for 

the evaluation method needed for the application of these models. The GQM paradigm is applied 

within an environment that includes the Experience Factory, an organization working on developing 

software engineering knowledge. 

Recently, Boloix and Robillard [6] have also proposed a Software System Evaluation Framework, 

aiming to provide a tool to support the evaluation of a software system. This proposal is the one that 

seems closer to the nature and the objectives of ESSE. Evaluations in [6] are generated from a high 

level perspective and in short time. Simplifying mechanisms and elements (dimensions, factors and 

categories) are used. Three pre-defined model dimensions (software product, production process, 

impact on the organization) and three ratings (with the possibility of intermediate values) are used by 

this framework.  

 

Our Approach 

The system presented in this paper, ESSE, is designed to support generic software evaluation 

problem solving. ESSE proposes default evaluation models based on certain fundamental software 

attributes (quality, cost, solution delivery time, and compliance with standards), according to the 

evaluation problem. In addition, mechanisms are provided for flexible decision model construction, 

supporting the definition of new attributes and their hierarchy. Furthermore, embedded knowledge 

provides support for attribute quantification. 

In general, decision theory may be applied erroneously in two ways. The first is to use correctly a 

tool that is inappropriate for the problem in hand. If we wish to measure the volume of an object and 

we compute the average of the three dimensions we make such an error (it is always possible to make 

an average of three lengths, but it is useless). The second way is to use an appropriate tool, but not in a 

correct way. If we judge that software entity X is better than software entity Y, we are allowed to say 

- 4 - 



 

that X=2 and Y=1 (in the sense that X>Y because 2>1), but we are not allowed to sum or multiply 

such numbers because they are just ordinal measures. ESSE helps in detecting the second type of 

errors through its methodological knowledge base and provides advice about the correct use of the 

available tools (it will tell us for instance that we cannot use a weighted sum in presence of ordinal 

evaluations). The detection of the first type of errors requires the use of more complicated validation 

procedures exceeding ESSE capabilities. 

The advantages of ESSE are the flexibility in problem modeling and the built-in knowledge about 

software problem solving, all in an integrated environment with a common user interface. The 

evaluator is allowed to define his/her own attributes, along with their measurement definition, 

providing maximum flexibility in problem formulation and subsequent decision making, permitting 

better representation and resolution of both high and low level contradicting criteria. It is clear that, 

through these mechanisms, additional criteria, such as 'organizational impact' or 'benefit' [6], may be 

easily introduced in the evaluation model and that a well balanced evaluation result, with the optimum 

utilization of the evaluation resources, may be obtained. A quick result, based mainly on experience 

and intuition, may be reached by using only high level criteria, while a more sophisticated approach 

may be adopted through an expanded attribute structure, supported by measurements related to certain 

selected attributes. Moreover, expert knowledge is provided, allowing the detection of critical points in 

the model and, ultimately, the suggestion of the appropriate MCDA method and the quantification of 

software attributes. Already proposed knowledge based systems [23] for the quantification of software 

attributes are comparable to expert assistants in ESSE and, in fact, may be used as such.  

 

Features MESKENS 
1995 

BASILI 
1995 

BOLOIX 
1995 

KONTIO 
1996 

BOEHM 
1996 

MORISIO 
1997 

ESSE 
1998 

Problem Scope 
(>1 evaluation 
problems) 

 
 

 
•  

  
 

  
 

 
•  

Evaluation Scope 
(> 1 Criteria  
and /or attributes 
considered) 

 
•  

 
•  

 
•  

 
•  

 
•  

 
•  

 
•  

Custom Attribute 
Definition Support 

    
•  

   
•  

 
Knowledge Base 
 

 
•  

 
•  

   
•  

  
•  

Decision Support 
Mechanism 
 

   
•  

 
•  

  
•  

 
•  

 

Table 1: Summary view of representative works concerning software evaluation aspects. 

 

Table 1 provides a summary view of the referenced works, depicting the degree to which the most 

important aspects of software evaluation are covered. Although, as mentioned above, direct 

comparison is not possible, it is evident that ESSE supports all important dimensions of software 

- 5 - 



 

evaluation, achieving the integration of different technologies, namely automated decision support and 

knowledge based systems. 

Finally, another interesting initiated research activity [5] has also a wide scope and focuses on the 

"...need for knowledge-based support systems that assist senior management in requirer, acquirer and 

developer organizations to determine the overall feasibility of a proposed software system 

architecture, together with the system's requirements, at the earliest possible time and continuing 

thereafter". It is expected that projects like this, striving for ‘knowledge-based support systems’, will 

address acquisition problems in a way similar to the approach presented in this paper. These systems 

will inevitably incorporate decision making support (selection among various architectural solutions, 

decisions related to project evolution), integrated with more or less stand-alone modules, based on 

human expertise. 

 

3. Software Evaluation with Multiple-Criteria Decision Aid (MCDA) 

 

An evaluation problem solved by MCDA can be modeled as a 7-ple {A,T,D,M,E,G,R} where 

[35]: 

- A is the set of alternatives under evaluation in the model 

- T is the type of the evaluation 

- D is the tree of the evaluation attributes 

- M is the set of associated measures 

- E is the set of scales associated to the attributes 

- G is the set of criteria constructed in order to represent the user's preferences 

- R is the preference aggregation procedure 

 

In order to solve an evaluation problem, a specific procedure must be followed [25]: 

 

Step 1: Definition of the evaluation set A: The first step is to define exactly the set of possible choices. 

Usually there is a set A of alternatives to be evaluated and the best must be selected. The evaluation of 

a single alternative is a problem that arises rarely. In this case, we have to define a prototype entity, 

which fulfills specific requirements. The evaluation of a single alternative is then translated to the 

comparison between the actual one and the defined prototype. The definition of A could be thought as 

first-level evaluation, because if some alternatives do not fulfill certain requirements, they may be 

rejected from this set. Finally, evaluation can take place not only for a software product as a whole, 

but also for parts of it or for certain processes of particular interest (such as production, maintenance 

etc.) 

 

Step 2: Definition of the type T of the evaluation: In this step we must define the type of the desired 

- 6 - 



 

result. Some possible choices are the following: 

- choice: partition the set of possible choices into a sub-set of best choices and a sub-set of not 

best ones. 

- classification: partition the set of possible choices into a number of sub-sets, each one having 

a characterization such as good, bad, etc. 

- sorting: rank the set of possible choices from the best choice to the worst one. 

- description: provide a formal description of each choice, without any ranking. 

 

Step 3: Definition of the tree of evaluation attributes D: This is the most important step of the 

evaluation process. In this step we must define the attributes that will be taken into account during the 

evaluation and their hierarchy.  

Attributes that can be analyzed in sub-attributes are called compound attributes. Sub-attributes can 

also consist of sub-sub-attributes and so on. The attributes that can not be divided further are called 

basic attributes. An example of such an attribute hierarchy, which is part of the one used in the 

example of section 6, is shown in figure 1. 

Entity to
be evaluated

Quality
(compound)

Cost
(basic)

Functionality
(compound)

Reliability
(compound)

Usability
(compound)

Efficiency
(compound)

Understandability
(compound)

Learnability
(compound)

Operability
(compound)

Portability
(compound)

Usability of manual
(compound)

On line help
(basic)

Fog index
(basic)

Examples/command
(basic)

index entries/command
(basic)

 
Figure 1: Example of an attribute hierarchy 

 

The definition of D reflects the point of view under which we make the evaluation. There are two 

different approaches in an evaluation problem. In the first approach, named “fixed models” [26, 27], a 

fixed structure is used, where D has been definitely identified and customized for a particular domain 

and type of evaluation. In such cases we have just to fill in the measures. This approach is easy to use 

but lacks flexibility. In the second approach, named “constructive models”, a general model must be 

customized [14, 18]. In this approach, D is a tree of predefined attributes, depending on the kind of the 

- 7 - 



 

problem. D may be expanded, modified or reduced. In this case there is more flexibility, but user 

experience is also required.  

A significant constraint is the mutual independence of the attributes. If there is redundancy among 

them and an MCDA method is used for aggregation, the result will be wrong. Consequently, in 

constructive models it is important to test for redundancy.  
 

Step 4: Definition of the set of measurement methods M: For every basic attribute d we must define a 

method Md that will be used to assign values to it. There are two kinds of values, the arithmetic values 

(ratio, interval or absolute) and the nominal values. The first type of values are numbers, while the 

second type are verbal characterizations, such as "good", "bad", "big", "small", etc.  

A problem with the definition of Md is that d may not be measurable, because of its measurement 

being non-practical or impossible. In such cases an arbitrary value may be given, based upon expert 

judgment, introducing a subjectivity factor. Alternatively, d may be decomposed into a set of sub-

attributes d1, d2, … dn, which are measurable. In this case the expression of arbitrary judgment is 

avoided, but subjectivity is involved in the decomposition. 
 

Step 5:  Definition of the set of measurement scales E: A scale ed must be associated to every basic 

attribute d. For arithmetic attributes, the scale usually corresponds to the scale of the metric used, 

while for nominal attributes, ed must be declared by the evaluator. Scales must be at least ordinal, 

implying that, within ed, it must be clear which of any two values is the most preferred (in some cases 

there are different values with the same preference). For example, for d = 'operating system', ed could 

be [UNIX, Windows NT, Windows-95, DOS, VMS] and a possible preference could be [UNIX = 

Windows NT > Windows-95 = VMS > DOS].  

 

Step 6: Definition of the set of Preference Structure Rules G: For each attribute and for the measures 

attached to it, a rule has to be defined, with the ability to transform measures to preference structures. 

A preference structure compares two distinct alternatives (e.g. two software products), on the basis of 

a specific attribute. Basic preferences can be combined, using some aggregation method, to produce a 

global preference structure. 

For example, let a1 and a2 be two alternatives and let d be a basic attribute. Let also md(a1) be the 

value of a1 for d and let md(a2) be the value of a2 for d. Suppose that d is measurable and of positive 

integer type. In such a case, a preference structure rule could be the following: 

• product a1 is better than a2 on the basis of d, if md(a1) is greater than md(a2) plus K, where K is a 

positive integer 

• products a1 and a2 are equal on the basis of d, if the absolute difference between md(a1) and md(a2) 

is equal or less than K, where K is a positive integer 

 

Step 7: Selection of the appropriate aggregation method R: An aggregation method is an algorithm, 

- 8 - 



 

capable of transforming the set of preference relations into a prescription for the evaluator. A 

prescription is an order on A. 

The MCDA methodology consists of a set of different aggregation methods, which fall into three 

classes. These are the multiple attribute utility methods [17], the outranking methods [35] and the 

interactive methods [34]. The selection of an aggregation method depends on the following parameters 

[35]: 

• The type of the problem 

• The type of the set of possible choices (continuous or discrete) 

• The type of measurement scales 

• The kind of importance parameters (weights) associated to the attributes 

• The type of dependency among the attributes (i.e. isolability, preferential independence) 

• The kind of uncertainty present (if any) 

 

Notice that the execution of the steps mentioned above is not straightforward. For example, it is 

allowed to define first D and then, or in parallel, define A, or even select R in the middle of the 

process. An illustrative example is presented in section 6. 

 

4. The Expert System Structure 
 

ESSE consists of two main parts, the Intelligent Front End (IFE) and the Kernel. The structure of 

the system is shown in figure 2 while the various parts are described in the following. 

 

4.1 Intelligent Front End 

 

The profile of a typical user of the system is expected to be a medium-range manager or a 

software engineer, with an average knowledge of software engineering practice, but not necessarily 

familiar with such aspects as systematic cost estimation and quality evaluation. Moreover, the user 

may be trained neither in software evaluation nor in multicriteria methodology. While the former 

could be part of his/her background, the latter may be quite unknown.  

The role of the IFE is to guide the evaluator in the correct application of the MCDA methodology 

and to provide expertise on software attribute evaluation. The IFE supports the collection of the 

necessary information and the validation of the model created. Validation is achieved both through 

tutorials (on line help) and through expert rules that identify model critical points. Software attribute 

evaluation is supported through Expert Assistants. 

IFE consists of three modules, namely User Interface, IFE Tools and Expert Assistants, described 

in the following: 

 

- 9 - 



 

user

Intelligent Front End (IFE)
IFE Tools

• Problem type selection
• Editing of attributes
• Definition of the

evaluation set
• Storing capabilities
• etc.

User Interface
• Menus
• Dialog boxes
• etc.

Kernel

Knowledge Base

INFERENCE
ENGINE

Agenda

Working Memory

Instances

MCDA Knowledge Base
• MCDA application rules
• Check Rules (data integrity,

attribute association, etc)
• MCDA method selection rules

Domain Knowledge Base

• Types of evaluation problems
• Attribute structures
• Metrics

Expert Assistants
 
• Quality assistant
 
• Cost/Time assistant
 

 

 
Figure 2: The structure of ESSE 

 

4.1.1 User Interface 

This module is responsible for the communication between the user and the other modules of 

ESSE. Communication is accomplished through menus, dialog boxes and other window facilities (see 

figures 3 through 5, in section 6). The friendly interface of ESSE makes possible the use of the system 

by relatively inexperienced users (see discussion at the end of section 6). 

 

4.1.2 IFE Tools 

IFE Tools are invoked by the User Interface to perform tasks related with the construction of the 

evaluation model. The most important tasks performed by these tools are the selection of a problem 

type, the definition and modification of attributes, the definition of the evaluation set and various 

storing tasks, briefly described in the following: 

a) Problem type selection 

Each time the evaluator initiates a new evaluation problem, a problem type must be selected. As it 

will be described in paragraph 4.2.1, ESSE’s knowledge base maintains a number of different 

evaluation problem types. According to the type of the problem that will be selected, ESSE proposes 

to the evaluator a subsequent tree of evaluation attributes, based on its domain knowledge base. 

b) Editing of attributes 

- 10 - 



 

According to the selected problem type a hierarchy of default attributes is proposed to the 

evaluator. The user can modify their definitions, create new and delete existing ones. 

c) Definition of the evaluation set 

This tool enables the definition and the modification of the evaluation set A, i.e. the software 

entities to be evaluated. 

d) Storing capabilities 

This tool provides the ability to store problems in the historical database. Stored problems can be 

recalled later for further processing. Moreover, it is allowed to store separately only the attributes and 

their structure, creating additional problem types. 

 

4.1.3. Expert Assistants 

These modules support the assignment of values to basic attributes. Human knowledge, related to 

software evaluation attributes, has been accumulated in the past. ESSE includes expert assistants for 

the estimation of software development cost and time and software quality. Whenever the need for 

estimation of the above software characteristics appears, the expert assistants may be invoked. A brief 

description of these two modules follows. 

a) Cost/Time Expert Assistant 

Humans have been involved in cost and schedule (time) assessments since the first days of 

computer science. Methods for software development cost estimation fall in three main categories, 

namely expert judgment, estimation by analogy and algorithmic cost estimation [3]. Expert judgment 

relies purely on the experience of one or more experts. Estimation by analogy compares the software 

project under consideration with a few (two or three) similar historical projects (i.e. projects with 

known characteristics, effort and schedule). Algorithmic cost estimation involves the application of a 

cost model, i.e. one or more mathematical formulae which, typically, have been derived through 

statistical data analysis. 

Modern software cost estimation consists of various activities, i.e. the set-up of an appropriate 

estimation environment (selection and acquisition of methods and tools and collection of historical 

data), the definition of a cost estimation strategy for a specific software project, the application of one 

or more cost estimation methods, the combination of estimates obtained through the application of 

different methods and the assessment of the estimate reliability. Various sub-modules cover all the 

activities mentioned above, incorporating experience from many different estimation situations. 

In particular, the task of generation of estimates is supported mainly through the use of 

algorithmic models. A lot of expertise is needed in order to avoid the pitfalls of these sophisticated 

tools and use correctly their results. ESSE provides two popular tools, COCOMO [3] and Function 

Point Analysis [1, 15], along with rules for their correct application. However, the application of other 

estimation tools is allowed and an existing knowledge base assists the use of a number of commercial 

- 11 - 



 

products. These tools differ in terms of estimate reliability, usability, suitability to a specific 

application domain, etc. According to the software life cycle phase during which the evaluation takes 

place (before, during or after development), the evaluator is advised on the feasibility, precision etc. of 

the measurements that will be needed. For example, the estimation of software size is much more 

difficult during the requirement definition phase than after product delivery and is supported by rules 

for the correct sizing of a software product in terms of source code length. 

An interesting point is that ESSE's concepts may be applied in the context of expert assistants as 

well. As an example, consider the problem of algorithmic model quality assessment, part of the 

estimation environment sub-module. Models are characterized through a number of criteria such as 

constructiveness, stability ([3], chap. 28 ) and they may be evaluated and compared through a multiple 

criteria analysis. The problem of cost model selection may be described using ESSE, each cost model 

criterion may be assessed through guidelines based on expertise and, finally, any available MCDA 

method in ESSE may be employed to provide aggregate model assessment and selection. In addition, 

ESSE provides the results of a completed quality assessment between a number of available 

commercial tools for cost estimation and time.  

The knowledge base of the cost expert assistant described above, has been derived from the 

authors’ experience in software cost modeling and the extensive use of commercial tools in a 

telecommunications environment [7, 9]. However, the knowledge base is not biased towards any 

specific type of systems, since various system typologies can be found in the telecommunications field 

(network management systems, management information systems, billing systems, real-time systems, 

etc.). Additionally, the rules related to the estimation strategy may be applied to an arbitrary cost 

estimation situation. 

b) Quality Expert Assistant 

This module supports the quantification of quality basic attributes. The quality expert assistant has 

the form of on-line help, proposing measurement methods. The following example provides 

instructions for assigning values to the attribute 'stability' which is sub-attribute of 'maturity' [14]. As 

mentioned above, this knowledge comes mainly from published results in software engineering 

studies. 

To estimate the stability of a product, the following metrics 

may be taken into account: 

- number of corrected faults 

- estimated number of total faults 

To estimate the number of total faults you have to fit the curve  

of the distribution of corrected faults versus time and integrate it.  

Stability can be expressed as the ratio of the above metrics. 
 

Similar instructions are provided for the majority of the basic quality attributes proposed by 

ESSE. 

- 12 - 



 

 

4.2 Kernel 

 

The kernel of ESSE consists of three main parts: the Inference Engine, the Working Memory and 

the Knowledge Base.  

The Inference Engine is used each time a set of rules is invoked by the rule agenda. Rules used by 

ESSE follow the forward chaining reasoning technique [11]. At each cycle of the inference process, a 

rule, with satisfied conditions, is triggered and its 'then' part is executed. If no rule conditions are 

satisfied, the inference process stops and either another set of rules are invoked, or the control is 

returned to the Front End.  

The Working Memory keeps information about the current status of the evaluation problem. It is 

represented with instances of frames defined in the knowledge base. For example, working memory 

includes instances with the current values of the attributes for each choice of the evaluation set.  

The Knowledge Base is the most significant part of the system. It consists of two parts, namely the 

MCDA Knowledge Base and the Domain Knowledge Base. In the following sub-sections these 

modules are presented in detail. 

 

4.2.1 Domain Knowledge Base 

This part of knowledge base contains structural knowledge in the form of frames. It contains 

knowledge about various types of evaluation problems, attribute definitions and metrics. More 

specifically:  

a) Types of evaluation problems 

There are various types of software evaluation problems. Each time the evaluator encounters an 

evaluation problem of a type that has been met in the past, the system proposes a default attribute 

hierarchy, recalled from the Domain Knowledge Base, which can be reused with any modifications. 

When applicable, this facility significantly reduces the evaluation effort. Moreover, using the storing 

capabilities of the front end, the evaluator can define his own problem types.  

The types of problems supported by ESSE are the following:  

i) Keep or Change: This situation arises when a particular software product is already in place and, 

due to certain business needs, it is examined whether it is still valid or should be replaced by a new 

product.  

ii) Make or Buy: This situation arises when a particular software product is required due to the 

business needs of a company and a decision must be made: should the product be acquired from a 

choice available in the market or should the product be developed under the control of the company? 

- 13 - 



 

iii) Commercial Products Evaluation: In this situation, a decision has been made to buy a ready-to-use 

commercial product and there are more than one such products. Each of these products should be 

evaluated and the most suitable will be acquired. 

iv) Tenders Evaluation: Such a situation occurs mainly after an "external buy" decision is made. In 

this situation, the evaluation will be based on the specifications of the different tenders. 

v) Software certification: This is typically an activity carried on by a testing laboratory, either 

specialized in specific software or general purpose (commercial products). The evaluation could be 

done either according to the national or international standards, or according to the demander of the 

certification. 

vi) Software process evaluation: Software products are manufactured through software development 

processes. An evaluation problem arises when a software process must be chosen for the development 

of a specific product or as a standard software corporate process.  

vii) Software architecture selection: In this situation we must choose one software platform among 

others, i.e. Windows NT or UNIX, Oracle or Ingress, etc. Alternatively, a specific architectural style 

may be chosen for an information system. 

viii) System Design Selection: In this situation we must choose one out of N possible design options 

(for example, when defining the detailed software architecture of the product to be developed).  

Although covering a large range of possible situations, the list of problem types presented does 

not constitute an exhaustive list. Moreover, it is possible to find combined problem situations that span 

over more than one of these items. ESSE does not provide currently an automated combination of 

different problem types, an issue that is in our future plans. However, since ESSE does not oblige the 

user to follow specific problem formulations, it is still possible to take advantage from the experience 

with typical problem types. 

Past evaluation results are handled in a relatively simple way. Upon request, the system presents a 

list with the types of evaluation problems that have been met in the past. The user selects the problem 

type that matches the evaluation situation in hand. At this point, he may consult the list of problem 

instances of the selected type that have been solved in the past. 

Feedback is given through structured comments of the decision-maker. For instance, an evaluation 

is rated as “successful”, if the result has been judged as satisfactory (e.g. a commercial product has 

been chosen and has been used for some time with acceptable performance). Comments may include 

tips for improvements in the evaluation process that has been followed. In case of evaluation “failure”, 

a list of points where wrong steps have been taken (wrong measurement method, disproportionate 

weight assignment) may be provided, along with suggestions for possible amendments.  

At this point, the user may select a successful solution and follow the steps of the previous 

decision maker, or try a less successful case, for which it is clear how to proceed, taking profit from 

the errors made in the first place. In this case, he inherits all reusable information and knowledge in his 

- 14 - 



 

problem. Alternatively, he is allowed to start from scratch and define a new problem type, provided 

that some basic evaluation elements are different from those of the already existing problem types (e.g. 

a new attribute structure is needed).  

b) Attribute structure 

Whenever the evaluator decides that the problem to be solved matches one of these typical 

problems, a standard predefined structure of attributes is proposed by the system. Typically, the 

solution proposed consists of a constructive model, where the tree of attributes D contains three or 

four top-level attributes. However, it is always possible to modify the proposed model to match the 

specific problem requirements. The default top-level attributes are: 'Quality', 'Cost', 'Time' and 

'Standards' and are discussed separately in the following paragraphs. Cost of production, time to 

market and quality have been identified as most important in the software industry [15]. Compliance 

with standards has been added to accommodate the increasing demand for software complying with 

specific standards. These four attributes are used frequently in software evaluations and there is a 

significant amount of human experience to support them. Moreover, frequently a veto preference is 

expressed on them (meaning that the failure of an alternative to satisfy the thresholds imposed on one 

of these attributes will result in the rejection of this alternative).  

i) 'Quality' is defined [14] as the set of attributes of a product or part of it that determine its ability 

to satisfy stated and implied needs. Each of these attributes can be decomposed into sub-attributes. 

Each basic attribute is assessed according to measurements and expert judgment, supported by 

historical data. According to [14], quality is decomposed in the following way (in the parentheses are 

the sub-attributes of each attribute of quality): 

'Functionality' ('suitability', 'accuracy', 'interoperability', 'compliance', 'security') 
'Reliability' ('maturity', 'fault tolerance', 'recoverability', 'availability') 
'Usability' ('selectability', 'learnability', 'operability') 
'Efficiency' ('time behavior', 'resource utilization') 
'Maintainability' ('analyzability', 'changeability', 'stability', 'testability') 
'Portability' ('adaptability', 'installability', 'conformance', 'replaceability') 

The attributes referenced above within parentheses can be further decomposed. For example, 

'operability' may be decomposed in 'availability of setup installation', 'default value availability ratio', 

'message clearness', 'mean time between human errors', 'ultimate operation time', 'status or progress 

report availability ratio' and 'human error operation cancelability ratio'. 

ii) 'Cost' and 'Time', in the most general case, are composed of acquisition, customization, training, 

operation and maintenance cost and time. Evaluation resources used are cost estimation methods and 

tools (expert judgment, estimation by analogy, algorithmic cost models), statistics and historical data 

on past software projects. 

- 15 - 



 

iii) 'Standards' denotes the compliance with international, national or corporate standards and is 

assessed according to inspections and validation tests on the specifications or the software 

product/process itself. 

 

As an example, the frame that defines the attribute 'availability of setup installation', which is sub-

attribute of 'operability' is as follows: 

frame 'availability of setup installation' is an attribute; 

default type is 'nominal' and 

default list is {'yes', 'no'} and 

default unit is unknown and  

default parent is 'operability' and  

default weight is 0.5 . 

For each attribute the system maintains the type, the valid values, the unit, the weight and the 

parent attribute. ESSE supports three types of attributes with the characterizations 'arithmetic', 

'nominal' and 'no type'. Usually basic attributes are either 'arithmetic' or 'nominal', whereas compound 

attributes are of 'no type'. 

In MCDA, an attribute is introduced at the appropriate hierarchy level (i.e. either as a basic or as a 

compound one), depending on its importance. As an example, consider 'Standards', which is proposed 

by ESSE in various problems. Along with this default option, an alternative solution is the 

introduction of 'compliance' (sub-attribute of 'Quality') instead of 'Standards', if this problem 

characteristic is considered by the evaluator of less importance than the other top level attributes. 

As another example, consider again the quality hierarchy described in [14]. Some of these 

attributes are related to 'Cost' rather than pure 'Quality'. These are 'Usability', 'Maintainability' and 

partially, 'Portability', which are defined in terms of "...effort to understand, learn, operate, analyze, 

modify, adapt, install, etc". Exceptions may be 'Stability' (defined as the risk of unexpected effects 

from modifications), 'Adaptability' (defined as the effort required to adapt a software product to 

different specified environments) and 'Replaceability' (defined as the opportunity and the effort 

required to put a software product in place of other specified software).  

The system proposes either the standard quality structure of [14] or refined solutions, in which 

these dependencies and redundancies have been resolved (e.g. redundant sub-attributes have been 

removed). In all cases, due to the check rules in the MCDA knowledge base that will be discussed 

later, possible dependencies and redundancies will be detected, resulting in warning messages and 

advising on the eligible MCDA methods. 

c) Metrics 

As already discussed in section 3, the fourth step of the application of MCDA is the definition of 

the measurement methods to be used in the decision process. In case that the decision maker wishes to 

adopt a custom criterion or the problem is not of a known type, the system will prompt for attribute 

- 16 - 



 

structure and measurement profile for each attribute, in the form of the 4-tuple <value type, range, 

weight, metric>, e.g. <ratio,0-100, 0.5, currency>.  

There has been much research into the usefulness of various software metrics and there is 

empirical evidence that some of them are related to various software product and process attributes. 

Examples of software metrics are the McCabe complexity metric [22], the Halstead measure [12], the 

source code length [8], the Function Points [1, 15], etc. Additionally, CASE tools have been available 

for many years and widely used, providing, among other, automatic support for software 

measurement. Consequently, a software evaluator may wish to utilize modern software measurement 

results in some points of his/her software evaluation model, with the necessary precautions in metrics 

use [10]. ESSE supports the correct use of software metrics, by offering embedded knowledge about 

the proposed measurement methods in the related literature and the up to date metric and attribute 

inter-relationship findings, through the appropriate expert assistants and consistency check rules. 

ESSE’s knowledge base provides a metrics library consisting of typical business metrics (such as 

currency, time) and metrics specific to software [10]. Moreover, Prolog facts represent the 

relationships between metrics, derived from experience and practice in software engineering. For 

example, a straightforward relationship exists between man-months (effort) and currency 

(development financial cost). Another example are the various hypotheses that have been made for the 

possible correlation between the McCabe complexity metric (MCM) and number of defects (ND) and 

between MCM and source code length (SCL) [33]. ESSE implements this knowledge in terms of facts, 

such as: 

associated( 

metric(MCM), 

metric(ND) 

because(explanation), 

  ). 

and the explanation is «… a study by Troster on a large SQL product has revealed a relatively strong 

statistical correlation between the two metrics». Although in some cases, associations between 

attributes are straightforward, in subtle situations the model consistency check is quite useful. The 

knowledge embedded in the system has been extracted from published results of related studies [10, 

16] and is continuously updated, as more results become available. User defined ad hoc metrics, 

metrics inter-relationship definition and explicit inter-relationship between attributes (such as those 

described in [4]) are also allowed by the system. Attributes and their characterization are captured and 

inserted in the library for future reuse and consultation. 

 

4.2.2 MCDA Knowledge Base 

This part of knowledge base contains behavioral knowledge in the form of production and 

deductive rules. We can distinguish these rules in the following groups: MCDA application rules, 

Check rules and MCDA method selection rules. More specifically:  

- 17 - 



 

a) MCDA application rules 

These rules are mainly deductive rules and perform the various steps of the supported MCDA 

methods. Currently, three MCDA methods have been implemented, namely Weighted Average Sum, or 

briefly WAS [35], ELECTRE II [28] and ELECTRE IV [13]. WAS is a multiple-attribute utility 

method, which requires ratio scales at the level of basic attributes and the definition of weights in 

terms of trade-offs for all attributes. ELECTRE II is an outranking method that can deal with both 

arithmetic and nominal attributes with weights while ELECTRE IV is an outranking method that 

ignores weights completely. 

b) Check rules 

These are productive rules and are used to verify the validity and integrity of the evaluation 

model. We can distinguish two types of check rules. The first type deals with the data integrity of the 

evaluation model, to ensure that the selected MCDA method is applicable. This is accomplished by 

verifying that values and weights (if needed) have been assigned to all basic attributes, otherwise 

warning messages are displayed.  

The second type of check rules deals with attribute associations. For the correct application of the 

MCDA methodology, redundancies are not allowed between the selected attributes. These rules check, 

using the domain knowledge base, the existence of redundancies between the attributes of the 

evaluation model and display appropriate warning messages. 

c) MCDA method selection rules 

This part of the MCDA knowledge base contains production rules which help the user to select 

the MCDA method that is eligible for the application of the model, taking into account the attribute 

hierarchy and the defined measurement profiles. For instance, methods that do not use weights are 

expected to have a lot of top level attributes, while methods that do use weights may have few top 

level attributes (e.g. only two). The corresponding rule is: 

IF count(top_level (Attribute),X) and X is less than 4  

THEN suggest_usage_of_weights. 

Another rule proposes an outranking method if there are basic attributes that are not arithmetic: 

   IF basic_attribute(Attribute) AND 

   Attribute's type is different from 'arithmetic' 

   THEN  suggest_usage_of_outranking_method. 

 

5. Implementation Issues 
 

Currently a prototype of the system has been developed, using as development platform both LPA 

WinProlog1 and Flex Expert System Shell [21], running on MS-Windows Personal Computer. Both 

                                                           
1 LPA Prolog and Flex are trademarks of LPA Ltd, London England 

- 18 - 



 

LPA WinProlog and Flex provide a large number of high-level programming primitives. LPA 

WinProlog in particular, provides many graphical primitives, which have helped the development of 

the Intelligent Front End.  

The Domain Knowledge Base (attributes, evaluated entities, etc.) is represented with frames, 

instances (supported by FLEX) and facts (supported by Prolog) and is stored in text files. In this way, 

it can be accessed either with ESSE or with a text editor. The MCDA Knowledge Base is represented 

with production rules, supported by Flex and deductive rules, supported by Prolog. 

Quality and Cost expert assistants have been implemented, as described in section 4. Moreover, 

other expert assistants have been integrated with ESSE. For example, the Function Points Assistant 

(FPA) supports the calculation of the functionality of a software product, using Function Points 

Analysis. The measurement of Function Points may be involved in functional size and cost-time 

estimation.  

 

6. Example 
 

As an example, we will use the evaluation of three commercial expert system shells. According to 

section 3, the first step is to define the evaluation set A, which is the following: 

• FLEX Expert System Shell developed by Logic Programming Associates 

• NExpert developed by Neuron Data 

• CLIPS developed by NASA. 

The second step is the definition of the type of the evaluation. Currently ESSE supports only 

sorting. This type is the most general, ranking the elements of A from the best to the worst.  

The third step is to define the tree of attributes D. In order to do this, the user must select the type 

of the problem. This example was classified as a 'Commercial Products Evaluation' problem. For this 

type of problem, ESSE proposes three top-level attributes, 'Quality', 'Cost' and 'Time'. 'Time' was 

considered irrelevant by the evaluator, because the commercial products under consideration were 

already developed and no customization activities were foreseen. 'Cost' was not analyzed further but 

was the official price of each product. 

                                                                                                                                                                                     
 

- 19 - 



 

As described in 4.2.1b, 'Quality' is decomposed in six sub-

attributes, namely 'functionality', 'reliability', 'usability', 

'efficiency', 'maintainability' and 'portability'. 'Maintainability' 

was removed, because it was irrelevant for the systems under 

evaluation. The rest of the sub-attributes were modified in order 

to fit better to the characteristics of the expert system shells. For 

example, new sub-attributes were added to 'functionality', such 

as 'forward chaining', 'backward chaining', 'multiple inheritance' 

(see figure 3). 

Some of the basic attributes were defined as 'arithmetic' 

while some other as 'nominal'. To each arithmetic attribute a 

scale was assigned, whereas to each nominal attribute valid 

values were defined (steps 4 and 5, according to section 3). 

Moreover, weights were assigned to all of them. Notice that in 

general, each weight must be a non-negative number, without any upper limit. What are taken into 

account are the ratios between the weights of attributes with common parent. For example, 

'functionality' was given a weight equal to 8 while 'usability' was given a weight equal to 4. This 

means that 'functionality' was twice important as 'usability', according to our point of view.  

 
 

Figure 3: The definition of attribute 
'forward chaining' 

Thresholds were assigned to all arithmetic basic attributes and to all intermediate compound 

attributes (step 6). The threshold of an attribute indicates how much one software entity must surpass 

in this attribute another entity, so that the former be considered better than the later, with respect to 

this attribute. These thresholds are used by outranking aggregation methods, such as ELECTRE. 

After constructing the evaluation model, the system suggested the use of ELECTRE II (step 7 of 

section 3). For this suggestion the two rules referenced in 4.2.2c fired. The first rule detected that the 

top-level attributes are only two and suggested the use of a method that 

employs weights. The second rule detected that the model had nominal 

basic attributes and suggested the use of an outranking method. The 

only implemented method fulfilling these requirements is the 

ELECTRE II, which is both an outranking method and supports 

weights.  

Finally, values were assigned to the basic attributes of each 

product. This task was assisted by the help facility provided by the 

quality expert assistant, guiding the measurement activities. In figure 4, 

instructions for the measurement of 'usability of manual', sub-attribute 

of 'learnability', are provided. Appendix A presents all the attributes used in this example, along with 

types, ranges, weights and values assigned to the three products for each of the basic attributes. 

 
 

Figure 4: Expert assistant for the 
attribute 'usability of manual' 

 

- 20 - 



 

The final step is to carry out this method and obtain the results. ELECTRE II ranked the three 

products in the following way (figure 5): 

 
 

Figure 5: Results obtained 
with ELECTRE II 

 

CLIPS > FLEX > NExpert 

  

The low price of CLIPS played an important role in 

the result. In order to evaluate the products taking into 

account only their quality, we set the weight of 'Cost' equal 

to 0 and carried out one more evaluation using ELECTRE 

II, with the following results: 

 

FLEX > CLIPS > NExpert 

 

It is worth mentioning that the above results are perfectly consistent with the authors' impression 

of these products. After completing the above example, the attributes used in this problem were saved 

into a file, without details for the evaluation set, in order to be reused in future evaluations with 

problems for the same type.  

Having in mind the example above, it should be noticed that the results reflect the point of view 

under which the evaluation is performed. Carrying out the evaluation under a different point of view, 

i.e. with a different attribute hierarchy and/or weights, the final results might have been different. 

Though, no system can prevent the user from assigning arbitrary weights to the attributes or defining a 

meaningless attribute hierarchy and, ultimately, obtain any result from the evaluation process. What 

ESSE does here is the proposal of a reasonable attribute hierarchy together with weights. However, it 

must be noted that assigning weights to attributes is not a key issue by itself. The real key issue is the 

choice and the implementation of the aggregation procedure, since we know that there exists no 

universal procedure for preference aggregation. ESSE provides methodological knowledge on how to 

choose the most appropriate aggregation procedure and further it provides advice on how to define 

correctly its parameters. It is up to the user's responsibility to make good use of ESSE's features for 

his/her own benefit.  

Finally, ESSE does not implement a precise procedure for sensitivity and robustness analysis, but 

facilitates such analysis providing the possibility to test different combinations of the parameters. 

However, the system is quite insensitive to small variations of the attribute values and weights. This is 

a main characteristic of the MCDA methodology and especially of the outranking methods and is due 

to the thresholds that are used by them. For example, in order that ELECTRE concludes that product 

X is better than product Y, X must substantially surpasses product Y in an adequate number of 

attributes. With small variations in the values of the attributes and/or the weights it is impossible to 

conclude that product Y is better than product X (although it is possible to conclude that the two 

products are of equal preference). 

- 21 - 



 

The above example demonstrates how the authors have used ESSE for an evaluation of their 

interest. However, other users have employed the system as well. Recently, ESSE has been used by a 

large transport organization, which was faced with a rather typical evaluation problem: the evaluation 

of certain proposals for the evolution of its corporate information system [31]. Moreover, ESSE has 

been used for the evaluation of educational software products [32]. In this case, the knowledge base of 

the system has been enhanced with a number of additional attributes, concerning the educational 

effectiveness of the various products. In all cases, ESSE has helped the evaluators in the construction 

and correct application of the evaluation framework for each problem. 

 

7. Conclusions and Future Work 
 

In this paper we described ESSE, a prototype expert system for software evaluation that embodies 

the Multiple-Criteria Decision Aid methodology. It is obvious that the software evaluation process is a 

complicated task. Issues, such as selection of the appropriate attributes, creation of their hierarchy, 

assignment of relative weights to them and application of a sound decision aid methodology arise 

frequently for non-experienced users but also for skilled ones.  

ESSE, through its Domain Knowledge Base, helps the evaluator to select the appropriate criteria, 

according to the type of the evaluation problem and construct the evaluation model. Evaluation models 

for various types of software evaluation problems solved in the past are stored in the knowledge base. 

The evaluator can reuse these models in new problems, having the ability to modify them by adding, 

removing and modifying attributes. In addition, the MCDA Knowledge Base, supports the selection of 

an appropriate MCDA method, according to the problem formulation.  

The Expert Assistants support the quantification of the basic attributes used in the evaluation. The 

Cost Expert Assistant helps the evaluator to select and apply the appropriate cost model in order to 

estimate the cost of a software development project, while the Quality Expert Assistant, in the form of 

on-line help, guides the evaluator to assign values to basic attributes related to quality. Finally ESSE 

allows the feedback of evaluation results, in order to capture the evaluator’s satisfaction and therefore 

facilitate future reuse of the evaluations. 

Our future plans foresee the integration of more MCDA methods in ESSE, such as other 

outranking and multiple attribute utility methods, some interactive methods, etc. We will explore the 

applicability of the supported MCDA methods to the various types of software evaluation problems, 

obtaining rules of experience. Moreover, it is planned to maintain the knowledge bases, by inserting 

new findings in software engineering practice and by applying ESSE to numerous software evaluation 

problems of different types. We are also working on a user directed algorithm for automated 

combination of past evaluation problems. 

Finally, an interesting idea is the development of a WEB based version of the system. The 

purpose of this version is twofold: first, many people could take advantage from the use of the system 

and second, the enhancement of the knowledge base of the system could be accelerated drastically. 

- 22 - 



 

As a conclusion, we believe that ESSE is a useful tool for decision-makers dealing with software 

evaluations and will contribute in clarifying and standardizing in the future this vague area.  

 
 
Acknowledgements 

 

We would like to thank the anonymous referees of the KBS journal for their helpful comments on 

the first submitted version of the paper. 

- 23 - 



 

References 
 
[1] Albrecht A.J. and Gaffney J.E., Software function, source lines of code and development 

effort prediction: a software science validation, IEEE Trans., 6 (1983), 639-648. 
[2] Basili V.R., Applying the GQM paradigm in the experience factory, in N. Fenton, R. 

Whitty and Y. Iizuka ed., Software Quality Assurance and Measurement, (Thomson 
Computer Press, London, 1995) 23-37. 

[3] Boehm B.W., Software Engineering Economics (Prentice-Hall, 1981). 
[4] Boehm B., In Hoh, Aids for Identifying Conflicts Among Quality Requirements, IEEE 

Software, (1996). 
[5] Boehm B. and Scacchi W., SAMSA: Simulation and Modeling for Software 

Acquisition: Air Force Opportunities, Extended Report (1997). 
[6] Boloix G. and Robillard N.P., A Software Evaluation Framework, IEEE Computer, vol. 

28, no.12, (1995) 17-26. 
[7] Capacci C. and Stamelos I., Constructing Software Cost Models, Proc. 2nd Conf. on 

Achieving Quality In Software (1993). 
[8] Conte S.D., Shen V.Y. and Dunsmore H.E., Software Engineering Metrics and Models 

(Benjamin Cummins Publishing Inc., 1986).  
[9] Costamagna M., De Bonis R., Squarotti R. and Stamelos I., An Integrated Environment 

for Productivity Assessment of Telecommunications Software, Proc. European 
Conference on Software Cost Modelling '95, pp. 21.1-21.16 (1995). 

[10] Fenton N., Software metrics - A Rigorous Approach (Chapman & Hall, London, 1991).  
[11] Giarratano J. and Riley G., Expert Systems: Principles and Programming (PWS 

Publishing Company, Boston, 1994). 
[12] Halstead M.H., Elements of Software Science, (Elsevier, N-Holland, 1975). 
[13] Hugonnard J. and Roy B., Ranking of suburban line extension projects for the Paris 

metro system by a multicriteria method, Transportation Research 16A (1982), 301-312.  
[14] ISO/IEC 9126-1, Information Technology - Software quality chracteristics and sub-

characteristics (1996).  
[15] Jones Capers, Applied Software Measurement, (McGraw-Hill Inc., New York, 1991). 
[16] Kan S. H., Metrics and Models in Software Quality Engineering, (Addison Wesley 

Longman, Inc., 1994) 
[17] Keeney R.L. and Raiffa H., Decision with multiple objectives, (John Wiley, New York, 

1976). 
[18] Kitchenham B., Towards a constructive quality model. Part 1: Software quality 

modeling, measurement and prediction, Software Engineering Journal (July 1987). 
[19] Kontio, A Case Study in Applying a Systematic Method for COTS Selection, 

Proceedings of the IEEE Int’l Conference on Software Engineering (1996). 
[20] Le Blank L. and Jelassi T., An empirical assessment of choice models for software 

selection: a comparison of the LWA and MAUT techniques, Revue des systemes de 

- 24 - 



 

decision, vol.3 no. 2 (1994), pp. 115-126.  
[21] LPA flex, LPA flex Technical Reference, (Logic Programming Associates ltd, 1997). 
[22] McCabe T.J., A complexity measure, IEEE Trans Soft Eng 2(4) (1976), 308-320. 
[23] Meskens N., A knowledge-based system for measuring the quality of existing software, 

Revue des systemes de decision, vol.3, no.3 (1994), 201-220. 
[24] Miyoshi T. and Azuma M., An empirical study of evaluating software development 

environment quality, IEEE Transactions of Software Engineering, SE-19 (1993). 
[25] Morisio M. and Tsoukiàs A., IusWare, A methodology for the evaluation and selection 

of software products, IEE Proceedings on Software Engineering, 144 (1997), 162-174. 
[26] Mosley V., How to assess tools efficiently and quantatively, IEEE-Software (May 

1992). 
[27] Poston R.M. and Sexton M.P., Evaluating and selecting testing tools, IEEE Software, 

(May 1992). 
[28] Roy B. and Bertier P., La methode ELECTRE II - Une application au media planning, in 

OR72, M. Ross (ed.), North Holland, Amsterdam (1973), 291-302. 
[29] Roy B., Multicriteria Methodology for Decision Aiding (Kluwer Academic, Dordrecht, 

1996).  
[30] Schneidewind N.F., New software quality metrics methodology. Standard fills 

measurement needs, IEEE Computer,  vol. 26, no. 4 (1993), 105-106. 
[31] I.Stamelos, I. Vlahavas, I. Refanidis and A. Tsoukias, Knowledge Based Evaluation of 

Software Systems: a Case Study, Aristotle University, Dept. of Informatics, technical 
report. 

[32] I. Stamelos, I. Refanidis, P. Katsaros, A. Tsoukias, I. Vlahavas and A. Pombortsis, 
Automating the Evaluation of Educational Software, to be presented at the 5th 
International Conference of the Decision Sciences Institute, Athens, 4-7 July 1999. 

[33] Troster J., Assessing Design-Quality Metrics on Legacy Software (Software Engineering 
Process Group, IBM Canada Ltd. Laboratory, North York, Ontario, 1992). 

[34] Vanderpooten D. and Vincke P., Description and analysis of some representative 
interactive multicriteria procedures, Mathematical and computer modelling, 12 (1989), 
1221-1238. 

[35] Vincke P., Multicriteria decision aid, (John Wiley, New York, 1992). 
[36] Vollman T.E., Software quality assessment and standards, IEEE Computer, vol.26, no.6 

(1993), 118-120. 
[37] Welzel D., Hausen H.L, Boegh J., Metric-Based Software Evaluation Method, 

Proceedings BCS 1st European International Conference on Software Testing, Analysis 
and Review (London, 1993). 

- 25 - 



 

- 26 - 

APPENDIX A 

Attributes and values used in the Expert System Shell evaluation example 
(In the following A means 'arithmetic', N means 'nominal' and a hyphen (-) means 'no type')  

A t t r i b u t e s  Τype Range Weight Flex NExpert Clips 
quality  - - 2    
 functionality  - - 8    
  suitability  - - 1    
   functional specification change  
   ratio  

- - 1    

    forward chaining N yes/no 6 yes yes yes 
    backward chaining N yes/no 6 yes yes no 
    frames/instances N yes/no 4 yes yes yes 
    objects N yes/no 2 no no yes 
    multiple inheritance N yes/no 2 yes yes no 
    actions/procedures N yes/no 2 yes no yes 
    demons  N yes/no 3 yes yes yes 
    custom dialogs N yes/no 4 yes no no 
    displaying agenda  N yes/no 3 yes yes yes 
    number of conflict resolution  Α [1,10] 4 6 7 7 
    fuzziness N yes/no 2 no no yes 
    supporting other languages N yes/no 3 yes no no 
    connectivity to other languages  N yes/no 2 yes yes yes 
    GUI N yes/no 3 yes yes yes 
    connectivity to databases N yes/no 3 yes yes yes 
 reliability - - 1    
  maturity  - - 1    
   age in years  Α [0,20] 1 6 10 8 
 usability - - 4    
  understandability     - - 1    
   availability of demonstration  
   software    

N yes/no 1 no no yes 

  learnability    - - 3    
   usability of manual    - - 1    
    Fog index A [0,10] 1 7 7 7 
    number of examples per  
    command  

Α [0,5] 1 2 1 2 

    number of index entries per  
    command  

Α [0,5] 1 1 1 1 

    number of references per page  Α [0,5] 1 0 0 0 
    number of headings per page   Α [0,5] 1 3 2 2 
   on line help  N yes/no 1 yes yes yes 
  operability    - - 1    
   availability of setup installation  
   procedure 

N yes/no 1 yes yes yes 

 
   message clearness 

N good 
average 

bad 

1  
average 

 
average 

 
good 

 efficiency  - - 2    
  resource utilization    - - 1    
   main memory utilization    Α [0,32] 1 8 8 8 
   disk utilization Α [1,20] 1 5 18 5 
 portability  - - 2    
  MS-Windows N yes/no 3 yes yes yes 
  MacOS N yes/no 2 yes yes yes 
  Unix N yes/no 2 no yes yes 
cost Α [0,3000] 1 2300 2600 150 
 


