Multiple Criteria Decision Analysis

Alexis Tsoukiàs

LAMSADE - CNRS, Université Paris-Dauphine tsoukias@lamsade.dauphine.fr

Napoli, 01/06/2011

Alexis Tsoukiàs Multiple Criteria Decision Analysis

ヘロン ヘアン ヘビン ヘビン

Outline

Alexis Tsoukiàs Multiple Criteria Decision Analysis

→ E > < E >

Example

Consider the following evaluation table concerning four candidates (A,B,C and D) assessed against four criteria H1,H2,H3 and H4.

	H1	H2	H3	H4
А	7	5	9	6
В	8	4	7	8
С	5	8	10	4
D	9	3	5	10

Who is the best?

ヘロト ヘアト ヘビト ヘビト

What is the problem?

- Given a set $A = \{x, y, z, w, \dots\};$
- Given (possibly) a set of profiles P;
- Given a set of attributes D;
- Given the assessment of A against D;

Partition the set A in the best possible way.

What are the primitives?

Primitive 1

The primitives are binary relations on A: $\succeq_j \subseteq A \times A$ to be read "at least as good as" or binary relations on A: $\approx_l \subseteq A \times A$ to be read "similar to". (Unsupervised Decision Procedure).

Primitive 2

The primitives are binary relationa between A and P: $\succeq \subseteq A \times P \cup P \times A$ to be read "at least as good as" or binary relations between A and P: $\approx_l \subseteq A \times A$ to be read "similar to". *P* being the set of external "norms" characterising some classes $C_1 \cdots C_n$. (Supervised Decision Procedure).

ヘロト 人間 とくほとくほとう

What are the primitives?

Primitive 1

The primitives are binary relations on A: $\succeq_j \subseteq A \times A$ to be read "at least as good as" or binary relations on A: $\approx_l \subseteq A \times A$ to be read "similar to". (Unsupervised Decision Procedure).

Primitive 2

The primitives are binary relationa between A and P: $\succeq \subseteq A \times P \cup P \times A$ to be read "at least as good as" or binary relations between A and P: $\approx_l \subseteq A \times A$ to be read "similar to". *P* being the set of external "norms" characterising some classes $C_1 \cdots C_n$. (Supervised Decision Procedure).

ヘロト ヘアト ヘビト ヘビト

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	4	1	2	4	1
В	2	3	1	2	3	1	2
С	3	1	3	3	1	2	3
D	4	4	2	4	4	3	4

ヘロン 人間 とくほ とくほ とう

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g	B(x)
Α	1	2	4	1	2	4	1	15
В	2	3	1	2	3	1	2	14
С	3	1	3	3	1	2	3	16
D	4	4	2	4	4	3	4	25

The Borda count gives B>A>C>D

ヘロト ヘアト ヘビト ヘビト

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

ヘロト 人間 とくほ とくほ とう

E DQC

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g	B(x)
Α	1	2	3	1	2	3	1	13
В	2	3	1	2	3	1	2	14
С	3	1	2	3	1	2	3	15

If D is not there then A>B>C, instead of B>A>C

ヘロト ヘアト ヘビト ヘビト

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

ヘロン 人間 とくほ とくほ とう

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

The Condorcet principle gives A>B>C>A !!!!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Arrow's Theorem

Given *N* rational voters over a set of more than 3 candidates can we found a social choice procedure resulting in a social complete order of the candidates such that it respects the following axioms?

- Universality: the method should be able to deal with any configuration of ordered lists;
- Unanimity: the method should respect a unanimous preference of the voters;
- Independence: the comparison of two candidates should be based only on their respective standings in the ordered lists of the voters.

ヘロン 人間 とくほ とくほ とう

There is only one solution: the dictator!!

If we add no-dictatorship among the axioms then there is no solution.

Alexis Tsoukiàs Multiple Criteria Decision Analysis

ヘロン ヘアン ヘビン ヘビン

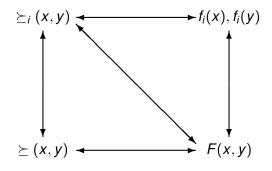
Gibbard-Satterthwaite's Theorem

When the number of candidates is larger than two, there exists no aggregation method satisfying simultaneously the properties of universal domain, non-manipulability and non-dictatorship.

イロト イ押ト イヨト イヨトー

Why MCDA is not Social Choice?

MCDA
Any type of order
Variable importance
of criteria
Few coherent
criteria
Existing prior
information


Alexis Tsoukiàs Multiple Criteria Decision Analysis

ヘロン 人間 とくほど くほとう

₹ 990

The Problem

Suppose we have *n* preference relations $\succeq_1 \cdots \succeq_n$ on the set *A*. We are looking for an overall preference relation \succeq on *A* "representing" the different preferences.

ヘロト ヘアト ヘビト ヘビト

æ

Counting values

$$x \succeq y \Leftrightarrow \sum_{j} r_{j}(x) \ge \sum_{j} r_{j}(y)$$

What do we need to know?

Alexis Tsoukiàs Multiple Criteria Decision Analysis

<ロト <回 > < 注 > < 注 > 、

æ

Counting values

$$x \succeq y \Leftrightarrow \sum_{j} r_j(x) \ge \sum_{j} r_j(y)$$

What do we need to know?

the primitives: $\succeq_j \subseteq A \times A$ Differences of preferences:

- $(xy)_1 \succcurlyeq (zw)_1$
- $(xy)_1 \succcurlyeq (zw)_2$

ヘロト 人間 ト ヘヨト ヘヨト

How do we learn that?

- Directly through a standard protocol.
- Indirectly:
 - through pairwise comparisons (AHP, MACBETH etc.);
 - through learning from examples (regression, rough sets, decision trees etc.).

ヘロト 人間 ト ヘヨト ヘヨト

Is this sufficient?

NO!

Are preferences independent? $r \succ w$ $f \succ m$ But *rf* is not better than *wf* ...

Non linear aggregation procedures

ヘロト 人間 ト ヘヨト ヘヨト

What is the output?

• Value functions on each criterion.

- A global value function.
- Rankings, choices, but also ratings if relevant reference points are provided on the value function.

くロト (過) (目) (日)

What is the output?

• Value functions on each criterion.

- A global value function.
- Rankings, choices, but also ratings if relevant reference points are provided on the value function.

ヘロト ヘ戸ト ヘヨト ヘヨト

What is the output?

- Value functions on each criterion.
- A global value function.
- Rankings, choices, but also ratings if relevant reference points are provided on the value function.

Counting preferences

$$x \succeq y \Leftrightarrow H_{xy} \ge H_{yx}$$

What do we need to know?

Alexis Tsoukiàs Multiple Criteria Decision Analysis

ヘロト 人間 とくほとくほとう

₹ 990

Counting preferences

$$x \succeq y \Leftrightarrow H_{xy} \ge H_{yx}$$

What do we need to know?

the primitives: $\succeq_j \subseteq A \times A$ An ordering relation on 2^{\succeq_j}

→ E > < E >

э

How do we learn that?

- Preferences are "given".
- Preferences on 2[≥]*j*:
 - directly;
 - coalition games;
 - learning from examples.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Is this sufficient?

NO!

• The relation \succeq is not an ordering relation.

- In order to do so we transform the graph induced by \succeq .

ヘロト ヘアト ヘビト ヘビト

Is this sufficient?

NO!

- The relation \succeq is not an ordering relation.
- We need to construct an ordering relation ≽ "as near as possible" to *b*.
- In order to do so we transform the graph induced by \succeq .

ヘロト ヘアト ヘビト ヘビト

Is this sufficient?

NO!

- The relation \succeq is not an ordering relation.
- We need to construct an ordering relation ≽ "as near as possible" to *b*.
- In order to do so we transform the graph induced by \succeq .

イロト イポト イヨト イヨト

General idea: coalitions

Given a set A and a set of \succeq_i binary relations on A (the criteria) we define:

$$x \succeq y \Leftrightarrow C^+(x,y) \trianglerighteq C^+(y,x)$$
 and $C^-(x,y) \trianglelefteq C^-(y,x)$

where:

- $C^+(x, y)$: "importance" of the coalition of criteria supporting x wrt to y.

- $C^{-}(x, y)$: "importance" of the coalition of criteria against *x* wrt to *y*.

ヘロト 人間 とくほとく ほとう

э.

How it works? 1

Additive Positive Importance

ヘロト 人間 とくほとくほとう

How it works? 1

Additive Positive Importance

$$\mathcal{C}^+(x,y) = \sum_{j \in J^{\pm}} w_j^+$$

where: w_j^+ : "positive importance" of criterion *i* $J^{\pm} = \{h_j : x \succeq_j y\}$

・ロト ・ 理 ト ・ ヨ ト ・

How it works? 1

Additive Positive Importance

$$\mathcal{C}^+(x,y) = \sum_{j \in J^{\pm}} w_j^+$$

where: w_j^+ : "positive importance" of criterion *i* $J^{\pm} = \{h_j : x \succeq_j y\}$

Then we can fix a majority threshold δ and have

$$x \succeq^+ y \Leftrightarrow C^+(x,y) \ge \delta$$

ヘロト ヘアト ヘビト ヘビト

How it works? 1

Additive Positive Importance

$$\mathcal{C}^+(x,y) = \sum_{j \in J^{\pm}} w_j^+$$

where: w_j^+ : "positive importance" of criterion *i* $J^{\pm} = \{h_j : x \succeq_j y\}$

Then we can fix a majority threshold $\boldsymbol{\delta}$ and have

$$x \succeq^+ y \Leftrightarrow C^+(x,y) \ge \delta$$

Where "positive importance" comes from?

How it works? 2

Max Negative Importance

Alexis Tsoukiàs Multiple Criteria Decision Analysis

ヘロト 人間 とくほとくほとう

How it works? 2

Max Negative Importance

$$C^-(x,y) = \max_{j\in J^-} w_j^-$$

where:

 w_j^- : "negative importance" of criterion *i* $J^- = \{h_j : v_j(x, y)\}$

ヘロト ヘアト ヘビト ヘビト

3

How it works? 2

Max Negative Importance

$$C^{-}(x,y) = \max_{j\in J^{-}} w_{j}^{-}$$

where:

 w_j^- : "negative importance" of criterion *i* $J^- = \{h_j : v_j(x, y)\}$

Then we can fix a veto threshold γ and have

$$\mathbf{x} \succeq^{-} \mathbf{y} \Leftrightarrow \mathbf{C}^{-}(\mathbf{x}, \mathbf{y}) \geq \gamma$$

ヘロト 人間 とくほとくほとう

ъ

How it works? 2

Max Negative Importance

$$C^{-}(x,y) = \max_{j\in J^{-}} w_{j}^{-}$$

where:

 w_j^- : "negative importance" of criterion *i* $J^- = \{h_j : v_j(x, y)\}$

Then we can fix a veto threshold γ and have

$$\mathbf{x} \succeq^{-} \mathbf{y} \Leftrightarrow \mathbf{C}^{-}(\mathbf{x}, \mathbf{y}) \geq \gamma$$

Where "negative importance" comes from?

프 🖌 🛪 프 🛌

æ

The United Nations Security Council

Positive Importance

15 members each having the same positive importance $w_j^+ = \frac{1}{15}, \, \delta = \frac{9}{15}.$

Negative Importance

10 members with 0 negative importance and 5 (the permanent members) with $w_i^- = 1$, $\gamma = 1$.

イロト 不得 とくほ とくほとう

The United Nations Security Council

Positive Importance

15 members each having the same positive importance $w_j^+ = \frac{1}{15}, \, \delta = \frac{9}{15}.$

Negative Importance

10 members with 0 negative importance and 5 (the permanent members) with $w_i^- = 1$, $\gamma = 1$.

ヘロア ヘビア ヘビア・

Outranking Principle

$$x \succeq y \Leftrightarrow x \succeq^+ y \text{ and } \neg(x \succeq^- y)$$

Thus:

$$x \succeq y \Leftrightarrow C^+(x,y) \ge \delta \land C^-(x,y) < \gamma$$

Alexis Tsoukiàs Multiple Criteria Decision Analysis

<ロト <回 > < 注 > < 注 > 、

Outranking Principle

$$x \succeq y \Leftrightarrow x \succeq^+ y \text{ and } \neg(x \succeq^- y)$$

Thus:

$$x \succeq y \Leftrightarrow C^+(x,y) \ge \delta \land C^-(x,y) < \gamma$$

NB

The relation \succeq is not an ordering relation. Specific algorithms are used in order to move from \succeq to an ordering relation \succcurlyeq

ヘロト 人間 ト ヘヨト ヘヨト

ъ

What is importance?

Where w_j^+ , w_j^- and δ come from?

Further preferential information is necessary, usually under form of multi-attribute comparisons. That will provide information about the decisive coalitions.

ヘロト 人間 ト ヘヨト ヘヨト

What is importance?

Where w_j^+ , w_j^- and δ come from?

Further preferential information is necessary, usually under form of multi-attribute comparisons. That will provide information about the decisive coalitions.

Example

Given a set of criteria and a set of decisive coalitions (J^{\pm}) we can solve:

 $\max \delta$ subject to $\sum_{j \in J^{\pm}} w_j \ge \delta$ $\sum_i w_j = 1$

イロト イポト イヨト イヨト

And the final ranking?

•
$$x \succcurlyeq y \Leftrightarrow o(x) - i(x) \ge o(y) - i(y)$$

■ Recursively constructing >:

•
$$[X]_1 = \{x \in A : \neg \exists y \ y \succeq x\}$$

 $[X]_i = \{x \in A \setminus \bigcup_{i=1} [X] : \neg \exists y \ y \succeq x\}$

•
$$[x]_n = \{x \in A : \neg \exists y \ x \succeq y\}$$

 $[x]_i = \{x \in A \setminus \bigcup_{n=i} [x] : \neg \exists y \ x \succeq y\}$

ヘロト 人間 とくほとくほとう

æ

And the final ranking?

•
$$x \succcurlyeq y \Leftrightarrow o(x) - i(x) \ge o(y) - i(y)$$

■ Recursively constructing >:

•
$$[x]_1 = \{ x \in A : \neg \exists y \ y \succeq x \}$$

$$[x]_i = \{ x \in A \setminus \bigcup_{i=1} [x] : \neg \exists y \ y \succeq x \}$$

•
$$[x]_n = \{ x \in A : \neg \exists y \ x \succeq y \}$$

$$[x]_i = \{ x \in A \setminus \bigcup_{n=i} [x] : \neg \exists y \ x \succeq y \}$$

ヘロト 人間 とくほとくほとう

æ

Rating

What if we have preference relations $\succeq_j \subseteq A \times P \cup P \times A$? The global preference relation remains the same.

- pessimistic rating
 - *x* is iteratively compared with $p_t \cdots p_1$,
 - as soon as $x \succeq p_h$) is established, assign x to category c_h .
- optimistic rating
 - *x* is iteratively compared with $p_1 \cdots p_t$,
 - as soon as is established $p_h \succeq x$ $(\land \neg x \succeq p_h)$ then assign *x* to category c_{h-1} .

・ロト ・厚ト ・ヨト・

What is the output?

• A global preference relation including incomparabilities.

- An explicit representation of hesitation.
- Robust Rankings, Choices and Ratings.

くロト (過) (目) (日)

ъ

What is the output?

- A global preference relation including incomparabilities.
- An explicit representation of hesitation.
- Robust Rankings, Choices and Ratings.

くロト (過) (目) (日)

ъ

What is the output?

- A global preference relation including incomparabilities.
- An explicit representation of hesitation.
- Robust Rankings, Choices and Ratings.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

æ

- We can use social choice inspired procedures for more general decision making processes.
- Care should be taken to model the majority (possibly the minority) principle to be used. The key issue here is the concept of "decisive coalition".
- We need to "learn" about decisive coalitions, since it is unlike that this information is available. Problem of learning procedures.
- The above information is not always intuitive. However, the intuitive idea of importance contains several cognitive biases.
- A social choice inspired procedure will not deliver automatically an ordering. We need further algorithms (graph theory).

- We can use social choice inspired procedures for more general decision making processes.
- Care should be taken to model the majority (possibly the minority) principle to be used. The key issue here is the concept of "decisive coalition".
- We need to "learn" about decisive coalitions, since it is unlike that this information is available. Problem of learning procedures.
- The above information is not always intuitive. However, the intuitive idea of importance contains several cognitive biases.
- A social choice inspired procedure will not deliver automatically an ordering. We need further algorithms (graph theory).

- We can use social choice inspired procedures for more general decision making processes.
- Care should be taken to model the majority (possibly the minority) principle to be used. The key issue here is the concept of "decisive coalition".
- We need to "learn" about decisive coalitions, since it is unlike that this information is available. Problem of learning procedures.
- The above information is not always intuitive. However, the intuitive idea of importance contains several cognitive biases.
- A social choice inspired procedure will not deliver automatically an ordering. We need further algorithms (graph theory).

- We can use social choice inspired procedures for more general decision making processes.
- Care should be taken to model the majority (possibly the minority) principle to be used. The key issue here is the concept of "decisive coalition".
- We need to "learn" about decisive coalitions, since it is unlike that this information is available. Problem of learning procedures.
- The above information is not always intuitive. However, the intuitive idea of importance contains several cognitive biases.
- A social choice inspired procedure will not deliver automatically an ordering. We need further algorithms (graph theory).

- We can use social choice inspired procedures for more general decision making processes.
- Care should be taken to model the majority (possibly the minority) principle to be used. The key issue here is the concept of "decisive coalition".
- We need to "learn" about decisive coalitions, since it is unlike that this information is available. Problem of learning procedures.
- The above information is not always intuitive. However, the intuitive idea of importance contains several cognitive biases.
- A social choice inspired procedure will not deliver automatically an ordering. We need further algorithms (graph theory).

Resources

- http://www.algodec.org
- http://www.cs.put.poznan.pl/ewgmcda/
- http://www.decision-deck.org
- http://decision-analysis.society.informs.org/
- http://www.mcdmsociety.org/
- http://www.euro-online.org
- http://www.informs.org

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Books

- Bouyssou D., Marchant Th., Pirlot M., Tsoukiàs A., Vincke Ph., Evaluation and Decision Models: stepping stones for the analyst, Springer Verlag, Berlin, 2006.
- Bouyssou D., Marchant Th., Perny P., Pirlot M., Tsoukiàs A., Vincke Ph., Evaluation and Decision Models: a critical perspective, Kluwer Academic, Dordrecht, 2000.
- Deb K., Multi-Objective Optimization using Evolutionary Algorithms, J. Wiley, New York, 2001.
- Ehrgott M., Gandibleux X., Multiple Criteria Optimization. State of the art annotated bibliographic surveys, Kluwer Academic, Dordrecht, 2002.
- Figueira J., Greco S., EhrgottM., *Multiple Criteria Decision Analysis:* State of the Art Surveys, Springer Verlag, Berlin, 2005.

ヘロン 人間 とくほ とくほ とう

1

Books

- Fishburn P.C., *Utility Theory for Decision Making*, J. Wiley, New York, 1970.
- Fishburn P.C., *Interval Orders and Interval Graphs*, J. Wiley, New York, 1985.
- French S., Decision theory An introduction to the mathematics of rationality, Ellis Horwood, Chichester, 1988.
- Keeney R.L., Raiffa H., Decisions with multiple objectives: Preferences and value tradeoffs, J. Wiley, New York, 1976.
- Keeney R.L., Hammond J.S. Raiffa H., *Smart choices: A guide to making better decisions*, Harvard University Press, Boston, 1999.
- Kahneman D., Slovic P., Tversky A., Judgement under uncertainty -Heuristics and biases, Cambridge University Press, Cambridge, 1981.
- Krantz D.H., Luce R.D., Suppes P., Tversky A., Foundations of measurement, vol. 1: additive and polynomial representations, Academic Press, New York, 1971.

Books

- Kouvelis P., Yu G., Robust discrete optimization and its applications, Kluwer Academic, Dodrecht, 1997.
- Luce R.D., Krantz D.H., Suppes P., Tversky A., Foundations of measurement, vol. 3: representation, axiomatisation and invariance, Academic Press, New York, 1990.
- Roubens M., Vincke Ph., *Preference Modeling*, Springer Verlag, Berlin, 1985.
- Suppes P., Krantz D.H., Luce R.D., Tversky A., Foundations of measurement, vol. 2: geometrical, threshold and probabilistic representations, Academic Press, New York, 1989.
- Wakker P.P., Additive Representations of Preferences: A new Foundation of Decision Analysis, Kluwer Academic, Dordrecht, 1989.
- von Winterfeld D., Edwards W., Decision Analysis and Behavorial Research, Csmbridge University Press, Cambridge, 1986.

くロト (過) (目) (日)