Preference Handling

Alexis Tsoukiàs

LAMSADE - CNRS, Université Paris-Dauphine tsoukias@lamsade.dauphine.fr http://www.lamsade.dauphine.fr/~tsoukias

Napoli 31/05/2011

イロト イポト イヨト イヨト

э

- Preference Learning
- Preference Modeling
- 5 Preference Measurement

6 References

э

< ロ > < 同 > < 三 >

э

...

- Preferences are "rational" desires.
- Preferences are at the basis of any decision aiding activity.
- There are no decisions without preferences.
- Preferences, Values, Objectives, Desires, Utilities, Beliefs,

Tsoukiàs Preference Handling

< ロ > < 同 > < 三 >

ъ

æ

Decision Aiding

	An analyst
A problem situation $\langle \mathcal{A}, \mathcal{O}, \mathcal{S} \rangle$	
A problem formulation $\langle \mathbb{A}, \mathbb{V}, \Pi \rangle$	
An evaluation model $\langle A, D, E, H, U, R \rangle$	
A final recommendation	
	A problem formulation $\langle \mathbb{A}, \mathbb{V}, \Pi \rangle$ An evaluation model $\langle A, D, E, H, U, R \rangle$

<ロト <回 > < 注 > < 注 > 、

Basic information

- A: a set of alternatives (enumerative, combinatorial, product space ...)
- D: a set of dimensions (attributes) describing A.
- *E*: the "scales" used for the attributes in *D*.

H: Preferential Information

- U: uncertainties
- R: algorithms, procedures, protocols etc ...

イロト イ理ト イヨト イヨト

æ

What are the problems?

- How to learn preferences?
- How to model preferences?
- How to aggregate preferences?
- How to use preferences for recommending?

< 🗇 🕨

Binary relations

- \succeq : binary relation on a set (A).
- $\succeq \subseteq A \times A \text{ or } A \times P \cup P \times A.$
- \succeq is reflexive.

What is that?

If $x \succeq y$ stands for x is at least as good as y, then the asymmetric part of $\succeq (\succ: x \succeq y \land \neg(y \succeq x))$ stands for strict preference. The symmetric part stands for indifference $(\sim_1: x \succeq y \land y \succeq x)$ or incomparability $(\sim_2: \neg(x \succeq y) \land \neg(y \succeq x)).$

イロト イポト イヨト イヨト

ъ

More binary relations

 We can further separate the asymmetric (symmetric) part in more relations representing hesitation or intensity of preference.

$$\succ = \succ_1 \cup \succ_2 \cdots \succ_n$$

- We can get rid of the symmetric part since any symmetric relation can be viewed as the union of two asymmetric relations and the identity.
- We can also have valued relations such that:
 v(x ≻ y) ∈ [0, 1]

ヘロト ヘアト ヘヨト ヘ

Binary relations properties

Binary relations have specific properties such as:

- Irreflexive: $\forall x \neg (x \succ x)$;
- Asymmetric: $\forall x, y \ x \succ y \rightarrow \neg (y \succ x);$
- Transitive: $\forall x, y, z \ x \succ y \land y \succ z \rightarrow x \succ z$;
- Ferrers; $\forall x, y, z, w \ x \succ y \land z \succ w \rightarrow x \succ w \lor z \succ y$;

ヘロト 人間 とくほとくほとう

Numbers

$$x \succeq y \quad \Leftrightarrow \quad \Phi(x,y) \ge 0$$

where:

$\Phi : A \times A \mapsto \mathbb{R}$. Simple case $\Phi(x, y) = f(x) - f(y); f : A \mapsto \mathbb{R}$

N.B.

Likelihoods can also be expressed under form of binary relations and their numerical representations ($\omega_1 \succeq \omega_2$: event 1 is likely to occur at least as much as event 2).

イロト イポト イヨト イヨト

э

Numbers

$$x \succeq y \quad \Leftrightarrow \quad \Phi(x,y) \ge 0$$

where:

 $\Phi : A \times A \mapsto \mathbb{R}$. Simple case $\Phi(x, y) = f(x) - f(y); f : A \mapsto \mathbb{R}$

N.B.

Likelihoods can also be expressed under form of binary relations and their numerical representations ($\omega_1 \succeq \omega_2$: event 1 is likely to occur at least as much as event 2).

くロト (過) (目) (日)

ъ

Consider sentences of the type:

- I like red shoes.
- I do not like brown sugar.
- I prefer Obama to McCain.
- I do not want tea with milk.
- Cost is more important than safety.
- I prefer flying to Athens than having a suite at Istanbul.

ъ

What do we learn out of such sentences?

- Basic hypotheses about the structure of the evaluation model.
- Binary relations.
- Numerical values (exact or imprecise).
- Importance Parameters.
- Inconsistencies.

イロト イポト イヨト イヨト

æ

Preference Structures

A preference structure

is a collection of binary relations $\sim_1, \dots \sim_m, \succ_1, \dots \succ_n$ such that:

- they are pair-disjoint;
- $\sim_1 \cup \cdots \sim_m \cup \succ_1 \cup \cdots \succ_n = A \times A;$
- \sim_i are symmetric and \succ_i are asymmetric;
- possibly they are identified by their properties.

ヘロト 人間 とくほ とくほ とう

э.

\sim_1, \sim_2, \succ Preference Structures

Independently from the nature of the set *A* (enumerated, combinatorial etc.), consider $x, y \in A$ as whole elements. Then:

If \succeq is a weak order then:

 \succ is a strict partial order, \sim_1 is an equivalence relation and \sim_2 is empty.

If \succeq is an interval order then:

 \succ is a partial order of dimension two, $\sim_{\rm 1}$ is not transitive and $\sim_{\rm 2}$ is empty.

ヘロト 人間 とくほとくほとう

\sim_1, \sim_2, \succ Preference Structures

Independently from the nature of the set *A* (enumerated, combinatorial etc.), consider $x, y \in A$ as whole elements. Then:

If \succeq is a weak order then:

 \succ is a strict partial order, \sim_1 is an equivalence relation and \sim_2 is empty.

If \succeq is an interval order then:

 \succ is a partial order of dimension two, \sim_1 is not transitive and \sim_2 is empty.

イロト イポト イヨト イヨト

$\sim_1, \sim_2, \succ_1 \succ_2$ Preference Structures

If \succeq is a *PQI* interval order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is asymmetrically transitive and \sim_2 is empty.

If \succeq is a pseudo order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is non transitive and \sim_2 is empty.

イロン 不得 とくほ とくほ とうほ

$\sim_1, \sim_2, \succ_1 \succ_2$ Preference Structures

If \succeq is a *PQI* interval order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is asymmetrically transitive and \sim_2 is empty.

If \succeq is a pseudo order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is non transitive and \sim_2 is empty.

<ロ> (四) (四) (三) (三) (三)

What characterises such structures?

Characteristic Properties

Weak Orders are complete and transitive relations. Interval Orders are complete and Ferrers relations.

Numerical Representations

w.o. $\Leftrightarrow \exists f : A \mapsto \mathbb{R} : x \succeq y \leftrightarrow f(x) \ge f(y)$ i.o. $\Leftrightarrow \exists f, g : A \mapsto \mathbb{R} : f(x) > g(x); x \succeq y \leftrightarrow f(x) \ge g(y)$

ヘロン 人間 とくほ とくほ とう

ъ

What characterises such structures?

Characteristic Properties

Weak Orders are complete and transitive relations. Interval Orders are complete and Ferrers relations.

Numerical Representations

w.o. $\Leftrightarrow \exists f : A \mapsto \mathbb{R} : x \succeq y \leftrightarrow f(x) \ge f(y)$ i.o. $\Leftrightarrow \exists f, g : A \mapsto \mathbb{R} : f(x) > g(x); x \succeq y \leftrightarrow f(x) \ge g(y)$

ヘロン 人間 とくほ とくほ とう

1

More about structures

Characteristic Properties

PQI Interval Orders are complete and generalised Ferrers relations.

Pseudo Orders are coherent bi-orders.

Numerical Representations

 $\begin{aligned} & PQl \text{ i.o. } \Leftrightarrow \exists f, g : A \mapsto \mathbb{R} : f(x) > g(x); x \succ_1 y \leftrightarrow g(x) > \\ & f(y); x \succ_2 y \leftrightarrow f(x) > f(y) > g(x) \\ & \text{p.o. } \Leftrightarrow \exists f, t, g : A \mapsto \mathbb{R} : f(x) > t(x) > g(x); x \succ_1 \\ & y \leftrightarrow g(x) > f(y); x \succ_2 y \leftrightarrow g(x) > t(y) \end{aligned}$

ヘロン 人間 とくほ とくほ とう

3

More about structures

Characteristic Properties

PQI Interval Orders are complete and generalised Ferrers relations.

Pseudo Orders are coherent bi-orders.

Numerical Representations

ヘロト ヘヨト ヘヨト

프 🕨 🗆 프

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$

A special case is when Φ is increasing to its first *n* arguments and decreasing to the following *n* arguments: it then can be an additive function. See more in conjoint measurement theory.

ヘロト 人間 とくほとくほとう

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$

A special case is when Φ is increasing to its first *n* arguments and decreasing to the following *n* arguments: it then can be an additive function. See more in conjoint measurement theory.

・ロト ・四ト ・ヨト ・ヨト

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$$

A special case is when Φ is increasing to its first *n* arguments and decreasing to the following *n* arguments: it then can be an additive function. See more in conjoint measurement theory.

< ロ > < 同 > < 三 > .

What is measuring?

Constructing a function from a set of "objects" to a set of "measures".

Objects come from the real world.

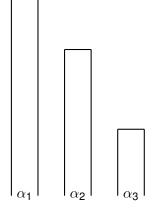
Measures come from empirical observations on some attributes of the objects.

The problem is: how to construct the function out from such observations?

Measurement

- Real objects (x, y, \cdots) .
- Sumplified evidence comparing objects ($x \succeq y, \cdots$).
- Sirst numerical representation ($\Phi(x, y) \ge 0$).
- 3 Repeat observations in a standard sequence $(x \circ y \succeq z \circ w)$.
- S Enhanced numerical representation $(\Phi(x, y) = \Phi(x) \Phi(y)).$

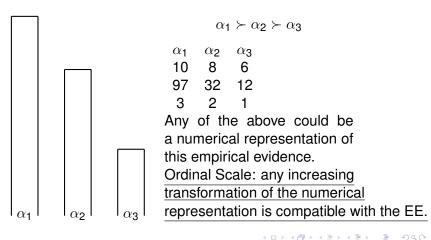
イロン 不得 とくほ とくほ とうほ



Tsoukiàs Preference Handling

<ロト <回 > < 注 > < 注 > 、

æ



Further Example

Consider putting together objects and observing:

 $\alpha_1 \circ \alpha_5 > \alpha_3 \circ \alpha_4 > \alpha_1 \circ \alpha_2 > \alpha_5 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1$

Consider now the following numerical representations:

	L_1	L_2	L ₃
α_1	14	10	14
α_2	15	91	16
α_3	20	92	17
α_4	21	93	18
α_5	28	99	29

 L_1 , L_2 and L_3 capture the simple order among α_{1-5} , but L_2 fails to capture the order among the combinations of objects.

Further Example

NB

For L_1 we get that $\alpha_2 \circ \alpha_3 \sim \alpha_1 \circ \alpha_4$ while for L_3 we get that $\alpha_2 \circ \alpha_3 > \alpha_1 \circ \alpha_4$. We need to fix a "standard sequence".

_ength

If we fix a "standard" length, a unit of measure, then all objects will be expressed as multiples of that unit.

ヘロト ヘアト ヘヨト ヘ

.⊒...>

Further Example

NB

For L_1 we get that $\alpha_2 \circ \alpha_3 \sim \alpha_1 \circ \alpha_4$ while for L_3 we get that $\alpha_2 \circ \alpha_3 > \alpha_1 \circ \alpha_4$. We need to fix a "standard sequence".

Length

If we fix a "standard" length, a unit of measure, then all objects will be expressed as multiples of that unit.

ヘロト ヘヨト ヘヨト

Ratio Scales

All proportional transformations (of the type αx) will deliver the same information. We only fix the unit of measure.

Interval Scales

All affine transformations (of the type $\alpha x + \beta$) will deliver the same information. Besides the unit of measure we fix an origin.

イロト イポト イヨト イヨト

э

Ratio Scales

All proportional transformations (of the type αx) will deliver the same information. We only fix the unit of measure.

Interval Scales

All affine transformations (of the type $\alpha x + \beta$) will deliver the same information. Besides the unit of measure we fix an origin.

ヘロト ヘ戸ト ヘヨト ヘヨト

More complicated

Consider a Multi-attribute space:

$$X = X_1 \times \cdot X_n$$

to each attribute we associate an ordered set of values:

$$X_j = \langle x_j^1 \cdots x_j^m \rangle$$

An object x will thus be a vector:

$$x = \langle x_1' \cdots x_n^k \rangle$$

イロト イポト イヨト イヨト

ъ

Generally speaking ...

 $x \succeq y$

 $\langle x_1^{\prime} \cdots x_n^{\prime} \rangle \succeq \langle y_1^{\prime} \cdots y_n^{\prime} \rangle$

 \Leftrightarrow

 \Leftrightarrow

 $\Phi(f(x_1^j \cdots x_n^k), f(y_1^j \cdots y_n^j)) \ge 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500

Tsoukiàs Preference Handling

ヘロト 人間 とくほとくほとう

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
a_1	25	$70+\delta_1$	С	500	1500

ヘロト 人間 とくほとくほとう

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
a ₁	25	$70+\delta_1$	С	500	1500

For what value of δ_1 *a* and a_1 are indifferent?

イロト イポト イヨト イヨト

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
a_1	25	80	С	500	1500

Tsoukiàs Preference Handling

ヘロト 人間 とくほとくほとう

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
a ₁	25	80	С	500	1500
a_2	25	80	С	700	1500+ δ_2

Tsoukiàs Preference Handling

ヘロト 人間 とくほとくほとう

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
a_1	25	80	С	500	1500
a_2	25	80	С	700	1500+ δ_2

For what value of $\delta_2 a_1$ and a_2 are indifferent?

イロト イポト イヨト イヨト

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
<i>a</i> 1	25	80	С	500	1500
a_2	25	80	С	700	1700

Tsoukiàs Preference Handling

ヘロト 人間 とくほとくほとう

What that means?

	Commuting	Clients	Services	Size	Costs
	Time	Exposure			
а	20	70	С	500	1500
<i>a</i> 1	25	80	С	500	1500
a_2	25	80	С	700	1700

The trade-offs introduced with δ_1 and δ_2 allow to get $a \sim a_1 \sim a_2$

イロト イポト イヨト イヨト

E DQC

What do we get?

Standard Sequences

Length: objects having the same length allow to define a unit of length;

Value: objects being indifferent can be considered as having the same value and thus allow to define a "unit of value".

Remark 1: indifference is obtained through trade-offs. **Remark 2**: separability among attributes is the minimum requirement.

イロト 不得 とくほと くほう

Standard Sequences

Length: objects having the same length allow to define a unit of length;

Value: objects being indifferent can be considered as having the same value and thus allow to define a "unit of value".

Remark 1: indifference is obtained through trade-offs. **Remark 2**: separability among attributes is the minimum requirement.

ヘロト ヘワト ヘビト ヘビト

Standard Sequences

Length: objects having the same length allow to define a unit of length;

Value: objects being indifferent can be considered as having the same value and thus allow to define a "unit of value".

Remark 1: indifference is obtained through trade-offs. **Remark 2**: separability among attributes is the minimum requirement.

・ロト ・同ト ・ヨト ・ヨト

Standard Sequences

Length: objects having the same length allow to define a unit of length;

Value: objects being indifferent can be considered as having the same value and thus allow to define a "unit of value".

Remark 1: indifference is obtained through trade-offs. **Remark 2**: separability among attributes is the minimum requirement.

ヘロト ヘヨト ヘヨト ヘ

The easy case

IF

- restricted solvability holds;
- at least three attributes are essential;
- ◎ \succeq is a weak order satisfying the Archimedean condition $\forall x, y \in \mathbb{R}, \exists n \in \mathbb{N} : ny > x.$

THEN

$$x \succeq y \Leftrightarrow \sum_j u_j(x) \ge \sum_j u_j(y)$$

ヘロト 人間 ト ヘヨト ヘヨト

э

General Usage

The above ideas apply also in

- Economics (comparison of bundle of goods);
- Decision under uncertainty (comparing consequences under multiple states of the nature);
- Inter-temporal decision (comparing consequences on several time instances);
- Social Fairness (comparing welfare distributions among individuals).

ヘロト ヘアト ヘヨト

References

- Roberts F.S, Measurement theory, with applications to Decision Making, Utility and the Social Sciences, Addison-Wesley, Boston, 1979.
- Roubens M., Vincke Ph., Preference Modeling, Springer Verlag, Berlin, 1985.
- Fishburn P.C., Interval Orders and Interval Graphs, J. Wiley, New York, 1985.
- Fodor J., Roubens M., Fuzzy preference modelling and multicriteria decision support, Kluwer Academic, Dordrecht, 1994.
- Pirlot M., Vincke Ph., Semi Orders, Kluwer Academic, Dordrecht, 1997.
- Fishburn P.C., "Preference structures and their numerical representations", *Theoretical Computer Science*, vol. 217, 359-383, 1999.
- Öztürk M., Tsoukiàs A., Vincke Ph., "Preference Modelling", in M. Ehrgott, S. Greco, J. Figueira (eds.), State of the Art in Multiple Criteria Decision Analysis, Springer Verlag, Berlin, 27 - 72, 2005.

ヘロト ヘアト ヘビト ヘビト