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Is optimisation rational?

General Setting

min F (x)
x ∈ S ⊆ K n

where:
- x is a vector of variables
- S is the feasible space
- K n is a vector space, (Zn, Rn, {0,1}n).
- F : S 7→ Rm
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Well known specific cases: m=1

F (x) is linear, S is a n-dimensional polytope: linear
programming
min cx , Ax ≤ b, x ≥ 0.
S is a n-dimensional polytope, but F : Rn+m 7→ R:
constraint satisfaction
min y , Ax + y ≤ b, x , y ≥ 0.
F (x) is linear, S ⊆ {0,1}n: combinatorial optimisation.
F (x) is convex and S is a convex subset of Rn: convex
programming
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More challenging cases

Instead of minx∈S F (x) we get supx∈S x . Practically we
only have a preference relation on S (and thus we cannot
define any “quantitative” function of x).

NB
The problem becomes tricky when the preference relation
cannot be represented explicitly (for instance when S ⊆ {0,1}n)

m > 1. We get

F (x) = 〈f1(x) · · · fn(x)〉

Practically a problem mathematically undefinable ...
Combinations of the two cases above as well as of the
previous ones ...

Tsoukiàs Optimisation



Setting
Tricky Optimisation

Methods
Even more tricky ...

Learning

More challenging cases

Instead of minx∈S F (x) we get supx∈S x . Practically we
only have a preference relation on S (and thus we cannot
define any “quantitative” function of x).

NB
The problem becomes tricky when the preference relation
cannot be represented explicitly (for instance when S ⊆ {0,1}n)

m > 1. We get

F (x) = 〈f1(x) · · · fn(x)〉

Practically a problem mathematically undefinable ...
Combinations of the two cases above as well as of the
previous ones ...

Tsoukiàs Optimisation



Setting
Tricky Optimisation

Methods
Even more tricky ...

Learning

More challenging cases

Instead of minx∈S F (x) we get supx∈S x . Practically we
only have a preference relation on S (and thus we cannot
define any “quantitative” function of x).

NB
The problem becomes tricky when the preference relation
cannot be represented explicitly (for instance when S ⊆ {0,1}n)

m > 1. We get

F (x) = 〈f1(x) · · · fn(x)〉

Practically a problem mathematically undefinable ...
Combinations of the two cases above as well as of the
previous ones ...

Tsoukiàs Optimisation



Setting
Tricky Optimisation

Methods
Even more tricky ...

Learning

More challenging cases

Instead of minx∈S F (x) we get supx∈S x . Practically we
only have a preference relation on S (and thus we cannot
define any “quantitative” function of x).

NB
The problem becomes tricky when the preference relation
cannot be represented explicitly (for instance when S ⊆ {0,1}n)

m > 1. We get

F (x) = 〈f1(x) · · · fn(x)〉

Practically a problem mathematically undefinable ...
Combinations of the two cases above as well as of the
previous ones ...

Tsoukiàs Optimisation



Setting
Tricky Optimisation

Methods
Even more tricky ...

Learning

Example

αt
βt

γt

δt

εt
ζt�

�
�
��

H
HHH

HHH
Hj

-HH
HHH

HHH
HHH

HHH
HHj-�

�
�
��

HH
HHH

HHHj

R

Y

G Y

G

R

G

- R: dangerous
- Y: fairly dangerous
- G: not dangerous

Which is the safest path in the network?
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Example 2
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First Idea

Find all “non dominated solutions” and then explore it
appropriately (straightforward or interactively) until a
compromise is established. BUT:

The set of all such solutions can be extremely large, an
explicit enumeration becoming often intractable.
Depending on the shape and size of the set of the “non
dominated solutions”, exploring the set can be intractable.
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Further Ideas

Instead trying to construct the whole set of “non dominated
solutions”, concentrate the search of the compromise in an
“interesting” subset. Problem: how to define and describe
the “interesting” subset?
Aggregate the different objective functions (the criteria) to
a single one and then apply mathematical programming:
- scalarising functions;
- distances.
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Scalarising Functions

We transform

min
x∈S

[f1(x) · · · fn(x)]

to the problem

min
x∈S

λT F (x)

λ being a vector of trade-offs. Problem: how do we get them?

This turns to be a parametric optimisation problem
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Add Constraints

We transform

min
x∈S

[f1(x) · · · fn(x)]

to the problem

minx∈S fk (x)
∀j 6= kfj ≤ εj

εj being a vector of constants. Problem: how do we get them?

This turns to be a parametric optimisation problem
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Tchebychev Distances

We transform

min
x∈S

[f1(x) · · · fn(x)]

to the problem

min
x∈S

[ max
j=1···m

wj(fj(x)− yj)]

wj being a vector of trade-offs. Problem: how do we get them?
yj being a special point (for instance the ideal point) in the
objective space
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Combinatorial Optimisation

What happens if we have to choose among collections of
objects, while we only know the values of the objects?

1 Knapsack Problems
2 Network Problems
3 Assignment Problems

What if there are interactions (positive or negative
synergies) among the chosen objects?
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The Choquet Integral

Given a set N, a function v : 2N 7→ [0,1] such that:
- v(∅) = 0, V (N) = 1
- ∀A,B ∈ 2N : A ⊆ B v(A) ≤ v(B)
is a capacity

We use the Choquet Integral

Cv (f ) =
n∑

i=1

[f (σ(i))− f (σ(i − 1))]v(Ai)

which is a measure of a capacity where:
- f represent the value function for x ;
- σ(i) represents a permutation on Ai such that:
f (σ(0)) = 0 and f (σ(1)) ≤ · · · f (σ(n))
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Several Models Together

The Choquet Integral contains as special cases several models:

The weighted sum.
The k-additive model
The expected utility model.
The Ordered Weighted Average model
The Rank Depending Utility model
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Lessons Learned

Optimising is not necessary “rational”.
Optimising multiple objectives simultaneously is ill defined
and “difficult”.
We can improve using preference based models.
We need to (and we can) take into account the possible
interactions among objects or among objectives.
We need “good” approximation algorithms.
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Deb K., Multi-Objective Optimization using Evolutionary Algorithms, J.
Wiley, New York, 2001.

Ehrgott M., Multicriteria Optimisation, Springer Verlag, Berlin, 2000.

Ehrgott M., Gandibleux X., Multiple Criteria Optimization. State of the
art annotated bibliographic surveys, Kluwer Academic, Dordrecht, 2002.

Figueira J., Greco S., EhrgottM., Multiple Criteria Decision Analysis:
State of the Art Surveys, Springer Verlag, Berlin, 2005.

M. Grabisch, T. Murofushi, M. Sugeno, and J. Kacprzyk. Fuzzy
Measures and Integrals. Theory and Applications. Physica Verlag,
Berlin, 2000.

Kouvelis P., Yu G., Robust discrete optimization and its applications,
Kluwer Academic, Dodrecht, 1997.
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Application, John Wiley, New York, 1986.
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